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1 Using projective space

1.1 Projective space
We will work over the complex numbers C. We work in the ring
Clev,..., 2]

of polynomials in the variables x1, ..., x,.
Complex affine variety: Solution set Z of a finite system of polynomial
equations: The set of (x1,...,2,) € C™ such that

po (X1, ) =0 (1)

pr (21, ..,2,) = 0.
You have seen that, even though Z is given by a finite set of equations, the set
of polynomials that vanish on Z, called Iz is quite large. In particular, it is an
ideal, even a radical ideal, that is,
pa€lz=p+qelz
fG(C[:El,...,:cn],pGIZ = f-pely
pn cly=pely.

The problem with affine varieties is that they have ‘uncontrollable ends.’
The space in which we will work is complex projective space

cpn
which is the set of one-dimensional subspaces of the C-vector space
V =C"" = {(zg,...,2,) : x; € C}.

To get a picture of how this looks, make things easier by replacing C with the
smaller field R and think of the set RP? of one-dimensional subspaces of R?,
that is, the set of lines through the origin in R3.



Exercise 1 Draw a picture.

Even though P™ doesn’t fit in any affine variety, we set up coordinate charts
on CP" which are affine varieties.

Exercise 2 Draw the affine charts for RP?
Exercise 3 Staying with RP? show how it takes care of the loose ends of
x5 —xy (27— 1) =0. (2)

That is, graph the solution set to (2) in the R?-plane. Find the limit(s) in RP?
when you go off to infinity along the graph. Hint: Find the point(s) at infinity
on one of the other coordinate charts of RP.

1.2 Homogeneous coordinates

Each non-zero point (g, . .., x,) € C"T! determines a unique point [zq : ... : ,,]
in CP". But two different points in C"*! may determine the same point in CP".

Exercise 4 Exactly when is this the case? Prove your assertion.

We call a polynomial p (zg, ..., z,) homogeneous if its vanishing set depends
only on [z : ...: x,], that is, if the vanishing of the polynomial at (zo,...,z,)
implies its vanishing at all points (yo, ..., ¥y,) such that

[Yo:-oiyn] =[mo:...:zn].

Exercise 5 Show that a polynomial p (xo,...,xy) is homogeneous if and only
if each of its monomial terms have the same total degree.

We can take any affine variety (1) and homogenize it or ‘close it up at infinity’

by writing
Y Yn
p(xla-"amn) p(a“':)
Yo Yo

Yn

and then multiplying p (Z—;, ey 170) by the smallest power of yy which clears

denominators.

Exercise 6 Find the ‘points at infinity’ by homogenizing the equation in (2).

1.3 Curves in CP?

Let p (o, x1,x2) be a homogeneous polynomial of degree 2. We call the solution
set p = 0 in CP? a conic. Can write

Zo
p<x0)$17x2) - (xO,-T],xQ)'A' T
T2

where A is a symmetric 3 X 3 matrix. To compare solution sets p = 0 we use
some linear algebra.



Exercise 7 Show that there is an invertible 3 x 3 matrizx M such that
MAM?
s diagonal with entries only 0 or 1.

The group of such M is just the group of changes of coordinates or auto-
morphisms of CP?, that is,

[yow"yyn} = [(x077xn)M]

(Similarly for CP™.)
We conclude that, up to change of coordinates for CP?, there are only three
conics:

2 2 2 _
B -a? =

2 _

:,CO -

The first one is smooth, the second has one singular point (where is it?), and
the third is singlar at all its points.

Exercise 8 Show that every smooth conic has an algebraic, 1 —1 and onto map
to CP'. Hint: Stereographically project the smooth conic

2 _ .2 2 _
g —x] — x5 =0

from the point (1,0, 1) onto the line x2 = 0.

However if p (zo,x1,z2) is homogeneous of degree d with d > 3 and C C
CP? is its solution set, there is, in general no way to define a non-constant
differentiable map

f:CP' - C (3)

To see why, we’ll need some calculus.

