Taking Place Value Seriously:
Arithmetic, Estimation and Algebra

0. Introduction and Summary

Arithmetic, first of whole numbers, then of decimal and common fractions, and
later of rational expressions and functions, is a central theme in school mathematics.
This essay attempts to point out ways to make the study of arithmetic more unified
and more conceptual through systematic emphasis of place value structure in the

decimal number system.

The essay is divided into five sections, with two appendices and a set of related

exercises and problems.

The first section reviews the basic principles of decimal notation. It points
out the sophisticated structure which underlies the amazing efficiency of decimal
notation, and it introduces the terminology of digit, denomination, and decimal
component, for the basic constituents out of which decimal numbers are formed.
To enable discussion of the sizes of decimal numbers, it introduces the idea of order

of magnitude of decimal components and numbers.

The second section discusses the how decimal notation permits efficient algo-
rithms for the basic operations of addition and multiplication for whole numbers.
The main theme is that the form of decimal numbers, as sums of the very special
numbers called decimal components, together with the Rules of Arithmetic,! deter-
mines the main outlines of the procedures for adding and multiplying. The inverse
operations, of subtraction and division, are discussed in appendices.

Section 3 discusses ordering, estimation and approximation of numbers. For
comparing numbers, a crucial idea is that of relative place value. The corresponding
idea for approximation is relative error. Both relative and absolute error can be
controlled in terms of decimal expansions. A key concept is significant digit. It
is pointed out that relative accuracy of approximation improves rapidly with the
number of significant digits. It is usually unreasonable to expect to know a “real-
life” number (meaning the result of a measurement) to more than three or four
significant digits, and often one must settle for, and can live with, much less. Failure
to appreciate the limits of accuracy seems to be one of the most pervasive forms
of innumeracy: it affects many people who are for the most part quite comfortable

1By the “Rules of Arithmetic”, we mean what mathematicians refer to as the Field Axioms,
and what are often mentioned in mathematics education literature as “number properties”, or just
“properties”. (They are, in fact, not properties of numbers, but properties of the operations.) They
are nine in number: four (Commutative, Associative, Identity and Inverse Rules) for addition, four
parallel ones for multiplication, and the Distributive Rule to connect addition and multiplication.

Other rules, such as “Invert and multiply”, or the formula for adding fractions, or the rules of
signs for dealing with negative numbers, can be deduced from these nine basic rules.
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with numbers. Scientific notation, which focuses attention on the size of numbers

and the accuracy to which they are known, is discussed in an appendix.

The fourth section combines the ideas from sections 2 and 3 in a short discus-
sion of accuracy and estimation in arithmetic computation. Focusing on decimal

components permits a highly effective treatment of this issue.

The last section explores the connections of decimal notation with algebra. It is
suggested that decimal numbers can be profitably thought of as “polynomials in 107,
and the parallels between decimal computation and computation with polynomials
are illustrated. Moreover, the structural understanding that would come with a
study of arithmetic based on decimal components should promote comfort with
algebraic manipulation. Further parallels between decimal arithmetic and algebra

are explored in the accompanying problems.

This essay addresses an issue which the author hopes will be of interest to a
broad spectrum of mathematics educators (a term we use inclusively, to comprise
mathematics teachers of all levels, as well as educators with professional interest in
mathematics). It probably will meet with the same problem which bedevils every
teacher of mathematics — variations in sophistication and background among its
intended audience. It is hoped that many readers can appreciate the broad message,
that place value can serve as an organizing and unifying principle across a surprising
span of the elementary (and beyond!) mathematics curriculum; and that individual
readers will be patient with particular parts which may seem either over- or under-
elaborated, keeping in mind that other readers may have the opposite view. The
earlier sections tend to provide more details. Later sections, and especially the

appendices, are terser.

Acknowledgements: The author is grateful for comments on earlier drafts of
this essay from the MSSG committee members, from Johnny Lott and his asso-
ciates in NCTM and ASSM, and from Scott Baldridge, Thomas Roby, and Kristin
Ulmann. Thanks to Mel Delvecchio and W. Barker for vital production help.

1. The decimal system: place value, expanded form and decimal com-

ponents.

Our common decimal system is a highly sophisticated method for writing whole
numbers efficiently. It uses only 10 symbols (the digits: 1 to 9, together with 0),
arranged in carefully structured groups, to express any whole number. Further, it
does so with impressive economy. To express the total human population of the

world would require only a ten-digit number, needing just a few seconds to write.

The efficiency of the decimal system is possible because of its systematic use

of mathematical structure — essentially, it enlists algebra in support of counting.



Making this structure explicit may help to make mathematics instruction more
effective, by increasing conceptual understanding and computational flexibility. It
should promote numeracy by making students more sensitive to order of magnitude,
and to the estimation capabilities of decimals. It should also bring out the parallels
between arithmetic and algebra, thus making arithmetic a preparation for algebra,

rather than the impediment that it now sometimes is [KSF, Ch.8].

We will call a whole number expressed in decimal form a decimal number. The
first thing to understand about decimal notation is that the decimal expression of
a number implicitly breaks the number up into a sum of numbers of a very special

type. Thus

7,452 = 7,000 + 400 + 50 + 2.

This is usually called expanded form. It is mentioned in many state standards
documents. This essay explores what would be entailed in making it central to
arithmetic instruction.

We will call the summands in the expanded form of a number the decimal com-
ponents of the number. Each decimal component is a digit (possibly 0) times a

power of 10:

7,000 =7 x 1000 =7 x (10 x 10 x 10) =7 x 103.
400 =4 x 100 =4 x (10 x 10) = 4 x 102.
50 =5 x 10 =5 x 101.
2=2x1=2x100.

We will call the powers of 10 denominations. (In this, we follow [BP].) Thus, a

decimal component is a digit times a denomination.

We will call the exponent involved in a denomination the order of magnitude
of the unit. The order of magnitude may also be described as the number of zero
digits used to write the denomination, or one less than the total number of digits
used. By the order of magnitude of a (non-zero) decimal component, we mean
the order of magnitude of its denomination. Finally, the order of magnitude of a
decimal number is defined to be the order of magnitude of its largest (non-zero)
decimal component. Thus, 7,452 has order of magnitude 3, the same as its largest
decimal component, 7,000, and the 400, the 50 and the 2 have orders of magnitude
2, 1 and 0, respectively.

