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1 Using projective space

1.1 Projective space

We will work over the complex numbers C. We work in the ring

C [x1; : : : ; xn]

of polynomials in the variables x1; : : : ; xn.
Complex a¢ ne variety : Solution set Z of a �nite system of polynomial

equations: The set of (x1; : : : ; xn) 2 Cn such that

p0 (x1; : : : ; xn) = 0 (1)

: : :

pr (x1; : : : ; xn) = 0:

You have seen that, even though Z is given by a �nite set of equations, the set
of polynomials that vanish on Z, called IZ is quite large. In particular, it is an
ideal, even a radical ideal, that is,

p; q 2 IZ =) p+ q 2 IZ
f 2 C [x1; : : : ; xn] ; p 2 IZ =) f � p 2 IZ

pn 2 IZ =) p 2 IZ :

The problem with a¢ ne varieties is that they have �uncontrollable ends.�
The space in which we will work is complex projective space

CPn

which is the set of one-dimensional subspaces of the C-vector space

V = Cn+1 = f(x0; : : : ; xn) : xj 2 Cg :

To get a picture of how this looks, make things easier by replacing C with the
smaller �eld R and think of the set RP2 of one-dimensional subspaces of R3,
that is, the set of lines through the origin in R3.
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Exercise 1 Draw a picture.

Even though Pn doesn�t �t in any a¢ ne variety, we set up coordinate charts
on CPn which are a¢ ne varieties.

Exercise 2 Draw the a¢ ne charts for RP2

Exercise 3 Staying with RP2 show how it takes care of the loose ends of

x22 � x1
�
x21 � 1

�
= 0: (2)

That is, graph the solution set to (2) in the R2-plane. Find the limit(s) in RP2
when you go o¤ to in�nity along the graph. Hint: Find the point(s) at in�nity
on one of the other coordinate charts of RP2.

1.2 Homogeneous coordinates

Each non-zero point (x0; : : : ; xn) 2 Cn+1 determines a unique point [x0 : : : : : xn]
in CPn. But two di¤erent points in Cn+1 may determine the same point in CPn.

Exercise 4 Exactly when is this the case? Prove your assertion.

We call a polynomial p (x0; : : : ; xn) homogeneous if its vanishing set depends
only on [x0 : : : : : xn], that is, if the vanishing of the polynomial at (x0; : : : ; xn)
implies its vanishing at all points (y0; : : : ; yn) such that

[y0 : : : : : yn] = [x0 : : : : : xn] :

Exercise 5 Show that a polynomial p (x0; : : : ; xn) is homogeneous if and only
if each of its monomial terms have the same total degree.

We can take any a¢ ne variety (1) and homogenize it or �close it up at in�nity�
by writing

p (x1; : : : ; xn) = p

�
y1
y0
; : : : ;

yn
y0

�
and then multiplying p

�
y1
y0
; : : : ; yny0

�
by the smallest power of y0 which clears

denominators.

Exercise 6 Find the �points at in�nity�by homogenizing the equation in (2).

1.3 Curves in CP2

Let p (x0; x1; x2) be a homogeneous polynomial of degree 2. We call the solution
set p = 0 in CP2 a conic. Can write

p (x0; x1; x2) = (x0; x1; x2) �A �

0@ x0
x1
x2

1A
where A is a symmetric 3 � 3 matrix. To compare solution sets p = 0 we use
some linear algebra.
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Exercise 7 Show that there is an invertible 3� 3 matrix M such that

MAM t

is diagonal with entries only 0 or 1.

The group of such M is just the group of changes of coordinates or auto-
morphisms of CP2, that is,

[y0; : : : ; yn] = [(x0; : : : ; xn)M ] :

(Similarly for CPn.)
We conclude that, up to change of coordinates for CP2, there are only three

conics:

x20 � x21 � x22 = 0

x20 � x21 = 0

x20 = 0:

The �rst one is smooth, the second has one singular point (where is it?), and
the third is singlar at all its points.

Exercise 8 Show that every smooth conic has an algebraic, 1�1 and onto map
to CP1. Hint: Stereographically project the smooth conic

x20 � x21 � x22 = 0

from the point (1; 0; 1) onto the line x2 = 0.

However if p (x0; x1; x2) is homogeneous of degree d with d � 3 and C �
CP2 is its solution set, there is, in general no way to de�ne a non-constant
di¤erentiable map

f : CP1 ! C (3)

To see why, we�ll need some calculus.