1.4 Differentials
Suppose that I have a curve C’ in C? given by the equation

p(:z:,y) =0.

Then, if I have a smooth path (x (t),y (¢)) in C? that lies entirely inside C”, the
Chain Rule tells me that, for the function p (x (¢),y (¢)),
0— dp dpdzx n dp dy
Cdt  dxdt  dydt’
Since this is true no matter what the parameter ¢ is, we simply surpress it in
the notation and write

d d;
0= P + fpdy.

Cda dy
We call this implicit differentiation.



1.5 Non-rationality of cubics
Let’s show that there is no non-constant map f in (3) when the curve C' given
by
zoxs = 1 (21 + x0) (1 + Ax) . (4)
To get an idea why this is true, write this curve on the set xy # 0 using
coordinate changes

T
r = —
Zo
€2
y = —.
zo
We get
v =z(x+1)(z+N). (5)

Exercise 9 Suppose A = —1 € R and graph the (real) solution set of this curve
in R2.

Next implicitly differentiate the equation (5).
2ydy = ((x+1)(x+AN)+zx(x+ ) +x(x+1))de.

We see that the expression

y @+ @+N+a(@+A)+fz(z+1)

dj 2dy

is everywhere bounded in the solution set C’ (5). Next we checked above that
the rest of the curve C is given by

= w(w+z)(w+ A2)
= (w+2)(w+ Az2)

glw

on the set zo # 0. In fact the only point of C not on C’ is the point (z,w) =

(0,0). But, when z and w are both small, so is Z, and so

Z=(+2)(1+23)
w w w
is bounded away from zero and finite. So
z =wu

where u (0,0) # 0. With coordinate changes

Zo
z = —
T2
T1
w o= —
T2



and

I w
r = +_-_Z
Zo z
X9 1
y = _——= -
Zo z
and
d
dv _ w
z
= dwfw—dz
z
d 2
g i)
wu
(Quwdw + wzdu)
- duw— 22RO
wu
d
= —dw-—w
U

So C has an everywhere holomorphic differential. Via the mapping f in (3) this
differential would give an everywhere holomorphic differential on the Riemann
sphere.

Exercise 10 Show that there are no everywhere holomorphic differentials on
CP'. Hint: On z # 0, write the differential as

g (2)dz.
Then change coordinates to the coordinate w = % on the open set x1 # 0. So
1 1
o(5) %
w/) w
has to be nice at w = 0. Why is this impossible?

However, if A =0 in (4) so that

xoxg = x% (z1 + x0) -

we can put
Po = yS’
o= o (yi— )
P2 = U (y% *y(Q)) :



2 Blowing up subvarieties of projective space

2.1 Blowing up zero: Making a hole in affine space at
zero and sticking in a projective space (of one lower

dimension)
Consider the set
ct x Ccp®
with coordinates
((oy- oy Tn)y [Yo:ee:ynl)-

Consider the subset
BcCrt x cp”

given by the set of equations

{

We have two projection maps

T; Tk
Yi Yk

~of |
0<j<k<n

prc : B — C*H

((oy-eosTn)y Yoo yn]) = (Toy. .. Tn)
and
prp: B — P"
(o, s@n), Woi--yn]) = (Yo i -t Ynl-

Exercise 11 Show that the map

pre :pr(El (C"+1 - (o, .. .,0)}) — ((C”+1 —H{(0,... 7O)})
is 1 — 1 and onto.

Exercise 12 Show that

prat ({(0,...,0)}) = CP™.

Next we will show that B is a nice, ‘smooth’ algebraic set. We take any of
the coordinate charts for CP", for example

Uo = {lyo:...:yn] €CP":yo # 0}
{{L1:y1:...:yn] €CP" 1 yp #0}
{(y1,---,yn) € C"}.

