Modelling Solid Tumour Growth Lecture 3: Tumour Invasion and Symmetry Breaking

Helen Byrne

helen.byrne@nottingham.ac.uk

Centre for Mathematical Medicine, University of Nottingham

Outline

- Motivation
- Model development
- Model analysis
- Discussion

Motivation

- Why do tumours become irregular?
- (A) Blood vessels that accompany angiogenesis lead to non-uniform nutrient delivery
- (B) Inherent instability of the radially-symmetric avascular tumour configurations to asymmetric perturbations
- We explore alternative (B)

Model Development

Modelling Assumptions:

- Single, growth-rate limiting nutrient (e.g. oxygen, glucose)
- Cell proliferation and death generate spatial gradients in pressure within tumour
- Pressure variations drive cell motion, down pressure gradients
- Assume tumour's growth restrained by surface tension forces which maintain its compactness
- Neglect necrosis and quiescence ($R_{H}=0=R_{N}$)
- Restrict attention to 2-D (r, θ) geometry

Model Equations

- Nutrient concentration, $c(\boldsymbol{r}, t)$

$$
\begin{gathered}
0=\nabla^{2} c-\Gamma \\
\text { with } \quad \frac{\partial c}{\partial r}=0 \quad \text { at } r=0 \quad \text { and } \quad c=c_{\infty} \quad \text { on } \Gamma(\boldsymbol{r}, t)=0
\end{gathered}
$$

- Pressure, $p(\boldsymbol{r}, t)$, and velocity, $\boldsymbol{v}(\boldsymbol{r}, t)$
- No voids and incompressibility (using kinetic terms from lecture 2) \Rightarrow

$$
\nabla \cdot \boldsymbol{v}=S(c)-N(c)=c-\lambda_{A}
$$

- Use Darcy's law to relate \boldsymbol{v} and p

$$
\boldsymbol{v}=-\mu \nabla p
$$

where the permeability μ measures the sensitivity of the cells to pressure gradients

Model Equations (continued)

- Combine the above equations to eliminate \boldsymbol{v}

$$
\begin{gathered}
0=\mu \nabla^{2} p+\left(c-\lambda_{A}\right) \\
\text { with } \quad \frac{\partial p}{\partial r}=0 \quad \text { at } r=0 \quad \text { and } \quad p=2 \gamma \kappa \quad \text { on } \Gamma(\boldsymbol{r}, t)=0
\end{gathered}
$$

where $\kappa=$ mean curvature of boundary and $\gamma=$ surface tension coefficient

Tumour Boundary, $\Gamma(\boldsymbol{r}, t)=0=r-R(\theta, t)$

- Assume boundary moves with cell velocity there

$$
\frac{\partial R}{\partial t}=\boldsymbol{v} \cdot \boldsymbol{n}=-\mu \nabla p \cdot \boldsymbol{n}, \quad \text { with } R(\theta, 0)=R_{0}(\theta)
$$

where $n=$ unit outward normal to tumour boundary

Model Summary

$$
\begin{gathered}
0=\nabla^{2} c-\Gamma=\mu \nabla^{2} p+\left(c-\lambda_{A}\right) \\
\text { with } \quad \frac{\partial c}{\partial r}=0=\frac{\partial p}{\partial r} \quad \text { at } r=0 \\
c=c_{\infty}, \quad p=2 \gamma \kappa \quad \text { on } \Gamma(\boldsymbol{r}, t)=0 \\
\frac{\partial R}{\partial t}=-\mu \nabla p \cdot \boldsymbol{n} \quad \text { on } \Gamma(\boldsymbol{r}, t)=0=r-R(\theta, t) \\
\text { and } \quad R(\theta, 0)=R_{0}(\theta) \text { prescribed }
\end{gathered}
$$

Model Analysis

- When $c=c(r, t), p=p(r, t)$ and $r=R(t)$ on the tumour boundary, the model equations reduce to give

$$
\begin{gathered}
0=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial c}{\partial r}\right)-\Gamma=\frac{\mu}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial p}{\partial r}\right)+c-\lambda_{A} \\
\frac{d R}{d t}=-\left.\mu \frac{\partial p}{\partial r}\right|_{r=R(t)}
\end{gathered}
$$

- Integrating the PDE for p, with $\frac{\partial p}{\partial r}=0$ at $r=0$

$$
\begin{aligned}
& -\mu \frac{\partial p}{\partial r}=\frac{1}{r^{2}} \int_{0}^{r}\left(c-\lambda_{A}\right) \rho^{2} d \rho \\
& \Rightarrow R^{2} \frac{d R}{d t}=\int_{0}^{R}\left(c-\lambda_{A}\right) r^{2} d r
\end{aligned}
$$

i.e. under radial symmetry we recover model from lecture 2

Model Analysis (continued)