1.4 Di¤erentials

Suppose that I have a curve C 0 in C2 given by the equation

p (x; y) = 0:

Then, if I have a smooth path (x (t) ; y (t)) in C2 that lies entirely inside C 0, the
Chain Rule tells me that, for the function p (x (t) ; y (t)),

0 =
dp

dt
=
dp

dx

dx

dt
+
dp

dy

dy

dt
:

Since this is true no matter what the parameter t is, we simply surpress it in
the notation and write

0 =
dp

dx
dx+

dp

dy
dy:

We call this implicit di¤erentiation.
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1.5 Non-rationality of cubics

Let�s show that there is no non-constant map f in (3) when the curve C given
by

x0x
2
2 = x1 (x1 + x0) (x1 + �x0) : (4)

To get an idea why this is true, write this curve on the set x0 6= 0 using
coordinate changes

x =
x1
x0

y =
x2
x0
:

We get
y2 = x (x+ 1) (x+ �) : (5)

Exercise 9 Suppose � = �1 2 R and graph the (real) solution set of this curve
in R2.

Next implicitly di¤erentiate the equation (5).

2ydy = ((x+ 1) (x+ �) + x (x+ �) + x (x+ 1)) dx:

We see that the expression

dx

y
=

2dy

(x+ 1) (x+ �) + x (x+ �) + x (x+ 1)

is everywhere bounded in the solution set C 0 (5). Next we checked above that
the rest of the curve C is given by

z = w (w + z) (w + �z)
z

w
= (w + z) (w + �z)

on the set x2 6= 0. In fact the only point of C not on C 0 is the point (z; w) =
(0; 0). But, when z and w are both small, so is z

w , and so

z

w2
=
�
1 +

z

w

��
1 + �

z

w

�
is bounded away from zero and �nite. So

z = w2u

where u (0; 0) 6= 0. With coordinate changes

z =
x0
x2

w =
x1
x2
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and

x =
x1
x0
=
w

z

y =
x2
x0
=
1

z

and

dx

y
= zd

w

z

= dw � wdz
z

= dw �
wd
�
w2u

�
w2u

= dw �
�
2uwdw + w2du

wu

�
= �dw � wdu

u
:

So C has an everywhere holomorphic di¤erential. Via the mapping f in (3) this
di¤erential would give an everywhere holomorphic di¤erential on the Riemann
sphere.

Exercise 10 Show that there are no everywhere holomorphic di¤erentials on
CP1. Hint: On x0 6= 0, write the di¤erential as

g (z) dz:

Then change coordinates to the coordinate w = 1
z on the open set x1 6= 0. So

g

�
1

w

�
d
1

w

has to be nice at w = 0. Why is this impossible?

However, if � = 0 in (4) so that

x0x
2
2 = x

2
1 (x1 + x0) :

we can put

p0 = y30

p1 = y0
�
y21 � y20

�
p2 = y1

�
y21 � y20

�
:
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2 Blowing up subvarieties of projective space

2.1 Blowing up zero: Making a hole in a¢ ne space at
zero and sticking in a projective space (of one lower
dimension)

Consider the set
Cn+1 � CPn

with coordinates
((x0; : : : ; xn) ; [y0 : : : : : yn]) :

Consider the subset
B � Cn+1 � CPn

given by the set of equations����� xj xk
yj yk

���� = 0�
0�j<k�n

:

We have two projection maps

prC : B ! Cn+1

((x0; : : : ; xn) ; [y0 : : : : : yn]) 7! (x0; : : : ; xn)

and

prP : B ! Pn

((x0; : : : ; xn) ; [y0 : : : : : yn]) 7! [y0 : : : : : yn] :

Exercise 11 Show that the map

prC : pr
�1
C
�
Cn+1 � f(0; : : : ; 0)g

�
!
�
Cn+1 � f(0; : : : ; 0)g

�
is 1� 1 and onto.

Exercise 12 Show that

pr�1C (f(0; : : : ; 0)g) = CPn:

Next we will show that B is a nice, �smooth�algebraic set. We take any of
the coordinate charts for CPn, for example

U0 = f[y0 : : : : : yn] 2 CPn : y0 6= 0g
= f[1 : y1 : : : : : yn] 2 CPn : y0 6= 0g
= f(y1; : : : ; yn) 2 Cng :

Then
B \

�
Cn+1 � U0

�
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is given by the equations ����� x0 xk
1 yk

���� = 0�
1�k�n

and ����� xj xk
yj yk

���� = 0�
1�j<k�n

:

But the �rst set of equations make each xk = x0yk for k � 1 and substituting
in the second set we get����� x0 � yj x0 � yk

yj yk

���� = 0�
1�j<k�n

which is identically satis�ed. Thus B \
�
Cn+1 � U0

�
is simply the graph of the

smooth function
F (x0; y1; : : : ; yn) = (x1; : : : ; xn)

given by the rule xk = x0yk for k � 1. The same argument works for the part
of B in any of the other coordinate charts Cn+1 � Uk.
Exercise 13 Draw the (real) blow-up of (0; 0) in R2.

