
2. Patterns and Sequences

Mathematics is crucial in science and the social sciences because it allows one to express
precisely the relationship between different quantities. The study of such relationships is the
heart of algebra. It is natural to want to introduce children to mathematical notions such as
variables, relations, and functions as soon as possible, and this is often done through the study
of patterns. For example, the doubling rule beginning with the number 1 gives the sequence

1, 2, 4, 8, . . . ,

and in later mathematical studies this leads to a discussion of the function y = 2x and to the
notion of exponential growth.

It is important in discussing and in testing patterns that the basic idea of mathematics as a
rigorous subject involving disciplined reasoning not be lost. (See the Lead Essay, Principles for
School Mathematics 3 and 4.) For example, if students are to investigate the sum of the first n
odd numbers

1 = 1
1 + 3 = 4

1 + 3 + 5 = 9
1 + 3 + 5 + 7 = 16

and notice that the answer is the perfect square n2, it is important that they learn that this
is a mathematical fact which is not established for all n simply by checking some cases, but
which can be (and will be!) established at an appropriate later time in their studies. (See the
discussion of this topic in the NCTM Standards for Algebra, Grades 3-5.)

The difference between noticing a pattern and showing conclusively that the observed pattern
continues is often overlooked. To explain why this is not automatic, consider the sequence

1, 2, 4, ?.

One way to continue the sequence is to assign the value ? = 8; this can be arrived at by the
doubling rule, for example. However, if one simply asks to continue this pattern then in fact any
number can be assigned as the value of ?. That is, there is no single mathematically valid answer
here which can be arrived at by mathematical reasoning. To emphasize this, let us mention
a few different ways of continuing the sequence which also arise from natural mathematical
constructions:

(i) 124/999 = .124 = .124124124 . . .

(ii) 138/1111 = .1242 = .124212421242 . . . .
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(iii) The next term is ? = 7. This arises from a geometric problem: count the number of
regions into which lines in “general position” divide the plane. For instance, if there were no
lines, there would be 1 region—namely, the entire plane; if there were one line, the two sides
of that line would make 2 regions; two intersecting lines would divide the plane into 4 regions
(here “general position” means not parallel). The next term (the number of regions obtained
from three non-concurrent pairwise intersecting lines) is 7.

The point here is that though context may allow one to select a particular next term which
is most likely to fit a given collection of data or to apply to a given specific situation, it is simply
incorrect to say that there is a single next answer to the problem in the absence of additional
information.

This leads us to a crucial principle:

Test and homework problems involving patterns and sequences should not rely on unstated as-
sumptions, nor should they imply that there is a unique answer when this is not mathematically
justified. In particular, a given sequence of numbers with no other information stated has in-
finitely many continuations.

Adhering to this principle is crucial if students are to be fairly tested, are to develop proper
notions of mathematical reasoning, and if they are to find mathematics presented as a series of
logical steps rather than rules without justification.

In fact, claiming that an observed pattern generalizes without justification not only misleads
students about the role of mathematical reasoning in understanding and using mathematics, it
can also lead to false conclusions. Students who look at the first five terms of the sequences
(n + 2)2 and 2n (namely 9, 16, 25, 36, 49 and 2, 4, 8, 16, 32, respectively) might expect that the
term in a given position of first sequence is always larger than the term in the corresponding
position of the second sequence, but this is not true from n = 6 onwards. If students are asked
to consider a circle with several points selected on its circumference and draw all the chords
with these as endpoints, then they will notice that these chords divide the circle into a number
of regions. For small numbers of points n = 1, 2, 3, 4, 5 they can observe that the number of
regions is 1, 2, 4, 8, 16 (respectively) and they may think that the number is always 2n−1. But
this is not true; the number of regions when n = 6 is 31 and not 32. Similarly in real-world
applications, extrapolation from data is important but context is crucial; if the share price of a
certain stock at the end of March, April, and May is $10, $20, and $30 (respectively), it would
be rash to expect the price to be $40 at the end of June simply on the basis of this information.

With this as background we illustrate problems that meet and do not meet the basic criterion
above. We label the latter harmful since they in fact deliver a false impression of mathematics
itself.
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Harmful problems:

1: What is the next term in the sequence 1, 2, 4?

2: Give the continuation of the pattern which begins 3, 1, 4, 1, 5.

Discussion: The objections above apply. In fact, as noted above, there are infinitely many
answers, and with the information given there is no mathematical reason to prefer any one of
them.

3: The Fair Meadows County Library charges a fine of $0.50 for a book that is two days late
and $0.75 if it is three days late. What is the late fee for a book that is returned one day late?
Two weeks late? One hundred days late?

Discussion: This problem cannot be solved with the information given. What if the library has
a one-day grace period? What if it has a system of fines that is not linear, such as a cut-off
at the cost of the book plus a service charge? The point here is that someone working on this
problem is required to make an assumption that is not stated in the problem.

4: Each arrangement in the pattern below is made up of tiles. How many tiles are there in
the fifth arrangement in this pattern?

2
1st

2
222
2nd

2
2
22222

3rd

Discussion: Once again the “pattern” is not described mathematically. There is no way to
answer the question without guessing the particular continuation that its author had in mind.
In fact there are infinitely many other continuations, each of which is consistent with the infor-
mation given in the problem. The question could be changed to address this problem by stating
that the successive arrangements are obtained by adding boxes to the top of the leftmost edge
and to the right of the bottom edge and nowhere else and that the numbers of tiles on these
edges are described by arithmetic progressions.