- We obtain following expressions for c, p and R :

$$
\begin{gathered}
c=c_{\infty}-\frac{\Gamma}{6}\left(R^{2}-r^{2}\right) \\
p=\frac{\gamma}{R}-\frac{\Gamma}{120 \mu}\left(R^{2}-r^{2}\right)^{2}+\frac{1}{6 \mu}\left(c_{\infty}-\lambda_{A}-\frac{\Gamma R^{2}}{15}\right)\left(R^{2}-r^{2}\right) \\
\frac{d R}{d t}=\frac{R}{3}\left(c_{\infty}-\lambda_{A}-\frac{\Gamma R^{2}}{15}\right)
\end{gathered}
$$

- $\frac{d R}{d t}=0 \Rightarrow R=0$ (trivial solution) or $c=c_{0}(r), p=p_{0}(r)$ and $R=R_{0}$ where

$$
c_{0}=c_{\infty}-\frac{\Gamma}{6}\left(R_{0}^{2}-r^{2}\right), \quad p_{0}=\frac{\gamma}{R_{0}}-\frac{\Gamma}{120 \mu}\left(R_{0}^{2}-r^{2}\right)^{2}, \quad R_{0}^{2}=\frac{15}{\Gamma}\left(c_{\infty}-\lambda_{A}\right)
$$

Linear Stability Analysis

- What happens when radially-symmetric solutions subjected to asymmetric perturbations?
- Seek solutions for c, p and R of the form

$$
c=c_{0}(r)+\epsilon c_{1}(r, \theta, t)+O\left(\epsilon^{2}\right)
$$

- Substitute with trial solutions in model equations

$$
\begin{gathered}
0=\nabla^{2}\left(c_{0}+\epsilon c_{1}\right)-\Gamma \\
0=\mu \nabla^{2}\left(p_{0}+\epsilon p_{1}\right)+\left(c_{0}+\epsilon c_{1}-\lambda_{A}\right) \\
\frac{\partial}{\partial t}\left(R_{0}+\epsilon R_{1}\right)=-\mu \nabla\left(p_{0}+\epsilon p_{1}\right) \cdot \boldsymbol{n}
\end{gathered}
$$

- Recover steady solutions at leading order.
- Equate to zero coefficients of $O(\epsilon)$:

$$
0=\nabla^{2} c_{1}=\mu \nabla^{2} p_{1}+c_{1}, \quad \epsilon \frac{\partial R_{1}}{\partial t}=-\mu \nabla\left(p_{0}+\epsilon p_{1}\right) \cdot \boldsymbol{n}
$$

Linear Stability Analysis (aside 1 - boundary conditions)

- Recall that $c=c_{\infty}$ on $\Gamma(\boldsymbol{r}, t)=0$

$$
\begin{gathered}
\Rightarrow c_{\infty} \sim c_{0}+\epsilon c_{1} \quad \text { on } r=R_{0}+\epsilon R_{1}(\theta, t) \\
c_{\infty} \sim c_{0}\left(R_{0}+\epsilon R_{1}, t\right)+\epsilon c_{1}\left(R_{0}+\epsilon R_{1}, t\right)=c_{0}\left(R_{0}\right)+\epsilon R_{1} \frac{d c_{0}}{d r}\left(R_{0}\right)+\epsilon c_{1}\left(R_{0}, t\right)+O\left(\epsilon^{2}\right)
\end{gathered}
$$

- Equate coefficients of $O\left(\epsilon^{n}\right)$:

$$
\begin{aligned}
O(1): & & c_{0}=c_{\infty} & \text { on } r=R_{0} \\
O(\epsilon): & & c_{1}=-R_{1} \frac{\partial c_{0}}{\partial r} & \text { on } r=R_{0}
\end{aligned}
$$

- In the same way, using $p=2 \gamma \kappa$ on $r=R(\theta, t)$ we find

$$
\begin{array}{ll}
O(1): & p_{0}=\gamma / R_{0} \quad \text { on } r=R_{0} \\
O(\epsilon): & p_{1}=-R_{1} \frac{\partial p_{0}}{\partial r}+2 \gamma \kappa_{1} \quad \text { on } r=R_{0} \\
& \text { where } \quad \kappa \sim \frac{1}{2 R_{0}}+\epsilon \kappa_{1}
\end{array}
$$

Linear Stability Analysis (aside 2 - normal derivatives)