For this essay, “order of magnitude” replaces the usual naming of places. We

want to replace the standard terminology involving specific place names with this



order-of-magnitude terminology in order to be able to better discuss the relationship
between different orders of magnitude. It will often be convenient to abbreviate

“order of magnitude” to just “magnitude”.

A key point about the expanded form of a number is that no two decimal com-
ponents have the same order of magnitude. This condition in fact characterizes the
expanded forms: a sum of decimal components is the expanded form of a number
exactly when it involves at most one component of any given order of magnitude.
The non-zero digits of the decimal expression of the number are then just the dig-
its coming from the decimal components, each in its corresponding place. Besides
these, for orders of magnitude smaller than the magnitude of the number, if the
decimal component of that magnitude is “not there”, i.e., is zero, then one puts
a zero in the corresponding place of the number, to indicate the absence of any
multiple of that power of 10, so that the orders of magnitude corresponding to the

non-zero digits can be read correctly. This is the principle of place value. Thus

82 = 80+ 2= 8 x 10+ 2 x 1.

802 = 800+ 2= 8x100+0x10+2 x 1.

80020 = 80,000 + 20 = 8 x 10,000+ 0 x 1,000+ 0 x 100 + 2 x 10 + 0 x 1.



2. Decimal components and the algorithms of arithmetic.

The fact that decimal numbers are sums has a pervasive influence on the meth-
ods for computing with them. In fact, the procedures for carrying out the four
arithmetic operations with decimal numbers are largely determined by the fact
that numbers are sums of their decimal components, together with the Rules of

Arithmetic (see footnote, page 1).

Addition:

The basic strategy for adding two decimal numbers is to break each number
(summand) into its decimal components, and, for each order of magnitude, to
add the components of that magnitude. These sums are then recombined into a
decimal number. The details of this last step give rise to the more finicky parts of

the addition algorithm.

One can justify this process of decomposing, adding components, and then re-
combining by means of the two most basic rules of addition: the Commutative Rule

and the Associative Rule. We recall them.

The Commutative Rule: The value of a sum does not depend on the order of

the summands: for any two whole numbers, a and b,

a+b=>b+a.

The Associative Rule: When adding three numbers, the value of the sum does
not depend on the way the numbers are combined into pairwise sums: more pre-

cisely, for any three whole numbers a, b and c,

(a+b)+c=a+ (b+c).

These rules are easy to justify in terms of common models of addition. If we
model addition by, say, concatenation of lengths (sticking bars end to end), the
Commutative Rule can be demonstrated by combining bars of lengths a and b into
a bar of length a + b, and then rotating the bar around its midpoint to reverse
the order of the summands. Associativity is even simpler: one just takes a bar
composed of subbars of lengths a, b and ¢, and observes that it can be thought of
as being made of subbars of length a + b and ¢, or, equally easily, of subbars of

lengths a and b+ c. It is all in the point of view.



Additon Rules Diagrams
Commutativity

a+b
a b

b a
b+a

Associativity
(a+b) + C

a b C

a + (b-lv—c)

Although the Commutative and Associative Rules are basic principles of arith-
metic, one rarely uses them in isolation. Most practical manipulations call for more
or less complicated combinations of both the Commutative and Associative Rules.
Therefore, it is advisable to discuss explicitly the logical consequence of these rules,
which is that, when a list of numbers is to be added, it does not matter what
sequence of pairwise sums we do, or the order of the summands in any of these in-
termediate sums: the final result will always be the same. We call this Any Which
Way Rule, a name which emphasizes the freedom we have in performing additions.
(In [BP], it is called the Any Order Property.) Although a formal demonstration
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of the Any Which Way Rule is probably not appropriate at the level that multi-
digit addition is first discussed, nevertheless an explicit discussion of the rule, with
examples, particularly examples showing how it can simplify calculations and aid

mental math, does seem feasible and advisable.

In any case, the Any Which Way Rule justifies the strategy of adding two decimal
numbers by breaking each summand into its decimal components, adding pairs of
components of the same order of magnitude, then adding all the results. The
question next is, what does this do for us? That is, why is it an effective method?

The first part of the answer to this question comes from looking at the sum of
two decimal components of the same order of magnitude. These addition problems
simply amount to applying the “basic addition facts” (i.e., how to add two single

digit numbers), plus keeping track of the order of magnitude. Thus, for example,
7,000 + 2,000 = 7 x 1000 + 2 x 1000 = (7 + 2) x 1000 = 9 x 1000 = 9, 000.

It is always the same: to add two decimal components of the same order of magni-
tude, simply add their digits, then append the order of magnitude number of zeros
on the right. The formal justification for this uses the Distributive Rule, which we
will discuss later on. It can also be thought of as keeping track of units: in the
sum above, we are adding 7 thousands to 2 thousands, and the result is (7 + 2)
thousands, or 9 thousands.

This observation is sufficient by itself for adding many pairs of numbers. For

example
7,452 + 1,326 = (7,000 + 1,000) + (400 + 300) + (50 + 20) + (2 + 6)

= 8000 + 700 + 70 + 8 = 8, 778.

However, addition will be this simple only when, for every order of magnitude,
the pair of decimal components of that magnitude have digits summing to less
than 10. When this happens, all sums will again be decimal components, of the
same magnitude, and may be directly put back together to form the sum of the
original numbers. Whenever a digit sum is more than 10, finding the sum gets more

complicated. For example,
7,000 + 6,000 = 13,000 = 10,000 + 3000.

Again, this is a repetition on a larger scale of a basic addition fact, which is why
those facts are so important. The new problem presented by this sum is that it
has two decimal components, one of the same magnitude as the components being

added, and the other with magnitude one larger. When the sum of two decimal



components has a component of larger order of magnitude, this must be added
to the components of the summands of that magnitude. This is “carrying” or

“regrouping” or “renaming”. An example of addition with regrouping is
7,453 4+ 1,729 = (7000 + 1000) + (400 + 700) + (50 + 20) + (3 +9)

= 8,000 + 1,100 4 70 + 12

= 8,000 + (1,000 + 100) + 70 + (10 + 2)

= (8,000 + 1,000) + 100 + (70 + 10) + 2
= 9,000 + 100 4 80 + 2 = 9, 182.

