

- Background
- Describing epidemics
- Modelling epidemics
- Predicting epidemics
- Manipulating epidemics

- \cdot Background
- Describing epidemics
- Modelling epidemics
- Predicting epidemics
- Manipulating epidemics

Plague Facts

- Severe (bubonic?) plague epidemics recorded from Roman times to early 1900s
- 1/3 of population of Europe killed by plague of 1348 (it took 300 years to for the population to reach the same level)
- Spatial data for Great Plague of 1665...
- Still a concern: rodent reservoir, antibiotic-resistant strains...

Flu Facts

- Annual influenza epidemics are a major stress on healthcare systems worldwide
- ~30,000 deaths in the United States attributed to influenza every year (mostly in people >65 years old)
- Individual-level mortality data available for the US since 1979, in Canada since 1951
- Can never be eradicated: reservoir in aquatic birds... constant threat of new emergence/pandemic...

Pandemic Flu Facts

• 20-100 million deaths in 1918 pandemic

- · Less severe pandemics in 1957 and 1968
- · A new flu pandemic could occur any time

What next?

SARS Facts

- High case fatality rate
 - 1918 flu: < 3%
 - SARS: > 10% (and most others require hospitalization)
- · Long hospital stay times
 - Mean time from admission to discharge or death ~25 days in Hong Kong (Donnelly et al 2003)
- · As of 26 September 2003:
 - 8098 probable cases, 774 deaths

Canadian Data Sources

- · Ontario Ministry of Health
 - Weekly notifications, 1939-1989, aggregated for the whole province (county and municipality level spreadsheets were destroyed in the 1990s, except for two years)...
- · Manitoba Health
 - DBS weekly notifications spreadsheet for 1958
- · Statistics Canada
 - Weekly/monthly notifications, by province, since 1924
 - Incomplete in parts, primarily because notification practices varied over time and space
- · Tiny bits from Quebec, Alberta, BC

WEEK ENDING	P.E.I.	N.S.		N.B.		QUE.		OHT.		MAN.		SASK.		ALTA.		B.C.		CANADA	
	wis mi	w15.	2/1	WK.	m1	WK	mī	WK	mī	يمر ب		w/s	~5	WIS	m1	W15.		WK	100
JAN 5		11										1					_	12	
12		29	_	_					_			18					-	47	
19		37	-	_								12						67	
26			152	-	_		68		181		36	13	64		97	_	4	88	602
FEB Z		12	-+	1			_			\rightarrow	-	53					-+	66	-
		5	\dashv				_			_		40					-	45	
FEB Z 1 16 23		31	_	-			.,,		202		10	14	///		116	-+	-	45	797
23		- 2	50	-4	2		267	-	202		48	21	-"/		116	+	-4	23	
MAR I		2	+	\rightarrow			-		-			9			-		-	9	-
15		3	\dashv	-				-				11			-+		-+	14	
		60	+	-	-							34		-		-	-	94	
29		2	61				144		140		52		90		15		7		515
29 129 1883		9	**	_			///		770	1	_	11			-	_	1	20	-
/2		1	_	_	_							12						13	
. 4		26		1								8						35	
19																			

Childhood Disease Facts (Definition)

- · Short incubation period
 - << 10 years (typically a few days)
- · High transmission rate
 - mean age at infection is during childhood
- · Lifelong immunity
 - Can ignore evolution of pathogen
 - Vaccine does not need to be updated
 - Eradication possible in principle (if no nonhuman reservoir)

Measles Facts

- 30-40 million cases and ~750,000 measles deaths occur each year.
- Measles accounts for 46% of the 1.7 million annual deaths due to vaccine-preventable diseases.

http://www.unicef.org/measles/factsheet.htm http://www.measlesinitiative.org/

· Costs ~\$1 per measles vaccination.

Measles Epidemics

- Understand past patterns
- Predict future patterns
- Manipulate future patterns
- Develop vaccination strategy that can...

- Background
- · Describing epidemics
- Modelling epidemics
- Predicting epidemics
- · Manipulating epidemics

Time Plots of smoothed data

· Reveal trends clouded by noise or seasonality

Autocorrelation

· Recall usual correlation coefficient for pairs of observations

$$r = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum (x_i - \overline{x})^2 \sum (y_i - \overline{y})^2}}$$

Autocorrelation at lag k is correlation coefficient for observations that are k steps apart in time

$$r_{k} = \frac{\sum_{t=1}^{N-k} (x_{t} - \overline{x})(x_{t+k} - \overline{x})}{\sum_{t=1}^{N} (x_{t} - \overline{x})^{2}}$$

· Sheds light on nature of serial dependence in a time series

Spectral density

- · Another way to identify periodicities in the data
- · Suppose we express the data as a Fourier series:

$$\begin{split} x_t &= a_0 + \sum_{p=1}^{(N/2)-1} [a_p \cos \omega_p t + b_p \sin \omega_p t] + a_{N/2} \cos \pi t \\ &= \overline{x} \end{split} \qquad \qquad \text{where } \omega_p = \frac{2\pi p}{N} \end{split}$$

• Then $a_0 = \overline{x}$

$$a_p = \frac{2}{N} \left[\sum_i x_i \cos \omega_p t \right]$$
$$b_p = \frac{2}{N} \left[\sum_i x_i \sin \omega_p t \right]$$

 $a_{\scriptscriptstyle N/2} = \tfrac{1}{N} \sum (-1)^t x_{\scriptscriptstyle t}$

· The estimated power spectral density at frequency $\omega_{_{p}}$ is:

$$I(\omega_p) = \frac{N}{4\pi} \left(a_p^2 + b_p^2 \right)$$

Properties of Periodogram

- Periodogram is discrete Fourier transform of correlogram
 - Same information in autocorrelation and power spectrum
 - Periodogram generally easier to interpret than correlogram
 - ${\it Convenient}$ to calculate periodogram via correlogram
- Total area under the Periodogram is equal to variance of the time series
 - $I(\omega_{\scriptscriptstyle p})$ is the proportion of the variance associated with $\omega_{\scriptscriptstyle p}$
- Periodogram is really an estimator of the "true" (continuous) power spectrum
 - Precision of autocorrelation coefficients decreases with lag because series is finite
 - When Fourier transforming correlogram, commonly linearly filter with, e.g., *Tukey window:*

 $\lambda_k = \frac{1}{2} \left(1 + \cos \frac{\pi k}{M} \right) \qquad k = 0, 1, \dots, M$

Problem

- Examine measles dynamics in New York City (data file nycmeas.dat) via:
 - Time plots of raw and transformed data
 - Autocorrelation / correlogram
 - Power spectral density / periodogram
- Apply these methods to segments of the time series that look different by eye
 - Is there evidence for: Frequency components not evident by eye? Changes in the frequency structure over long time scales? If so, why might this have occurred?
- · What if you remove trend and/or seasonality?

When you have time...

- · More sophisticated spectral methods exist.
- Wavelet analysis provides a method for frequency decomposition that is local in time, so you can see changes in the spectrum over time without having to identify distinct temporal segments yourself.
- If you're ambitious... explore the New York
 City measles time series using wavelet analysis,
 e.g., via the matlab wavelet toolbox.