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Homogeneous Tumour Growth

Modelling Assumptions
Tumour contains one cell type
No spatial variation
No explicit mention of nutrients, growth factors or the host vasculature

Tumour volume proportional to N (¢), the number of tumour cells at time ¢

General Model

% = f(N) with N(t=0)= N

where f(N) describes the tumour cell growth dyanmics



Examples of Homogeneous Growth Models

|. Exponential Growth (k = proliferation rate)

f(N)=kEN = N(t) = Npe"!

Il. Logistic Growth (6 = carrying capacity)

N

f(N) =kN (1— ?) = N(t)

ll. (k, o, @ model parameters)

f(N) = I%V {1 — (%)a} = N(t) =10 (Noa " (eaN_g‘Ng)e_kt>1/a




Homogenous Growth Models

Cell number, N(t)
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Time, t

Diagram showing how the tumour evolves when growth laws I, Il and Il are used



Homogenous Growth Models

These are used to

¢ Fit experimental data
® Compare growth kinetics of different tumours

@ Assess impact of therapy

However

® Often difficult to relate model parameters to biophysical behaviour of tumours

¢ Hence, development of more complex models in future lectures



Systems of ODEs

Models thus far consist of single ODE

Reasons for extending to systems of ODEs include:
tumour heterogeneity: cell cycle, clonal expansion, immune response,
competition between normal and tumour cells, vascular tumour growth, ...
chemotherapy: tumour cells + drug
cell cycle dynamics: model intracellular protein levels throughout cell cycle

Note: for details of subcellular dynamics, see: Tyson and Novak, J Theor Biol
(2001) 210: 249-263; Alarcon et al, J Theor Biol (2004) 229: 395-411

Note: the group project 'Antiangiogenic therapies for cancer’ involves analysing
(and extending) an ODE model of vascular tumour growth. With V' = tumour
volume and K = vascular volume, we have

dv 1% dK
2 _\Viog [ — — = MK +4bV —dKV?/3,
dt LV o8 (K)’ dt 28



Chemotherapy

Model Variables

N (t) denotes number of tumour cells

A(t) denotes drug concentration within tumour

Modelling Assumptions:

Logistic growth when no drug present
Drug delivered to tumour at prescribed rate a(t)
Drug kills tumour cells at a rate pAN

Drug decays naturally and is degraded at rate y AN when it kills tumour cells

Model Equations:

dN N dA
—:kN(l——)—/,LAN, =~ =a(t) — MA — yAN
dt 0 dt



Continuous Infusion (a(t) = a.,, constant)

No drug (aec =0) = N(t) > 6 ast — oo

When drug continuously infused, we expect N (¢) and A(t) will evolve to
time-independent, equilibrium values

Therefore, we now identify and classify the equilibrium solutions, focussing on how
they vary with the drug dosage, ao

dN dA :
When — =0 = = the model reduces to give

N
O:kN<1—E—%A) and 0=acc —ANA —yNA.

= N=0 and A =a- (tumour-free solution)

00 . k N
or O:N2+é<1—ﬁ>N+)\9(a M—l) with A:—(l——).
9 A ~ Ak 7 0

Question: How do the equilibrium solutions vary with a o ?



Continuous infusion (continued)

0:N2+é<1—ﬁ>N+)‘9 (ac’o“—l)
~ A ~ Ak

Question: How do the equilibrium solutions vary with a ?

2
o[y 2 ()
7 4~6 A

Using elementary analysis, we can show (see exercise sheet)

oo > al®® = the tumour is erradicated, i.e. N = 0 is the steady solution
0 < aco < a** = outcome depends on 0/ A:

Case 1: v0/A < 1
0 < asx < Ak/p = single, nontrivial solution
0 < Ak/p < aso = N0 nontrivial solutions
Case 2: vy0/\ > 1
0<ac <Ak/p = single nontrivial solution
Ae/p < ace < a3®® = 2 physical solutions



Continuous Infusion (continued)
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Bifurcation diagrams showing how the equilibrium size of the tumour varies with the drug
dosage, a~, When (a) v0/A < 1 and (b) v6/A > 1.
Parametervalues: ()0 = A=u=k=1,y=05;b)0=A=pu=k=1,v=2.