Since (when adding two numbers) the sum of components of a given magnitude
contributes directly at most to this magnitude and to the next larger one, an effi-
cient way of finding any sum would be to start with order of magnitude zero (the
ones place), find the sum of those components, combine the 10 (if it occurs) with
the magnitude one components, find the sum of those components, and so forth,
progressing systematically to larger orders of magnitude, one at a time. This is
exactly what one does in the standard addition algorithm, although it may not be
expressed in these terms, and the relevance of the expanded form may be suppressed
in a strictly procedural approach. The procedure may also be adapted readily to
addition of many numbers (“adding the columns”).

Thinking explicitly about the component-by-component aspect of decimal addi-
tion can give greater flexibility in doing addition. For example, in adding two-digit
numbers mentally, it is usually easier to think of adding the 10s and adding the 1s
separately (which is exactly using expanded form in this situation). Further, one
usually adds the 10s first, since this gives the main part of the sum, and then adds
the sum of the 1s to that. If there is a carry from the 1s, it just means increasing
the result from the 10s addition by one more 10, which is easy to do when there
are only two decimal places to worry about.

We will see later on that these same considerations lead to quick estimation

procedures for sums, easy enough to be carried out mentally in many cases.

In summary: if addition is thought of in terms of expanded form, then the basic

strategy in doing addition of two decimal numbers is this:

i a) For each order of magnitude, take the decimal component of that order of
magnitude from each summand, and add them. The sum is the sum of the digits

of the two components, times their common denomination.

ii a) In cases when the digit sums are all less than 10, the component sums will

be the decimal components of the sum to be found.



ii b) If, however, a digit sum is 10 or more, the 10 times the relevant denomination
produces the denomination of the next larger magnitude, which must be added to

the components of that magnitude.

These ideas need not be introduced in a single large lump. They can be taught as
the decimal system is now, in a gradual way, starting with two-digit numbers. This
would simply involve recalling that a two digit number means so many 10s and so
many 1s, e.g., 47 is four 10s and seven 1s. (Probably explicit attention to this would
be helpful to many students in any case, since the irregularities of English two-digit
number words somewhat impede children to think in term of place value [KSF,
p.167 ].) Then the strategy of “adding the 10s and adding the 1s” should appear
more or less natural, perhaps after discussion. First problems with no carries could
be done to establish the basic principle, then there should be consideration of what
to do when one or the other of the digit sums is greater than 10. This approach
should extend easily to numbers with more digits.

In fact, the basic grouping principle of decimal notation is not something that
all students take to readily. Even before general two-digit addition is considered, it
can be valuable to emphasize the grouping principle involved in decimal notation by
using the “make a ten” idea [KSF, p.189] in learning the addition facts with sums
above ten. As explained in [Ma], Chinese teachers think of the addition facts as
not simply as a list to be memorized, but as a place to begin teaching the structure
of the decimal system, and they emphasize the process of forming ten ones into a
10 when a sum of digits is greater than 10, and of decomposing a 10 back into ones

in the corresponding subtraction problems.

Multiplication:

Thinking in terms of decimal components also sheds light on multiplication and
division. However, the development requires a firmer grasp of the rules of arithmetic
than was needed for addition. We begin with a discussion of the relevant rules.

Multiplication satisfies the Commutative Rule and the Associative Rule, just as
addition does, but the justification for these rules is more work. Probably the best
approach is through the Array Model, which is in any case an important interpre-
tation of multiplication. The Array Model also helps to prepare for understanding
area.

If we model a whole number as a horizontal row of some sort of object, say small
circles, then multiplication involves replicating the row a certain number of times.

Thus, if 3 is pictured as

then 4 x 3 can be represented

c 0 o0 0O Of0 O O|j0O0 O o.
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For the Array Model, instead of arranging all the groups along the same line, we

stack them one above the other, to make a rectangular array.

O O O O
O O O O
O O O O

This is the Array Model for 4 x 3: four horizontal rows of three items each, stacked
vertically above each other.
Using the Array Model, it is easy to justify the Commutative Rule for multipli-

cation: one just flips an m x n array over its diagonal, turning it into an n x m

array:
o O O O
o O O O
o O o O

A justification similar in spirit, although more complicated, may also be given
for the Associative Rule. Building on the Array Model, one thinks of n x (m x £)
as a rectangular 3-dimensional array of n layers of planar arrays of size m x £. One
can then re-slice this array by planes perpendicular to the rows of length ¢, and

exhibit the same array as an assemblage of £ layers of n x m planar arrays. Thus
nx (mx£)=(nxm)x/L.

We d o not attempt the illustration here. However, students might well benefit
from studying it carefully.

Once students firmly believe the Commutative Rule and the Associative Rule
for multiplication, the same logic as used in the case of addition shows that the
Any Which Way Rule holds also for multiplication. If this was not discussed very
explicitly when developing addition, it might be well to consider examples of how
the two rules combine to create more extensive rearrangements. Here is one. The
equality

(axb)x(cxd) =(axc)x(bxd)

may be justified by the steps
(axb)x(cxd)=ax (bx(cxd)=ax((bxc)xd)

=ax((cxb)xd) =ax(bx (cxd)=(axc)x(bxd).

Here the first equation uses the Associative Rule to replace (a x b) x (¢ x d) with
a X (b x (c x d)). Note that the product structure of ¢ x d is being ignored; ¢ x d

is being treated simply as a number. The second equation uses the Associative
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Rule for b x (¢ x d). The third equation uses the Commutative Rule for b x ¢. The
fourth and fifth equations reverse the steps of the first two equations, with b and ¢

interchanged.

If the reader thinks that the above transformations amount to a lot of work to
justify a simple exchange of factors, s/he would be right; but the general symbolic
formulation given above may make the identity seem too transparent. Consider a

numerical example:

24 x56=(3x8)x(7Tx8)=(3x7)x(8x8)=21x64.

The equality of the first and last products may not be immediately obvious to all.

In addition to the Any Which Way Rule, multidigit multiplication makes heavy
use of the Distributive Rule, which is the one rule of arithmetic involving both
addition and multiplication. More precisely, it tells us how to multiply sums of

numbers. The standard formulation is:

Distributive Rule: For any whole numbers a, b and ¢, the equation

ax(b+c)=axb+axc

holds.