Recall that

$$
\epsilon \frac{\partial R_{1}}{\partial t}=-\mu \nabla\left(p_{0}+\epsilon p_{1}\right) \cdot \boldsymbol{n} \quad \text { on } r=R_{0}+\epsilon R_{1}(\theta, t)
$$

where

$$
\nabla\left(p_{0}+\epsilon p_{1}\right)=\left(\frac{\partial p_{0}}{\partial r}+\epsilon \frac{\partial p_{1}}{\partial r}, \frac{\epsilon}{r} \frac{\partial p_{1}}{\partial \theta}\right)+O\left(\epsilon^{2}\right)
$$

Evaluating $\nabla\left(p_{0}+\epsilon p_{1}\right)$ on tumour boundary, we have:

$$
\left.\nabla\left(p_{0}+\epsilon p_{1}\right)\right|_{r=R_{0}+\epsilon R_{1}}=\left(\frac{d p_{0}}{d r}+\epsilon R_{1} \frac{d^{2} p_{0}}{d r^{2}}+\epsilon \frac{\partial p_{1}}{\partial r}\right)_{r=R_{0}}+O\left(\epsilon^{2}\right)
$$

Also

$$
\begin{gathered}
\boldsymbol{n}=\frac{\nabla \Gamma}{|\nabla \Gamma|}=\left(1+\frac{\epsilon^{2} R_{1}^{2}}{R_{0}^{2}+\epsilon^{2} R_{1}^{2}}\right)^{-1 / 2}\left(\hat{\boldsymbol{r}}-\frac{\epsilon R_{1}}{R_{0}+\epsilon R_{1}}\right) \\
\Rightarrow \nabla\left(p_{0}+\epsilon p_{1}\right) \cdot \boldsymbol{n}=\left.\frac{d p_{0}}{d r}\right|_{r=R_{0}}+\epsilon\left(R_{1} \frac{d^{2} p_{0}}{d r^{2}}+\frac{\partial p_{1}}{\partial r}\right)_{r=R_{0}}+O\left(\epsilon^{2}\right) .
\end{gathered}
$$

Linear Stability Analysis (continued)

- Combining above results we find that

$$
\begin{gathered}
0=\nabla^{2} c_{1}=\mu \nabla^{2} p_{1}+c_{1} \\
\frac{\partial R_{1}}{\partial t}=-\mu\left[\frac{\partial p_{1}}{\partial r}+R_{1} \frac{d^{2} p_{0}}{d r^{2}}\right]_{r=R_{0}} \\
c_{1}=-\left.R_{1} \frac{d c_{0}}{d r}\right|_{r=R_{0}} \text { with } \frac{\partial c_{1}}{\partial r}=0=\frac{\partial p_{1}}{\partial r} \text { on } r=0 \\
p_{1}=-\underbrace{\left.R_{1} \frac{\partial p_{0}}{\partial r}\right|_{r=R_{0}}}_{\equiv 0}-\frac{\gamma}{R_{0}^{2}}\left(2 R_{1}+\mathcal{L}\left(R_{1}\right)\right)_{r=R_{0}}
\end{gathered}
$$

where $\nabla^{2} f=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial f}{\partial r}\right)+\frac{\mathcal{L}(f)}{r^{2}} \quad$ with $\quad \mathcal{L}(f)=\frac{1}{\sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial f}{\partial \theta}\right)$

$$
\text { and } \quad R_{1}(\theta, 0)=R_{10}(\theta), \text { prescribed }
$$

Aside $\left(\nabla^{2} c_{1}=0\right)$: separable solutions

$$
0=\nabla^{2} c_{1}=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial c_{1}}{\partial r}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial c_{1}}{\partial \theta}\right)
$$

- Let $c_{1}=T(t) X(r) \Theta(\theta)$. Then

$$
0=\frac{T \Theta}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial X}{\partial r}\right)+\frac{T X}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial \Theta}{\partial \theta}\right)
$$

- Divide by $c_{1}=T X \Theta$ (assuming $c_{1} \neq 0$) and introduce separation constant, $\Lambda>0$:

$$
\frac{1}{X} \frac{\partial}{\partial x}\left(r^{2} \frac{\partial X}{\partial r}\right)=\Lambda=-\frac{1}{\Theta \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial \Theta}{\partial \theta}\right)
$$

Aside $\left(\nabla^{2} c_{1}=0\right)$: separable solutions

- Let $X=X_{k}(r)=r^{k}(k=0,1,2, \ldots)$

$$
\Rightarrow \frac{1}{X_{k}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial X_{k}}{\partial r}\right)=k(k+1)=\Lambda_{k}
$$

Then $\Theta=\Theta_{k}(\theta)$ where

$$
0=\frac{1}{\sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial \Theta_{k}}{\partial \theta}\right)+k(k+1) \Theta_{k}
$$