Continuous Infusion: Linear Stability Analysis

Use linear stability analysis to determine which solution is realised when more than one
equilibrium solution occurs.

The Tumour-Free Solution, (N, A) = (0,00 /)

We introduce ¢ < 1 and write:
N(t) = eN(t) and A(t) = %’" +eA(t)

We substitute in model equations and equate coefficients of O(e):

dN 0o\ dA _ o —
—:(k—“a )N, el RS L
dt A dt A

]\_f(t) = ]\_[(())e(k—uaoo/k)t’ A(t) = (A(O) +A) e~ M _ pAplk—pace /)t

where A = yaco N(0)/(A? + kX — paco)

Ak _
Goo > — = N(t),A(t) =0 as t —» oo STABILITY
7

Ak _ _
aoo < 2= = N(t), |A(t)] = o0 as t — oo: INSTABILITY
o



Linear Stability Analysis (continued)

Nontrivial Solutions, (N, A) = (N, Aco)

Analysis proceeds as for trivial solutions, but algebra more involved

We seek solutions of the form

N(t) = Noo + eN(t), A(t) = Ax +€A(t), ek 1

where

0= N2 +5(1—7—9>N00+A9 (a““—1>, Aoozﬁ<
<y A ~ Ak 7

We substitute in model equations and equate coefficients of O(e):

dN _ Of ~Of dA — 0g _Og
oV _ N9l 590 44§99 499
~ oN T eAr  d& N oA

Example: (0 =A=u=k=2,v=1/2)

= Stability for all nontrivial solutions, where they exist.



Periodic Infusion

Question: why is continuous infusion not a practical option for cancer treatment?

For simplicity, we consider the following, simplified model equations:

N N
‘Z_t = kN (1— 7 —uA>, with N'(0) = No,

and A(t)— Goo N<t<n+4+T
a 0 n+r<t<n+1.

A(t) piecewise constant = cells undergo logistic growth with variable carrying capacity
and proliferation rate:

N AN (1= ) where A= (7 Hao) !fA:aoo
dt oA 1 ifA=0



Periodic Infusion (continued)

Assume continuity of N(¢) att = nT and t = nT + T:

( OAN,

Ny 1 (0A — N, )e—FAG—m) n<t<n+rT

= N(t) = 4
0N7’L-|—T

\ Nn—l—r + (9 — N’I’L—|‘7')€_k(t—n—'r) n+7<t<n+1

where N,, = N(nT) and Np,4++ = N(nT + 1) satisfy

OAN,,
Np + (OA — Np)e kAT

Nn+7' —

and
OAN,,

ANy, + [(1 = AN, + (A — Ny )e kAT]e—k(1-7)

Nn—|—1 —
with Nog = N (t = 0) prescribed.
Note: solutions depend on 4 parameter groupings:

k

0, k, 7, A=1

Question: how does varying the drug dosage, a ., affect the outcome?



Periodic Infusion (ctd)

05

Series of diagrams showing the tumour’s response to periodic infusion at different drug
dosages. Parameter values: 6 =1 =u =k, = 0.5.



Periodic Infusion (ctd)

The numerical results suggest that, under certain circumstances, the recurrence relation
evolves so that

Nn: n+1 :Noo

When this arises

B 9A(1 _ e—k(l—T)_e—kAT)
o A+ (1 _ A)e—k(l—’T) — e~ k(1=7) g—kAT

oo

Diagram showing how N, varies with aoc when periodic solutions emerge.
Note: same qualitative behaviour as for continuous infusion.
Parameter values: 6 =1 = u =k, 7 = 0.5.