The Distributive Rule may be also justified using the Array Model. The picture

is as follows:

OO0 Q& R ®
O 0 R X ® ® 3x(2+4)=3x6
OO0 Q¥

a |ab ac ax(b+c)=axb+axc
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Distributive Rule Diagram

a | ab| ac
b ¢

-

| -
Just as the Commutative and Associative Rules combine many times to produce

the practical Any Which Way Rule, the Distributive Rule also has a more practical

form, which we will designate (rather prosaically) as the

Extended Distributive Rule: If A and B are sums of several numbers, then
the product AB may be computed by multiplying each summand of B by each

summand of A, and adding all the resulting products.

For example, if A=a+ b and B =c+ d+ e, then

AB = (a+b)(c+d+e) = ac+ad+ ae

+be + bd + be.

(Here, and in what follows, we use the standard convention to indicate multiplica-
tion simply by juxtaposition, with no operation sign written explicitly.)

The Extended Distributive Rule can be pictured using arrays almost as easily as
the basic version:
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Extended Distributive Rule Diagram

a | ac| ad| ae

b | bc| bd| be

c d e

These rules, plus of course the Any Which Way Rule for addition, provide excel-
lent guidance for multiplying decimal numbers together. Since each decimal number
is the sum of its decimal components, the Extended Distributive Rule tells us that
the product of two decimal numbers may be found by multiplying each decimal
component of one factor by each decimal component of the other, and then sum-
ming all the products. The Any Which Way Rule for addition says that we have
great latitude how we sum them. Differences in multiplication algorithms come

mainly from choosing different summation procedures.

Before getting into details of summation schemes, we should have a good grasp
of multiplying decimal components. Here we find a situation analogous to that of
addition. When we multiply two decimal components, the result is equal to the
product of the digits, times the appropriate order of magnitude, which is just the

sum of the orders of magnitude of the factors, since 10¢ x 10® = 10%t?. Examples:
20 x 40 = 800 300 x 6,000 = 1, 800, 000.

Thus, the basic multiplication facts, combined with a grasp of place value, allow us
to multiply any two decimal components.

We should perhaps point out that the formal correctness of a formula like 300 x
6,000 = 1,800,000 depends on the Any Which Way Rule for multiplication. In

carrying out the detailed manipulations, we would write
300 x 6,000 = (3 x 100) x (6 x 1000) = (3 x 6) x (100 x 1000) = 18 x 100, 000

= 1,800, 000.

(Note that the crucial middle equality is a case of the equation (a x b) x (¢ x d) =
(a x ¢) x (b x d) discussed above.) Even the multiplication of decimal units, such
as 100 x 1000 = 100, 000, which is essentially an instance of the Law of Exponents,

also relies on the Associative Rule for multiplication for formal justification.
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Just as in one-digit multiplication, the product of two decimal components can
itself have one or two components in its expanded form. Their magnitudes will be
the sums of the magnitudes of the factors, and possibly one more. Perhaps the
trickiest case is when one digit is even, and the other is 5. Then the product of
digits will be a multiple of 10, and so the full product will have only one decimal
component, but its order of magnitude is one larger than the sum of the orders of
magnitude of the factors. This case, however, follows the same rules as all other
cases: the extra order of magnitude is supplied by the product of the digits. An

example:
50 x 800 = (5 x 10) x (8 x 100) = (5 x 8) x 1,000 = 40 x 1,000 = 40, 000.

Let us combine these observations with the Extended Distributive Rule to do

multidigit multiplication. For example, consider

21 x 437 = (20 + 1) x (400 + 30 + 7)
= 20 x 400 + 20 x 30 + 20 x 7
+1%x400+ 1x 30+ 1x 7
= 8,000+ 600 + 140
+400+ 304+ 7
= 9,177

In this computation, we have given no clue as to how the addition of the array
of six numbers was performed. One method might be to sum the terms along each
row of the array, and then sum the results. This would yield the intermediate sum
8,740 + 437 = 9,177. We can recognize this sum as the one which appears in the

standard calculation

437
x21

437
8740

9177

(Here we have filled in the often omitted zero in the 8740 in order to make clear
the connection with the row sums.)

On the other hand, if we sum down the columns, then we obtain as an interme-
diate step 8400 4 630 + 147 = 9177. We can recognize these summands as those

appearing in the standard procedure with the factors taken on the other order:
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21
x 437

147
630
8400

9177

Thus from the array of products of decimal components, we can produce the
standard method for computing products, in either order, by summing first along
rows of the array.or along the columns. Interpreting these procedures in terms
of the array of products of components could help students to understand why
both give the same answer (as they must if multiplication is to be commutative),
although the intermediate steps are so different.

However, we have seen that in some sense the most natural way to do an addition
is to break each summand into its decimal components, and to add the components
of a given magnitude. Neither of the standard algorithms does this. However, this
procedure can be carried out in quite an elegant way, giving an algorithm known as
the array method, or lattice method , or Napier’s Bones. It refines the observation
that, if we write the products of components in an array, as in the example above,
then the order of magnitude of the products decreases from left to right along
rows, and from top to bottom along columns, and products of the same order of

magnitude are lined up in diagonals running from upper right to lower left.

In more detail, to multiply a d digit number and an e digit number, we construct
a d x e array of boxes, with each box divided by a diagonal slanting from lower
left to upper right. We arrange the digits of the first factor, from left to right
above the boxes of the top row of the array, and we arrange the digits of the second
factor, from top to bottom, beside the boxes at the right side of the array. In
each box, we record the product of the digits in its row and column, with the 10s
digit of the product above the diagonal, and the 1s digit below. Then to find the
total coefficient of each power of 10, we sum the digits along the diagonals. The
lower rightmost diagonal (which has only 1 box) corresponds to the 1s place, and
moving left one diagonal increases order of magnitude by 1. If the sum of the digits
along a diagonal exceeds 10, the 10s digits should be carried to the next place
(the diagonal to the left). Napier’s Bones is a pleasant algorithm for multiplication
which better displays the structure of the process than does the standard algorithm.
We illustrate it below for our example of 437x21.
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Napier’s Bones Diagram

3 614

8| /4| 3| /7
11 7 7

437x21 =7+70+1100+8000=9277

We remark that the process of summing along the diagonals in Napier’s Bones is

parallel to shifting the partial products to the left in the standard method.

The above discussion has tried to make the case that thinking explicitly in terms
of decimal components yields benefits for developing understanding of arithmetic.
This approach is extended to subtraction and division in Appendices 1 and 2. We
will next attempt to show that doing decimal arithmetic with emphasis on the
role of decimal components has advantages beyond computation. It also makes
estimation a relatively simple matter, and it brings out the connections between

decimal arithmetic and algebra.