Then
BN (C™ x Up)



is given by the equations

1% 2|
L yk 1<k<n
and
acj T .
{ Yi Yk }1§j<k§n.

But the first set of equations make each = = zoy; for £ > 1 and substituting
in the second set we get
1<j<k<n

{

which is identically satisfied. Thus B N ((C”‘Irl X Uo) is simply the graph of the
smooth function

To-Y; To- Yk
Yj Yk

F(‘Tanlr . '7yn) = ($17' .. 7z’N)
given by the rule z = zoyi for £ > 1. The same argument works for the part
of B in any of the other coordinate charts C**! x Uj,.

Exercise 13 Draw the (real) blow-up of (0,0) in R?.

2.2 Blowing up an ideal
What we have just done is to blow up the point (0,...,0) in C**!. Said another

way, we have blown up the (zeros of) the ideal
Iy = {wa--amn}'

Here we consider the coordinate functions x; as the polynomials which deter-
mines the set we are blowing up. But we can blow up any ideal I, for example
the ideal generated by the polynomials in (1). Consider the set

ct x cp”
with coordinates
((xoy -y ),y [Wo:ieoriyr]).
Consider the set of equations
{ pi P | _ }
Y5 Yk 0<j<k<r

Clearly the subset (Z x CP") C (C"™! x CP") is in the solution set. But there
is another piece of the solution set, namely the closure B of the graph of the
function

(C*t—Z) - CP"
(oy.--yxn) — [P0 (Zoy - oy Zn) ooy Dr (T, e ooy T

Again we have
prc : B — C*!

which is 1 — 1 and onto over ((C’H'1 - Z).



2.3 B independent of choice of polynomials defining 7

Suppose we tack on a useless extra equation, for example
q=hopo+ ...+ hypr.
The map
C"t! x CP" — C™ ™! x CP" !
-
((oy- ooy Tn)y [Yo e i Yrg1]) — ((mo,...,xn), [yo U AR Z hjyj])

i=1

takes C"T1 x CP" isomorphically onto a smooth closed subvariety of C**! x
CP"*! and takes B exactly onto the set we would get by blowing up Z using
the equations

po=...=pr=¢q=0.

So if we have a second set of equations

qO(.’El,...,ZCn):O (6)

qs (1, ..., z,) = 0.

defining Z, we use this reasoning s + 1 times to conclude that B is the same as
the blow-up we get using the set of polynomials {pg, ..., Pr,q0,---,qs}-

Exercise 14 Show that the blow-up By of an ideal I does not depend on the
choice of generators for the ideal of Z.

2.4 The inverse image of 7 is given (locally)

A property that characterizes the blow-up Bz of an ideal Iz in C"*! is that,
for the mapping
pre : By — C'HL

the set
pret (2)

is everywhere locally defined by a single equation. (Remember that it took n+1
equations to define the set {(0,...,0)} in C"*1.) To see this, restrict By, for
example, to the open set

(Cn+1 X UO) N By.

The equations for the inverse image of Z are

po=pooprc =20

Dr :PTOPT(C:O'



But upstairs on Bz we also have the equations
{ Yi Yk
pj Dk

(Cn+1 X UO) N Bz,

}0§j<k§n

So, on the open set

where we have coordinates

Y1 Yr
(Zoy .oy Tn), (,...7)
Yo Yo

since yg # 0, we get

Yk
Pr = —Po
Yo
So the ideal of
pret (2)
is given by the single equation
po o prc = 0.

We call such an ideal a principal ideal. There is a little problem with this.
We may start with Z given by a radical ideal, Iz, but the generator py could
happen to be of the form

Po = P2Q-
Then on By,
(pg)”
is in the ideal of pg o pr¢ but
pq

isn’t. This, among other things, makes working with only radical ideals a bad
idea. So algebraic geometers instead replace the notion of a variety with the
notion of a scheme.