- Let $z=\cos \theta$ and $\Theta_{k}(\theta)=P_{k}(z)$

$$
\Rightarrow 0=\frac{d}{d z}\left[\left(1-z^{2}\right) \frac{d P_{k}}{d z}\right]+k(k+1) P_{k} \quad \text { Legendre's Equation }
$$

- Combine results, setting $T(t)=\chi_{k}(t)$, to get

$$
c_{1}(r, \theta, t)=\chi_{k}(t) r^{k} P_{k}(\cos \theta)
$$

Linear Stability Analysis (continued)

- Using $0=\nabla^{2} c_{1}=\mu \nabla^{2} p_{1}+c_{1}$, we have

$$
\begin{gathered}
c_{1}(r, \theta, t)=\chi_{k}(t) r^{k} P_{k}(\cos \theta) \\
p_{1}(r, \theta, t)=\left(\pi_{k}(t)-\frac{\chi_{k}(t) r^{2}}{2 \mu(2 k+3)}\right) r^{k} P_{k}(\cos \theta)
\end{gathered}
$$

Note:

$$
\frac{\partial c_{1}}{\partial r}=0=\frac{\partial p_{1}}{\partial r} \quad \text { at } r=0
$$

- We assume that

$$
R_{1}(\theta, t)=\rho_{k}(t) P_{k}(\cos \theta)
$$

Linear Stability Analysis (continued)

- Determine χ_{k}, π_{k} and ρ_{k} by imposing BCs:

$$
\begin{gathered}
c_{1}=-\left.R_{1} \frac{d c_{0}}{d r}\right|_{r=R_{0}} \Rightarrow \chi_{k} R_{0}^{k}=-\left(\frac{\Gamma R_{0}}{3}\right) \rho_{k} \\
p_{1}=-\left.\frac{\gamma}{R_{0}^{2}}\left(2 R_{1}+\mathcal{L}\left(R_{1}\right)\right)\right|_{r=R_{0}} \Rightarrow \pi_{k} R_{0}^{k}=\frac{\gamma}{R_{0}^{2}}(k-1)(k-2) \rho_{k}+\frac{\chi_{k} R_{0}^{k+2}}{2 \mu(2 k+3)} \\
\frac{\partial R_{1}}{\partial t}=-\mu\left(\frac{\partial p_{1}}{\partial r}+R_{1} \frac{d^{2} p_{0}}{d r^{2}}\right)_{r=R_{0}} \Rightarrow \frac{1}{\rho_{k}} \frac{d \rho_{k}}{d t}=(k-1)\left[\frac{2 \Gamma R_{0}^{2}}{15(2 k+3)}-\frac{\gamma \mu}{R_{0}^{3}} k(k+2)\right]
\end{gathered}
$$

Linear Stability Analysis

- $R \sim R_{0}+\epsilon \rho_{k}(t) P_{l}(\cos \theta)$ where

$$
\frac{1}{\rho_{k}} \frac{d \rho_{k}}{d t}=(k-1)\left[\frac{2 \Gamma R_{0}^{2}}{15(2 k+3)}-\frac{\gamma \mu}{R_{0}^{3}} k(k+2)\right]
$$

- Notes:
- $\frac{d \rho_{k}}{d t}=0 \Rightarrow$ system insensitive to perturbations involving $P_{k=1}(\cos \theta)$. Such perturbations correspond to translation of coordinate axes
- If surface tension effects neglected $(\gamma=0)$

$$
\frac{1}{\rho_{k}} \frac{d \rho_{k}}{d t}=\left(\frac{2 \Gamma R_{0}^{2}}{15}\right)\left(\frac{k-1}{2 k+3}\right)
$$

\Rightarrow system unstable to all asymmetric pertubations

- If $\gamma>0$ (and $k>1$), then steady state is unstable to finite number of perturbations

$$
\frac{1}{\rho_{k}} \frac{d \rho_{k}}{d t}>0 \text { if } k(k+2)(2 k+3)<\frac{4 \Gamma R_{0}^{5}}{15 \mu \gamma}
$$

Summary

- We have developed a model that can describe 2- and 3D tumour growth (or invasion)
- Using linear stability analysis we have identified
- Conditions under which radially-symmetric steady state is stable to asymmetric perturbations involving Legendre polynomials
- Conditions under which tumour is likely to be asymmetric (i.e. invasive or infiltrative)
- Model Extensions
- Multiple growth factors
- Weakly nonlinear analysis ($O\left(\epsilon^{2}\right)$-terms)
- Mode interactions
- Numerical methods