3. Decimal components, estimation and error.

Besides the arithmetic operations, the other main structure on the whole num-
bers is order: we know when one whole number is larger than another. (In fact,
order can be expressed in terms of addition: whole number a is greater than whole
number b if a = b + ¢, where ¢ is another (non-zero) whole number. However, the
role order plays is quite different from the role of the operations.)

The decimal system is highly compatible with the ordering of the whole numbers,
and makes it easy to compare numbers. Recall that, for any whole number, we have
defined its order of magnitude to be the order of magnitude of its largest non-zero
decimal component. This is one less than the number of digits in its decimal
expression. A basic fact is that order of magnitude sorts numbers according to size:
any number of a given order of magnitude is larger than any number of a smaller
order of magnitude. For example, the largest number of magnitude 2 is 999, and
the smallest number of magnitude 3 is 1,000 = 999+1. This simple principle has

several important consequences. The first is a recipe for comparing any two decimal
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numbers.

Ordering Algorithm: To decide which of two decimal numbers a and b is
larger, compare their decimal components. Find the largest order of magnitude for
for which the decimal components of a and b are different. Then the number with
the larger component of that magnitude is larger.

In particular, if the order of magnitude of a is larger than the order of magnitude
of b, then a is larger than b. If they have the same order of magnitude, but the
leading (i.e., largest) component of a is larger than the leading component of b,
then a is larger. If the leading components agree, proceed downward in orders of
magnitude, until you first find a magnitude at which the components of a and b

differ. Then the larger number is the one with the larger component.

Relative Place Value:

Often, we want to do more than say whether one number is larger than another,
we want to say how much larger it is, or that it is very much larger. We also
want to say when two numbers are close to one another. Decimal components
also make these things easy to do. The main point here is that multiplying by
10 just increases order of magnitude by 1. This is true no matter what decimal
place we are talking about. Thus, given any decimal place, the place just to the
left represents numbers 10 times as large as the given place, and the place just to
the right represents numbers only 1—10 the size of the given place. Two places to
the left, you find numbers 100 times as large as where you are, and two places to
the right, the numbers are only Wlo of the place where you are. For facility with
estimation, it is important that students understand not only the values of each
place, but also these relative values of the places. The grasp of relative place value
also can support the introduction of decimal fractions: if we make a place to the

right of the ones place, relative place value would predict that it should represent

1 (1) _ 1
10 10 — 100’

so forth. Understanding of relative place value might also serve as a precursor to

s; and the next place should represent which, of course, it does. And

proportional reasoning in general.

Absolute and Relative Error:

Relative place value ideas help us understand that, in representing numbers, it is
the largest few decimal components (the leftmost few decimal places) that account
for most of the size of a number. This is true no matter what the magnitude of
the number. These ideas are particularly important in dealing with error, which
is unavoidable whenever we must deal with “real-life” numbers, meaning numbers
which come from measurement. These are always known only approximately, and
the question of how accurately they are known is fundamental. Here the key idea

is relative error: the size of the error involved in approximating a given number,
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in comparison to the number itself. If you only have a few dollars, you care quite a

bit whether it is $4 or $6. However, if you have around a thousand dollars, probably
you don’t care too much if it is $1004 or $1006. And if you have a million dollars,
even a thousand dollars more or less, let alone $2, will probably not keep you up

at night.

Suppose you need to work with a number V, but you use a possibly different
value v for it. (This could be for a variety of reasons: you may not know the precise
value of V, or it may simply be more convenient to use v (or both).) For example,
the number % is frequently used in place of the number 7. Call v an approrimation
to V. The (absolute value of) the difference, |V — v| = e is the absolute error of
approximating V by v. For many purposes, the actual size of the error e is not
as important as how it compares to the actual value V. To capture this idea, we
define the relative error to be the ratio . The relative error can be thought of as
measuring the error in the most relevant units, namely units of the correct amount.

Both the absolute and relative error are controlled easily in terms of decimal
components. The main observation is that, if two numbers are close to each other,
their decimal expressions should tend to be similar. (There is an exception to this,
related to the rollover phenomenon discussed in Appendix 1, but we will ignore this
in the present discussion.) In any case, the converse is definitely true: the more alike
the decimal expressions (read from the left) of two numbers are, the closer together
the numbers are. To be precise about this, suppose that we have two numbers
V and v, both of order of magnitude m, and suppose that their largest decimal
components are equal, or the two largest ones, or perhaps more. There are two
ways of formulating this: we can specify the number of decimal components which
agree, or we can specify the order of magnitude of the largest decimal components
which differ. It is easy to convert one type of information into the other, but
we distinguish them because they reflect the two points of view - relative versus

ansolute error. In any case, the following simple statement holds.

Basic Decimal Estimation Theorem (BDET): Suppose that V and v are two
numbers of magnitude m, and suppose their decimal components of magnitude
larger than £ are equal. (That is, the largest m — £ decimal components of V' are
equal to the corresponding components of v.) Then:

i) The error e = |V —v| has order of magnitude at most ¢, and hence is less than
104+,

ii) The relative error  is less than W.

For example, take V = 1,081 and v = 1,919. These numbers have order of
magnitude 3, and both have 1,000 for the magnitude 3 decimal component. Thus,
in this example m = 3 and ¢ = 2. Their difference is e = |V — v| = 838. We see
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that it has magnitude 2, so that e is less than 1000, as predicted by the BDET.
Since both numbers are at least equal to 1000, the relative error & must be less
than 1. (The exact value is J, which is between .7 and .8.)

Here is a larger example. Take V = 4,825,619 and v = 4,863, 781. In this case,
m = 6 and £ = 4. We calculate that e = |V —v| = 38,162. This is less than 100,000
= 104+, while V and v are both larger than 1,000,000, so the relative error v is
less than % = 1—10. (In fact, in this example, 1 is less than ﬁ. The estimate
in the BDET will always be larger than the actual error, since it must allow for the
worst case. Note that the statement allows the possibility that V = v, in which

case both the absolute and relative error will be zero.)