Heterogeneous Tumour Growth

k_{PP}
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P(t) Q(t)
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Schematic diagram of heterogeneous tumour growth model.



Heterogeneous Tumour Growth: Model Equations

dP
— = (kpp —kpg —kpp)P + korQ,

— =kpgoP — (kgpr + kgD)Q,

dD
E = kaP—l-kQDQ — AD,

with P(0) = P, Q(0) = Qo, D(0) = Do, N(t) = P(t) + Q(¢) + D(t) and

kpp =kpp, kpg =kpqP, kpp =kpp, kqr =koprQ,

e As for earlier models, find and classify equilibrium solutions

kop = kop(P + Q)



Heterogeneous Tumour Growth

Nontrivial Solutions

dP “ N N
Fri 0= 0= (kpp —kpg)P + kgpQ?

. ) ) )
d_Ct? =0=0=kpoP? — [kgrQ + kop(P+Q)Q

dD A
—7 =0=0=kop(P+Q)Q—AD

P, Q) and D equations =

A~

k 2 k
P = QDR and Dz%(P+Q)Q

 kpp - kopQ

where

. . . .. . . kop
0=kgp(kgp — kpg)Q® — kpp(kgp + 2kqor)Q + ki p (1 + I%Q )
QD



Heterogeneous Growth

Letl%QD = I;Qp = A= 1. Then

R . . 3]2:pp:|: E%P(l—i-Si’u‘pQ)
0=(1—-kpg)Q* —3kppQ+2kpp = Q= \/

1—]%]3@

kEpg # 1 = 1 positive, physically realistic root

Diagrams showing how equilibrium solutions vary with kp p and Ifch when
I;QD = ]%Qp = \=1: (a) I;pQ = 5,IACPP varies; (b) ]%pp = 0.5,]%]3@ varies.



Heterogeneous Tumour Growth

3IACPP:E ]2:2 (1—|—8];p ) 2
1 —kpq kpp — Q

N=P+Q+D

, D=(P+Q)Q,
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Diagrams showing how equilibrium solutions vary with Ifcpp and IAch when
kop =kop =A=1: (@) kpg = 5, kpp varies; (b) kpp = 0.5, kpg varies.
Suggestions

Combine with earlier models to investigate the impact of different
chemotherapeutic drugs eg target proliferating cells, target live tumour cells

Adapt model to study interactions between normal and cancer cells and their
differential response to therapy



Radl otherapy

» Let N; denote the number of tumour cells at time ¢

» Experiments = fraction of cells surviving dose D of radiotherapy is

survival Nafter | |
( o ction ) — W _ o—(aD+BD?) (the Linear-Quadratic Model)
Nt

Typical cell survival curves based on the linear-quadratic model following a dose D of
radiotherapy. The parameters o and 3 characterise the tissue’s response to
radiotherapy: « relates to cells that are killed instantly; beta to cells that are damaged
and die when they next try to divide.



Tried and Tested - Radiotherapy

» We assume that

Radiation is given at regular intervals, at times At, 2A¢, ...

The tumour grows exponentially between treatments so that

before __ arafter gAt o )
Nt+At = N, e where ¢ = tumour’s growth rate

» so that the tumour doubling time t2 =1n2/g

» We now predict how tumour’s size changes during a course of radiotherapy

Periods of exponential growth (between treatments)

Step changes in cell number (when treatment given)



Tried and Tested - Radiotherapy

» Let Ng = tumour size att =0
» When dose 1 given (at t = At) we have

2
Ngetfore _ NoegAt and Ngjt"ter' _ ygetfore e—(aD—{—,BD )J
growth between doses shrinkage after therapy

» Combining these expressions we have

NZJ;ter = Ng egAt—(aD—I—ﬁDQ)

» Similarly, after dose n (at t = nAt)

Naitter = N, en[gAt—(aD+,8D2)]
n

survival fraction
= at end of schedule
l.e. after n doses

_ onlgAt—(aD+BD?)]