The ideal {p2q} gives a scheme in Byz. This scheme is ‘bigger’ than

pr(gl (Z) = {zeros (p)} U {zeros(q)}.

Intuitively, it has the zeros of p in it twice, much in the same way that you
count the root 1 twice when accounting for the roots of the equation

22— 222+ 1 =0.



3 What can you do with a blow-up?
3.1 Smoothing
Now suppose I have a subvariety

1%7%4 g (Cn+1

that has some ‘bad’ or singular subset Z. Then we blow up Z in C"*! and look
at what happens to W, that is, we lift

W —-Z
into Bz and close it up. The resulting variety W sits over W,
pr:W — W,
in fact is identical to W except over the bad subset Z:
W—-pr ' Z=W-2.

But often W straightens out the badness of Z. Let’s see some examples

3.2 Smoothing a node

Node: The curve
W:ad = a3 4 a3

in C2.
Exercise 15 Graph the real points of this curve in R2.
Now blow up (0,0) in C? and restrict our attention to
C? x Uy
with coordinates (g, y1) where 1 = xoy;. Substituting we get

2_ .29, 33
Ty = Tyl + ToyYy

@y — (agyl +20y7) =0
g (1 =i (1+zoy1)) = 0.
If 2o # 0, that is, if we are over C2 — {(0,0)}, we have the curve given by
1—y7 (1+zoy1) = 0.

This curve meets the set 29 = 0 in the points (zo,y1) = (0,1) and (zo,y1) =
(0, —1). and is smooth!

10



3.3 Smoothing a cusp

Cusp: The curve
W ok = a3

in C2.
Exercise 16 Graph the real points of this curve in R?.
Now blow up (0,0) in C? and restrict our attention to
C? x Uy
with coordinates (zg,y1) where 1 = xoy;. As above get
1=y (zoy1) = 0

with no points on zg = 0. So let’s try

(CZ X U1
with coordiates

($1, yo)
where zg = x1y9. We get

2
(T1y0)” = l’%
z? (yg —z1) = 0

So now we get

Yo — 1

with only the point (21,y0) = (0,0) when 27 = 0. (If we were in the Graduate
Summer School we would have to blow this point up, then blow up one more
time to get a simple normal-crossing divisor.)

3.4 Taming the PCMI tee shirt
PCMI tee shirt: The surface W given by

w :p(x()uajlva) = (x(2) - x?)Q - (1’0 —|—£L’§) x% =0

in C3. To find the singular set Z of W, find the solution set Z of the system of
equations

Op

G = 4z (mg — x?) — a3

0 . .
a—fl = 6a? (:17% - x‘f) — 2z 73
0

o, = “3lwotad)ad

11



that lie on W. Some algebra gives the equations

2 _ .3 _
zg—27 = 0

X9 = 0
for Z.
Exercise 17 Check this assertion about the equations for Z.

So Z is our friend, the plane curve cusp singularity. Now blow up C? at 0.
What happens to the PCMI tee shirt? The equations for Z are

po (zo,21,22) = x5 — 1}
P1 (mo,fcl,xz) = Z2
so the equation for By is
{ Yo Y1 | _ 0} _ (7)
Po D1

That is, the equation of By is
YoT2 — Y1 (55(2) - ﬁ’) =0.
Now remember that Z C W. So prg' (W) is given by writing

(x% — xi’)2 — (ajo + :c%) 3 =0

as
pﬁ - (330 + x%) p‘;’ =0. (8)
But on yp # 0 we have
Poy1
P11 =
Yo

so we can rewrite this as

yoro — (zo+af)pjy? = 0
p5 (vg — (w0 +27) poy?) =
So putting yo = 1, W is given inside Bz by
1 — (zo +23) poyi = 0. 9)

How is W different from W? We need only over the set Z that we blew up.
Namely look at the intersection

Wn(ZxCPY.
That is

po =p1 =0.