The BDET expresses in a concise way the sense in which knowing the beginning
(the largest several decimal components) of the decimal expression of a number
tells us most of what we want to know about the number as a magnitude. If we
are number theorists, it may be important to know all the decimal components of
a number, in order to tell, for example, if it is a perfect square, or if it is divisible
by 7, or if it is prime. But if it is a number coming from a measurement, then all
we need to know, or can expect to know, is an approximate value, and the largest
decimal components supply this with great efficiency. For example, if we know the
largest four decimal components of a number, we know it with a relative error of
less than Wloo'

In fact, it is rather rare to know a measured number with such accuracy. Take the
example of the “radius” of Earth. It is approximately 4,000 miles, and sometimes
you will see figures such as 3,928 miles. However, the last digit does not have a
clear meaning. In speaking of the radius of Earth, we are pretending that Earth is
a perfect sphere. However, it is not. It deviates from being a perfect sphere in three
ways: first, because of its rotation, it is slightly oblate — flattened at the poles, and
thickened around the equator; second, it has bumps and dimples - Mount Everest
and the Challenger Deep; third, because of the motion of its liquid interior, it is
slightly deformed, with a bulge in the north Pacific. These imperfections mean that
it does not make sense to speak of a “radius” of Earth more accurately than about
10 miles. Thus, the radius of the Earth is a number defined only to 3 significant
figures. Most other “real-life” numbers have similar limitations. The results of
polls are typically accurate only to about +3%, which is slightly better than one
significant figure. Although the U.S. Census reports state populations as exact
numbers of people, in the millions (6 significant figures) or the 10s of millions (7
significant figures), it is lucky if these numbers are accurate to 3 figures.

In summary, the notion of significant figures successfully captures many of the
key notions of error and approximation for decimal numbers. Especially, it provides

an easy way to deal with relative error. For many purposes, it suffices to know a
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number to one significant figure. For most purposes, two significant figures are
enough, and it is rare to know a “real-life” number to more than 3 significant
figures. (Financial transactions can be exceptions to these rules; but it is also

debatable how “real-life” the numbers involved in them are.)

Scientific notation:

In the realm of measurement, especially scientific measurement, the decimal
components (starting from the largest) which are definitely known are called the
significant digits, and the number m—/+1 in BDET is frequently called the number
of significant digits. (Sometimes, a slightly looser notion of significant digits is
used.) Scientists and others who use numbers resulting from measurements are
mainly interested, first, in their size, and second, in the accuracy with which they
are known. The way of writing numbers known as scientific notation is designed
to exhibit these two points very clearly.

Formally, scientific notation is simply a variant way of writing decimal fractions.
Instead of writing a decimal fraction d in the conventional way, with a certain
number of places to the left of the decimal point, and a certain number to the
right, scientific notation rewrites it in the form

d
d= (w—m) x 10™,

where m is the order of magnitude of d, so that wim is between 1 and 10. (A slight
variant, used in IBM computers, writes d = (1524 ) x 10mT1))

In this form, scientific notation separates out a key feature of a number, namely
its magnitude, and displays it prominently. A further convention frequently used by
scientists (although it is at odds with standard mathematical notation) is to report
only significant digits when recording a number in scientific notation, in order to
be precise about the accuracy to which the number is known. By this convention,
2.3 x 104 would means some number known to be between 22,500 and 23,500, while
2.30x104 means some number known to be between 22950 and 23050. With this
understanding, scientific notation uses exponents and the idea of significant digits
to express in a very direct way the key aspects of a measured number. The BDET
tells us the maximum relative error possible in a number with a given number of
significant digits. A refinement of BDET tells the maximum possible relative error
in a number with given significant digits. See the Exercises for a statement of this

sharper result.

4. Decimal components and estimation in arithmetic.

Thinking in terms of relative place value also provides efficient ways of estimating

sums and products. We will avoid exact details here, to keep the discussion short,
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but the principle is clear: when estimating, focus on the largest decimal compo-
nents. With our understanding of how decimal components enter into arithmetic,
we can describe what to do to get an estimate with desired accuracy for a sum or
product. For a sum, simply retain the sums of the largest decimal components.
The three largest components of the larger summand, and the components of the
same magnitudes for the other summand, will give an approximation to the sum

with relative error small enough for most purposes. For example,

83,244 + 5,293 ~ 83, 200 + 5, 200 ~ 88, 400.

) . . |88,537—88,400| __ 137 1
Here the exact sum is 88, 537, so the relative error is 88537 = 8337 < 500"

For multiplication, we recall that a product of decimal numbers is the sum of
all the products, of any component of one factor times any component of the other
factor. Of these summands, the largest will be the product of the largest decimal
components of each factor. The next largest will be the two terms gotten by
taking the product of the second largest component of one factor, with the largest
component of the other. Thus, in the product 437x21, the largest contribution is
the 8,000 = 400%x20. The two next largest summands are 30x20 = 600 and 400x1
= 400.

The diagram shows the location of these terms in the array of the Napier’s Bones
algorithm. The largest term is labeled with a 1, the next two with 2s. The next
largest terms, three in number, are labeled with 3s, the next (four) terms with
4s. The pattern should be evident. The sum of the largest six terms will give an

estimate sufficiently accurate for many purposes.
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When more accuracy is needed, a straightforward continuation of the above proce-
dure prescribes the next terms to add. The upshot is a method to get a (relatively)
very accurate approximation to a multidigit multiplication with fairly little work.

Caveat: because of the rollover phenomenon (see Appendix 1), we cannot guar-
antee that the approximate answers we compute by the above methods will agree
in any decimal places with the true answer. However, we can show that they do
approximate well the true answer, in the sense that they produce a small relative
error. Usually, in a sense that can be made precise, they will have the same leading

decimal components as the exact answer.

5. Decimal components and algebra.

Discussing arithmetic in terms of decimal components should help prepare stu-
dents for algebra in several ways. One way is that it would create increased aware-
ness of and facility with the Rules of Arithmetic, which are also the rules for
manipulating algebraic expressions. (And essentially, they are the only rules, so
they provide a remarkably compact summary of what constitutes legitimate alge-
braic manipulation.) Also, the Rules themselves are most succinctly expressed via
symbolic equations, so they would give students exposure to the ideas of literal

symbolism and variables. In these ways, this approach should promote increased
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confidence and facility with algebraic manipulation.

Another way in which working with decimal components would prepare students
for algebra is, it would bring out the deep analogy between decimal arithmetic and
algebra. As we remarked at the outset, decimal notation exploits algebra in the
service of arithmetic. Decimal numbers can be usefully thought of as “polynomials
in 10”. Emphasizing this connection should shed light on arithmetic, and also make
algebra more familiar and learnable.