Tried and Tested - Radiotherapy
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Change in survival fraction following 1 week of conventional treatment (D = 200 rads)
administered to tumours with different doubling times (Key: to = 10 days, to = 60 days).

In both cases, a =2 x 103 rad—! and 8 = 4.0 x 107% rad—2.



Tried and Tested - Optimal Radliotherapy

» After n rounds of radiotherapy,

(survival fraction) = eml9At—(aD+8D%)]

» In practice, radiologists select n, At and D to minimise the survival fraction.

What prevents them using the largest doses possible?

SIDE EFFECTS: damage to healthy tissue

Which tissues will be most affected?

Tissues with rapid turnover eg normal connective tissue



Tried and Tested - Optimal Radliotherapy

» We estimate the damage following n rounds of radiotherapy to be
Damage = D n® (At)"®  where a=0.65 b=0.11
and Damage < R;,; = 1800 = maximum damage that can be tolerated

» To design an optimal schedule,

Choose n, At and D

to minimise survival fraction and damage to normal tissue

where

(survival fraction) = enl9At—(aD+8D")]

» Using calculus, it is possible to show that the optimal schedule has

_a [1—(atd) _ b(aD + BD?) o R, \ /e
_/B[Q(Cl—l—b)—l]7 At = ga+b) —( ) (



Tried and Tested - Optimal Radliotherapy

0.8

0.6

Survival fraction

0.4r

1,

| | |
0 5 10 15 20 25 30 35
Time, days

Comparison of response to conventional and optimal radiotherapy schedules (Key:
conventional: D = 200 rads, At = 1 day, n = 30 days, optimal: D = 230.8 rads,
At = 1.41 day, n = 25). Benefit from optimal therapy evident at later times.



Tried and Tested - Optimal Radiotherapy

Doubling Time Dose Interval Number of Survival Survival
to (days) D (rads) | At (days) doses, n Fraction Fraction
1 230.8 0.14 17 5.8 x 1075 5.4 x 10

10 230.8 1.4 25 5.5 x 107 | 4.0 x 1077

30 230.8 4.23 30.0 29x 1078 | 1.0x 1077

60 230.8 8.45 34 3.3 x107° 7.1 x 1078

90 230.8 12.70 36 8.3x 10719 | 6.4 x107®

Table highlighting the difference between conventional and optimal radiotherapy

Notes:

schedules for tumours with different doubling times

At end of treatment, tumour recommences exponential growth

Also

damage due to
conventional schedule

-

tolerated
damage

> = Ryp; = 1800

For further details, see, for example: Wheldon et al, Brit J Radiol 50: 681-682 (1977).




Radiotherapy - Comments

» We've used a simple model to determine optimal radiotherapy protocols for tumours
with different doubling times.

» Could we do better?

Not all tumours undergo exponential growth
Tumours are highly irregular, their spatial structure changing markedly over time

A tissue’s response to radiotherapy depends on the local oxygen concentration

» We could extend our model in many ways

Different tumour growth laws (e.g. Gompertz, logistic)
Model tumour’s spatial structure and include local oxygen concentration
Allow multiple tumour populations, with different radio-sensitivity

Different radiotherapy protocols

» It is often difficult (impossible) to obtain accurate estimates of parameters associated
with more complex models.

» Hence, we must compromise, using a model which exploits information that can be
reliably and accurately collected



Discussion

Summary

Simple ODE models studied
Many features of tumour growth neglected

Models can explain solid tumour growth dynamics (and their response to different
drug protocols)

How can simple models be improved to provide better physical insight?
Spatial-structure - Lectures 2 and 4
Cell-cycle-kinetics = response to cell-cycle specific drugs

Ideas for Future Work

Extend chemotherapy models to include the response of normal cells
Include chemotherapy in heterogeneous models of tumour growth

Introduce time delays to model e.g. immune response (c.f. Leon Glass’ lectures)
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