12



So, substituting in (9), we get

po = p1=0
w = O

This set has no points in C3 x Uy because 1 # 0, but it has a lot of points in
C? x U;. But, from (8) and (9), the equations for W N (C® x Uy) are calculated
using

Po = P1Yo
2
(p1yo)” — (zo + 23) p3,

that is,

Po = P1Yo
P} (5 — (w0 + 23) p1)

so that W N ((C3 X U1) becomes

qo (zo, 1,22, 90) = (2§ — 27) — 22y =0
@1 (z0, 21,32, 90) = y§ — (20 + 27) p1 = 0.

Exercise 18 Check my algebra.

} Have we smoothed the tee shirt? Unfortunately not! A point z := (g, 21, z2,y1) €
W is a smooth point if

9490 990 9490 9490
8.”1:0 8.7:1 8.”1:2 8y1
Rank z z z z = 2.
9q1 9q1 9q1 9q1
amg 2 8I1 2 axz 2 8y1 2

Exercise 19 Show that (0,0,0,0) is a singular point of w.

Exercise 20 (Maybe quite hard to do by hand.) See whether there are any other
singular points on W. (I don’t know the answer.)

13



4 Cubic plane curves

4.1 Criterion for smooth points

Let
C C CP?

be a projective plane curve, that is, the solution set of one homogeneous form

F (zg, 21, 22) of degree d.

Exercise 21 Show that

oF oF oF

d-F =
P00 TG Ty

Exercise 22 Show that a point (xg,x1,x2) € CP? is a singular point of the

curve C if and only if
oF  OF  O0F
8;50 n 8;101 - 8;52 -
Now suppose that C is a smooth curve. Fix a point p € C. Consider the
fine OF OF OF
el . - . == (p) - xo. 10
D (p) -0 + o (p) -1+ o (p) - @2 (10)
This line certainly passes through p.
Exercise 23 Show that the above line is the tangent line to C at p.

By this last exercise, the intersection of the line (10) and C is 2p plus d — 2
points on (10).
4.2 Inflection points
Now consider the map
c — {lz’nes mn CIP’Q} ~ CP?

( oF oF oF )

P 370(19),871 p)7872(p)

p is called an inflection point of C' if

2p 2
gxo (p) 616025;1 (p) 89:08:102 (p)
Bzmaaco (p) %é’z; (p) 5I123$2 (p) =0. (]_]_)
() a;?zaxl (p) %mg (p)

dxgaxo

Exercise 24 Show that p is an inflection point of C if and only if the intersec-
tion of the line (10) and C is 3p plus d — 3 points on (10).

14



For the rest of this section we will restrict our attention to plane cubics, that
is, to the case d = 3. Then the matrix (11) of second partials is a matrix of
linear forms, so its determinant G (g, 21, Z2) is a homogeneous form of degree
3. Since F' and G both have degree 3, the system of equations

F(l’o,xl,.’I,‘Q) =0
G (vo,r1,22) = 0

has 3 -3 — 9 solutions. Said otherwise, there are 9 inflection points on C. Said
still another way, there are 9 points p on C such that, if L (xg,x1,x2) is the
tangent line to C' at p, then the solution set of the system of equations

F($07$1,$2) - O
L(.’L’O,.’I;’h.’lﬁg) =0

is just the point p counted 3 times.

4.3 Weierstrass normal form for a cubic

Pick one of these inflection points, call it p,, and call its tangent line L,. Using
an invertible 3 x 3 matrix M, change coordinates

(zo,z1,22) = ((Y0,Y1,y2) M)

so that
(20 (Poo) » 1 (Poo) s T2 (Poo)) = ((0,0,1) M)
and
Loo(x(hxth) = Loo((y()aylayZ)M)
= Yo-
Then
F(zo,r1,22) = F((Y0,y1,92) M)
= F(y07y17y2)

gives a curve C in the CP? with coordinates [Yo, Y1, y2)- C is isomorphic to C

so we might as well study C. R
But this means that in the (yo,y1, 1)-plane, C is given by a curve which has
the form

dyi +yo(...)