Here are some examples of the analogy. Consider the numbers 21 and 13. We

can compute

214+13=34, and 21 x13=273.

Now consider the expressions 2x + 1 and = + 3. We can also compute, using the

same rules as we did for regular arithmetic, that
2x+ 1)+ (z+3)=3x+4, and (2z+1)x (r+3) =222+ T7x+ 3.

If students do some calculations like these, they should see parallels between the cal-
culations with decimal numbers and the calculations with polynomials. Discussion
could bring out the key to the analogy: that if we set x = 10, then the polynomial
computations become the arithmetic computations. Further investigation will show
that the analogy is imperfect. For example (22 + 4) 4+ (3x + 7) = 5z + 11, whereas
24 4+ 37 = 61. Nevertheless, if we plug £ = 10 into 5z + 11, we do get 50 + 11 =
61 as the value. Students who are used to thinking in terms of decimal components
should recognize 50 + 11 as the intermediate result we obtain in adding 24 + 37,
before we combine ten 1s into a 10 to get the standard decimal form of 50 + 11. In
other words, polynomial arithmetic is decimal arithmetic without the regrouping
process (and hence, with arbitrarily large coefficients).

In this analogy, the order of magnitude of decimal numbers translates into the
degree of a polynomial: the largest power of z which appears in the polynomial with
a non-zero coefficient. Because of the absence of carrying in polynomial arithmetic,
degree is in several ways better behaved than order of magnitude. For example,
the degree of the sum of two polynomials is always less than or equal to the larger
of their degrees. The degree of a product of two non-zero polynomials is (exactly)
the sum of the degrees of the two factors.

Just as order of magnitude guides us in dividing decimal numbers, degree is
what we use to find the quotient of two polynomials. The recursive procedure for
finding the quotient of two polynomials is quite analogous to the one (described
in Appendix 2) for long division of decimals. Given two polynomials a(z) and

b(x), the highest degree term of the quotient % is the monomial c;2™ such that
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a(x) — c1z™b(x) = a1(x) has degree lower than a(z). This term is quite easy to
find: it is exactly the quotient of the highest degree terms of a(z) and b(z). To
find the next term in the quotient, one uses the same procedure for a;(x) and b(x).
This continues until one gets a difference of degree less than the degree of b(x); this

is then the remainder.

The connection between polynomial arithmetic and ordinary arithmetic can be
developed and exploited in other ways. For example, the famous identity
22 —y2 = (z + y)(z — y) has many applications in arithmetic. One very serious
contemporary application is its use as a basis for algorithms to factor large numbers.
On a more mundane level, it can be used to do mental math. Take the product
43 x 47. This can be computed mentally by thinking of 43 = 45 —2 and 47 = 45+ 2.
Hence 43 x 47 = (45 + 2) x (45 - 2) = 452 — 22. To compute 452, we can use the
same trick: Write 40 = 45 — 5 and 50 = 45 + 5. Therefore, 452 = 40 x 50 + 52 =
2000+ 25, and so, 43 x 47 = 40 x 50 + 25 — 4 = 2021. Similar tricks can be used to
develop mental math skills, and to find factorizations of fairly large numbers whose
prime factors also are fairly large (i.e., no factors less than 20). In order not to
further lengthen this essay, we will curtail further examples. However, a variety of
calculations revealing parallels between decimal arithmetic and algebra are given

in the Exercises.

Regarding decimal numbers as “polynomials in 10” amounts to giving the vari-
able x the value 10. This is called specialization. Specialization can be used to
interpret other number systems in terms of polynomials. The specialization which
turns polynomial arithmetic into decimal arithmetic amounts to requiring x to sat-
isfy the equation x — 10 = 0. Polynomials can be made to mirror other number sys-
tems by positing that x satisfies other equations. For example, requiring 2 —2 =0
would make polynomials act like numbers of the form a + bv/2 — in other words,
« is imitating the irrational number v/2. Requiring = to satisfy 22 + 1 = 0 will
essentially create a copy of the complex numbers.

Here we are getting into fairly advanced ideas, drawing close to abstract algebra.
It is questionable whether the constructions of the last paragraph could be produc-
tively inserted into the K-12 curriculum. However, it does seem desirable that high
school teachers should be conversant with these issues. Whether or not they get
used in school mathematics, these possibilities demonstrate the purchase that place
value has throughout the K-12 curriculum, and point to the desirability of treating
it more explicitly, and making it one of the “big ideas” that help students arrange

the mathematics they learn into a coherent whole.
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Appendix 1: Subtraction

Thinking in terms of components can also help with subtraction.

A key principle in dealing with subtraction is to link it with addition at every
opportunity, until students think of it as the undoing of addition. This is important
conceptually, to prepare for the submersion of subtraction into addition (i.e., as
addition of the additive inverse) when negative numbers are introduced. However,
it also has practical value for making sense of subtraction procedures, by linking
them to the corresponding addition procedures. This linkage also brings more
insight into addition.

Fact families should not be limited to addition of one-digit numbers. Rather,
every subtraction problem ¢ —b = a should be linked to the corresponding addition
problem a + b = c¢. In fact, the details of the computations involved in the two
problems correspond closely. The subtraction ¢ — b = a will involve regrouping
(borrowing) exactly when the addition a + b = ¢ involves regrouping (carrying).
Indeed, the same orders of magnitude will be affected in both computations.

For example, in the problems

970, 957 1,021, 786
+ 50,829 — 50,829
1,021, 786 970,957

we see that the addition involves carrying from the 1s to the 10s, and from the 100s
to the 1000s, and that a carry from the 10,000s to the 100,000s causes a further carry
to the 1,000,000s. Correspondingly, in the subtraction, there is a borrowing from
the 10s to the 1s, another borrowing from the 1,000s to the 100s, and a “borrowing
across zero”, from the 1,000,000s to the 100,000s and 10,000s.

As this example indicates, study of the most troublesome aspect of subtraction,
namely “borrowing across a zero”, reveals an interesting parallel feature of addition
that may go unnoticed in a purely mechanical approach.