We also discuss two other problems that would satisfy, albeit minimally, the criterion stated
above, but which do not seem of great value to us:

5: State a rule which gives a sequence beginning 3, 1, 4, 1, 5, and use your rule to find the
next term in the sequence.

Discussion: Though well-intentioned, this is somewhat misleading in that the rule which states
by caveat that the sequence is 3,1,4,1,5,1000, continuing and repeating forever is mathematically
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just as valid as any other rule (even one more ostensibly natural such as the digits of π). So
there is almost no mathematical content in the question.

6: (For elementary school students) Find 5 patterns among the entries of Pascal’s triangle:

1
1 1

1 2 1
1 3 3 1

...

Discussion: This problem makes no hidden assumptions. The issue is that there is no great gain
in mathematical knowledge for elementary students who may notice that entries of the rows add
up to powers of 2, etc. Prior to work done counting combinations, such investigations do little
to contribute either to the mastery of core topics or to the development of rich mathematical
reasoning skills, and seem to us of limited value.

Helpful problems:

7: Which of the following rules gives rise to a sequence beginning 1, 2, 4? For each of the
rules that does so, find the next term predicted by that rule. (7-a) the doubling rule: the next
term is twice the preceding one. (7-b) add one to the first number to get the second, two to the
second number to get the third, and in general add N to the N -th number to get the (N +1)-st.
(7-c) triple any number in the sequence and subtract 1 from this to get the next number. (7-d)
add 1 to the numbers in odd positions in the list and add 2 to the numbers in even positions
in the list in order to get the next. (7-e) square any number in the sequence and add 1 to the
result to get the next number.

8: Fill in the next three terms of the following sequence in which the rule for all but the first
two terms is that each term is 1 more than the sum of the preceding two terms: 1, 2, 4, , , .

Discussion: Note that the difficulty in understanding the rule from prose is nontrivial and this is
the most difficult aspect of this problem. But this is the kind of reading that is very important
in mathematics.

9: Notebooks are sold at a fixed price per notebook. At a special sale, if a customer purchases
from 2 up to 6 notebooks, the fixed price is reduced by 5 cents times the number of notebooks
purchased. If 3 notebooks cost $2.25, how much would 1 notebook cost? How many notebooks
would you need to purchase to save 1/3 of the original price on each notebook?

4



10: The Fair Meadows County Library charges a fine of a fixed amount per day for each
day a book is overdue. If the fine is $0.50 for a book that is two days late and $0.75 if it is three
days late. what is the late fee for a book that is returned one day late? Two weeks late? One
hundred days late?

We note that a more systematic study of sequences may be undertaken using algebraic sym-
bolism. This leads to the definition and discussion of arithmetic and geometric progressions, to
the notion of recursion which is tied to computer science, and to proof by mathematical induc-
tion. The algebraic symbolism used in recursions makes it easier to write questions for advanced
middle school or high school students than for K-6 students. Here are five such questions with
different levels of difficulty.

11:

(a) What are the first five terms of the arithmetic progression which begins 2, 6? What is
the 20th term? (For advanced high school students: What is the sum of the first 20 terms?)

(b) What are the first five terms of the geometric progression which begins 2, 6? What is
the 20th term? (For advanced high school students: What is the sum of the first 20 terms?)

12: Suppose that a1 = 1, and for n > 1, that an = 2an−1. So,

a1 = 1
a2 = 2a1 = 2× 1 = 2
a3 = 2a2 = 2× 2 = 4 .

Find a4, a7, and a14.

13: It is given that an = 2an−1 and that a6 = 12. Find a1, a3, and a9. Then find a closed
(i.e. explicit) formula for an for arbitrary n, and prove your formula.

Discussion: The preferred solution for the first part is to divide 12 by 26−1, but it could also be
solved by successively dividing by 2 five times. This part also reinforces the arithmetic fluency
called for in many state grade 3-7 standards.

14: It is given that b1 = 1 and that for m ≥ 1, that

bm+1 = m + bm .

Find b7 − b5.

Discussion: This problem is related to the geometric problem described in part (iii) of the
discussion of sequences which begin 1, 2, 4.
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15: A sequence begins with c0 = 1, c1 = 2, and continues for m ≥ 0 via the recursion

cm+2 = 1 + cm+1 + cm .

Find c6.

Discussion: It happens that the sequence in this problem and the one in problem (13) both
begin as 1, 2, 4, 7. But the next term in the preceding problem is 11 while the next term here is
12. Once again, we see an illustration of the principle that there is no unique way to continue
a finite sequence of numbers in the absence of additional information.

As a concluding remark, we note that patterns do have a place in mathematics, when com-
bined with mathematical reasoning. Since it may be easy to detect a pattern and there is a
temptation to let that be a substitute for careful mathematical reasoning, it is important that
teachers present the detection of possible patterns as only the first step in a more detailed in-
vestigation, and not be satisfied with that step alone. As an example, one could ask students
to investigate whether or not n2 − n + 5 is prime as n ranges over the whole numbers. Though
this expression is prime for n = 0, 1, 2, 3, 4, in fact, it is composite for n = 5, and also for
n = 10, 15, 20. Students who notice this could then prove that it is composite for all integers
n that are mutliples of 5 except n = 0. Noticing that the expression is also composite for
n = 6, 11, 16, 21 leads to another provable fact: values of n that are one more than a multiple
of 5 yield composite numbers with the single exception that n = 1 yields the prime number
5. (The proof involves rewriting the polynomial as n(n − 1) + 5.) The process of detecting
patterns and then using careful mathematical reasoning to establish them is a useful technique
in mathematical knowledge-building.
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