and so can be written in homogeneous form as

ayoys + y2b (Yo, y1) + ¢ (Yo, y1) = 0. (12)

This equation in y2 has multiple roots when

b (yo,y1)* — dayoc (yo, y1) = 0 (13)

15



Let
Yo =d,y1 = —c
be one of those multiply roots. This means that the line
cyo +dy1 =0

which passes through (0,0,1) hits C at only one other point ¢ and is tangent to
C there. One place where this happens is when d = 0 and ¢ # 0. Therefore

b(y()ayl)

has no yi-term, that is

b (Yo, y1) = yo (b'yo + b"y1),

so we rewrite (13) as

2
vs ('yo +"y1)” — dagoc (yo,91) = 0
The four solutions to (13) must be distinct, since otherwise C' would be

singular. So the other three solutions are given by

yo (V'yo + b"y1)” — dac (yo, 1) =0 (14)

Take two other solutions and call ¢’ and ¢” the points at which they are tangent
to C.
Now write a new change of coordinates
€00 Co1  Co2

(Yo, y1,Y2) = (20,21, 22) 0 ci1 ci2
0 0 C22

such that (20 (q'),21(¢"),22(¢")) = (1,0,0) and (20(q"),21(¢"),22(¢")) =
(1,1,0).

Exercise 25 a) Show that any transformation

Coo  Co1  Co2
0 ci1 ci2 (15)
0 0 C22

doesn’t move the point (0,0,1) or the line yo = 0 and so is an affine transfor-
mation

C1121 + Co1
y =
€00
- C22%2 + C1221 + Cp2
g =

Coo

from the (1,z1,22) to the (1,y1,y2)-plane. Show that there always is such an
invertible matriz (15) that does what we want.

16



Now we rewrite(12)as
azoza + 220 (20, 21) + ¢ (20, 21) = 0 (16)
(with different a,b, c) and (14) as
20 (V20 + b 21)° — dac (20,21) =0 (17)

(with different &', ") and we have that two of the three factors of this cubic are

zZ1 = 0
Z1— 2y = 0.
That is, for some A # 0, 1,
20 (020 + 0"21)° — dac (20, 21) = ez1 (21 — 20) (21 — A20) - (18)

So zg does not divide ¢ (29, 21). On the other hand, if we set 2z = 1, 20 = 0 in
(17),

z21
Z =0
20
21
2z = 1
20

are still solutions. So
c(20,21) = 21 ((z21 — 20) (rzo + 821)) .

Substituting this in (18) we get that 2y (21 — 20) divides (b'zp + b”2)* which is
impossible unless (b'zyp 4+ b"”21) = 0. Thus (16) becomes

azzs +c(z0,21) = 0.
where ¢ (29, 71) is a cubic not divisible by zp. Then by (18) we write (16) as

4a?
7202% =2z (21 — Z()) (Zl — )\Z())

or
2a 2 _ A\
Z0 ({"/EZQ> =z (Zl — Zo) (Zl — Zo) .
An easy change of coordinates lets us rewrite this in the plane zg = 1 21 = =z,
Zo = Y as
V=x(z—1)(z—-N\). (19)

This shows us that there are only a one-parameter family of cubics which
are in any way different from each other. In fact, the “moduli space of plane
cubic curves" has dimension exactly one.
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Exercise 26 Change variables in (19) by replacing x by x — ¢ and leaving y as
it is. Pick ¢ such that the new equation for our curve becomes

y2:x3+a()\)x—|—b()\).

Exercise 27 Let f (x) be a polynomial of one complex variable with no multiple
roots. Homogenize the affine curve

y? = f ()

Does the resulting curve have singularities? If so resolve them by blowing up.
(The curves you get this way are called hyperelliptic curves.)
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