In adding two decimal numbers, when the sum of the digits of a given order of
magnitude add to 9, that place would not produce a carry. However, if the next
smaller place does produce a carry, then the 1 from that, added to the 9 already
there, will produce a carry. If the digit sum for the next larger order of magnitude
is also 9, then the carry caused by the carry from the lower place will in turn cause
a carry at the next larger place. This could continue for several places, producing
a sum in which there are one or more zeroes in a row. We call this phenomenon
rollover. Its extreme form occurs in adding 1 to a number like 99 or 999 or 9999,

with all digits equal to 9. Then the result, of course, is the next larger decimal
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unit. This is what happened on car odometers when they were mechanical, and
one could see the change of the 1s place producing a change in the 10s place, which
produced a change in the 100s place, and so forth, until many or even all the digits
on the odometer had rolled over.

Borrowing past a zero is the parallel for subtraction to rollover in addition: when
an addition a + b = c involves rollover, the corresponding subtraction ¢ — b = a
will require borrowing past a zero, and vice versa. If rollover is explicitly studied
as an interesting and exceptional situation in doing addition, and if subtraction
is consistently connected to addition, then borrowing past a zero may seem less
mysterious to students. Here is an example of rollover in an addition, and the

corresponding borrowing across zeroes in the associated subtraction:

35, 375 60,023
+24, 648 —24,648
60, 023 35, 375

We see that the carry from 10s to 100s in the addition causes two places to roll
over: it causes the 100s to carry to the 1000s, and that makes the 1000s carry to
the 10,000s. In the subtraction, in order to do the subtraction at the 10s place, one
must borrow from the 10,000s place, across both the 1000s and 100s.

Placing emphasis on decimal components also suggests alternative procedures to
the standard one for subtraction. As is well-known, there are multiple interpreta-
tions for subtraction; take away, difference, and comparison. Comparison involves
a process of matching elements in two sets, followed by counting of the unmatched
elements of the larger set after all elements of the smaller set have been used up.
Thinking in this way, one can see that, if the same amount is subtracted from two
numbers, the difference of the results is the same as the difference of the original

numbers. In algebraic terms, this is expressed by the identity
a—b=(a—c)—(b—rc).

This principle may be applied to simplify subtraction problems as follows: Given a
subtraction a — b of decimal numbers, for each order of magnitude, one subtracts
from both numbers the smaller of the components of a and b of that magnitude,
leaving only one of the numbers with a non-zero component at that place. Doing
this systematically leaves one with an equivalent but simpler problem. For example

1,021,786 — 1,001, 060



27

— 50,829 — 30,103
970,957
and
60, 023 — 40,000
— 24,648 —4,625
35,375

As one sees from these examples, the simplified problem decomposes into a disoint
collection of “making change” problems, in which one is subtracting a given number
from a decimal unit. This suggests the possibility of an approach to subtraction in
which this kind of problem is a subject of focussed attention, and after it is well

understood, it is applied to the general subtraction problem.
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Appendix 2: Division

Decimal components also help one understand what is going on in division of
decimal numbers. Division, in the strict sense of inverting a multiplication, cannot
in general be carried out in the whole numbers, or even in the system of decimal
fractions (finite decimals). This is, indeed, one of the least satisfactory aspects of
decimal arithmetic, and is a major reason for using fractions, i.e., general rational
numbers.

Instead of division as the inverse of multiplication, one deals with a somewhat
looser substitute, division-with-remainder. This can always be carried out with any
two whole numbers, but it does not yield a single number as a result — it yields a
pair of numbers: the quotient, and the remainder. Division-with-remainder, both
theoretically and practically, depends on the order properties of whole numbers, as
discussed in section 4.

We will give a brief description of the basic ingredients in long division. Our
treatment is somewhat abstract, and uses symbolism which might not be appropri-
ate for students being introduced to long division. However, the principle governing
the procedure should be both teachable and plausible, and examples should make it
convincing. The theoretical justification might be delayed until an algebra course.

The usual recipe for division-with-remainder (often called the division algorithm,
although it gives little guidance about how one would do division in practice) de-

pends on the order structure of the whole numbers. It is contained in the formula
b=aq+r.

Here b is being divided by a. The number q is called the quotient of b by a. The
number 7 is the remainder. The essential property of r is that 0 < r < a. Since r
is non-negative, it follows that aqg < b. Secondly, it also follows that ¢ is the largest
number such that ag < b. For if we increase ¢ by 1, we see that b+ (a—r) = (¢+1)a,
and the inequality r < a means that a — r > 0, so that (¢ + 1)a > b.

Thus, in “dividing” b by a, one is seeking the largest number ¢ such that aq < b.
This rather bare-bones description actually adapts rather directly to what one does

to find the decimal description of g, when a and b are given as decimal numbers.

Basic Fact of Long Division (BFLD): Suppose that ¢ is the quotient of b
divided by a, so that b = ag + r, with 0 < r < a. Then the largest decimal

component of ¢ is simply the largest decimal component ¢; such that agq; < b.

Here is a brief justification for this statement. The problem of long division is
to find the decimal components of g. The BFLD says, simply look for the largest
decimal component ¢; such that aq; < b, and this will turn out to be the largest

component of q. (Thanks to the Ordering Algorithm given in section 4, finding
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g1 a fairly easy thing to do in practice.) Suppose that ¢ = d X wu;, where u
is a denomination and d is a digit. The key fact needed here about the family
of all decimal components is that the next decimal component larger than ¢; is
g1 +u; = (d+ 1) x uy. This is true even if d = 9. By choice of ¢, it follows that
a(q1 + u1) = aqy + auy > b. In other words, au; > b — agy. Therefore, the quotient
of b — aq, by a is less than w,. This is the same as saying that it has order of
magnitude less than the magnitude of ¢;. Hence, if we do division-with-remainder
for b—aq, and a, we will get b—ag; = aq¢’ +r, with ¢’ of smaller order of magnitude
than ¢;. Hence also, b = ag1 + a¢’ +r = a(q1 +¢') + r. This says that the quotient
of b by a is ¢ = g1 + ¢’. Since ¢’ has order of magnitude less than g;, we see that
q1 is the largest decimal component of q.

The full process of long division procedes by iteration, using the BFLD repeat-
edly. Having determined the largest decimal component of ¢, we can now work
with the difference b — aq;, and look for the largest decimal compnent ¢ such that
agqs < b—aq;. Continuing in this fashion, we will eventually find the complete dec-
imal expansion of the quotient. This procedure is in fact essentially the standard
long division algorithm. Thanks to the structure of the family of decimal compo-
nents, the connection between the theoretical construct and the practical procedure

is quite close.
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