2.2 Blowing up an ideal

What we have just done is to blow up the point (0; : : : ; 0) in Cn+1. Said another
way, we have blown up the (zeros of) the ideal

I0 = fx0; : : : ; xng :
Here we consider the coordinate functions xj as the polynomials which deter-
mines the set we are blowing up. But we can blow up any ideal I, for example
the ideal generated by the polynomials in (1). Consider the set

Cn+1 � CPr

with coordinates
((x0; : : : ; xn) ; [y0 : : : : : yr]) :

Consider the set of equations����� pj pk
yj yk

���� = 0�
0�j<k�r

:

Clearly the subset (Z � CPr) �
�
Cn+1 � CPr

�
is in the solution set. But there

is another piece of the solution set, namely the closure B of the graph of the
function �

Cn+1 � Z
�
! CPr

(x0; : : : ; xn) 7! [p0 (x0; : : : ; xn) ; : : : ; pr (x0; : : : ; xn)]

Again we have
prC : B ! Cn+1

which is 1� 1 and onto over
�
Cn+1 � Z

�
.
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2.3 B independent of choice of polynomials de�ning Z

Suppose we tack on a useless extra equation, for example

q = h0p0 + : : :+ hrpr:

The map

Cn+1 � CPr ! Cn+1 � CPr+1

((x0; : : : ; xn) ; [y0 : : : : : yr+1]) 7!
�
(x0; : : : ; xn) ;

h
y0 : : : : : yr :

Xr

i=1
hjyj

i�
takes Cn+1 � CPr isomorphically onto a smooth closed subvariety of Cn+1 �
CPr+1 and takes B exactly onto the set we would get by blowing up Z using
the equations

p0 = : : : = pr = q = 0:

So if we have a second set of equations

q0 (x1; : : : ; xn) = 0 (6)

: : :

qs (x1; : : : ; xn) = 0:

de�ning Z, we use this reasoning s+ 1 times to conclude that B is the same as
the blow-up we get using the set of polynomials fp0; : : : ; pr; q0; : : : ; qsg.

Exercise 14 Show that the blow-up BI of an ideal I does not depend on the
choice of generators for the ideal of Z.

2.4 The inverse image of Z is given (locally)

A property that characterizes the blow-up BZ of an ideal IZ in Cn+1 is that,
for the mapping

prC : BZ ! Cn+1;

the set
pr�1C (Z)

is everywhere locally de�ned by a single equation. (Remember that it took n+1
equations to de�ne the set f(0; : : : ; 0)g in Cn+1.) To see this, restrict BZ , for
example, to the open set �

Cn+1 � U0
�
\BZ :

The equations for the inverse image of Z are

p0 = p0 � prC = 0
: : :

pr = pr � prC = 0:
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But upstairs on BZ we also have the equations����� yj yk
pj pk

���� = 0�
0�j<k�n

:

So, on the open set �
Cn+1 � U0

�
\BZ ;

where we have coordinates

(x0; : : : ; xn) ;

�
y1
y0
; : : : ;

yr
y0

�
since y0 6= 0, we get

pk =
yk
y0
p0:

So the ideal of
pr�1C (Z)

is given by the single equation

p0 � prC = 0:

We call such an ideal a principal ideal. There is a little problem with this.
We may start with Z given by a radical ideal, IZ , but the generator p0 could
happen to be of the form

p0 = p
2q:

Then on BZ ,
(pq)

2

is in the ideal of p0 � prC but
pq

isn�t. This, among other things, makes working with only radical ideals a bad
idea. So algebraic geometers instead replace the notion of a variety with the
notion of a scheme.
The ideal

�
p2q
	
gives a scheme in BZ . This scheme is �bigger�than

pr�1C (Z) = fzeros (p)g [ fzeros (q)g :

Intuitively, it has the zeros of p in it twice, much in the same way that you
count the root 1 twice when accounting for the roots of the equation

x3 � 2x2 + x = 0:
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3 What can you do with a blow-up?

3.1 Smoothing

Now suppose I have a subvariety

W � Cn+1

that has some �bad�or singular subset Z. Then we blow up Z in Cn+1 and look
at what happens to W , that is, we lift

W � Z

into BZ and close it up. The resulting variety ~W sits over W ,

pr : ~W !W;

in fact is identical to W except over the bad subset Z:

~W � pr�1Z =W � Z:

But often ~W straightens out the badness of Z. Let�s see some examples

3.2 Smoothing a node

Node: The curve
W : x20 = x

2
1 + x

3
1

in C2.

Exercise 15 Graph the real points of this curve in R2.

Now blow up (0; 0) in C2 and restrict our attention to

C2 � U0

with coordinates (x0; y1) where x1 = x0y1. Substituting we get

x20 = x
2
0y
2
1 + x

3
0y
3
1

x20 �
�
x20y

2
1 + x

3
0y
3
1

�
= 0

x20
�
1� y21 (1 + x0y1)

�
= 0:

If x0 6= 0, that is, if we are over C2 � f(0; 0)g, we have the curve given by

1� y21 (1 + x0y1) = 0:

This curve meets the set x0 = 0 in the points (x0; y1) = (0; 1) and (x0; y1) =
(0;�1). and is smooth!
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3.3 Smoothing a cusp

Cusp: The curve
W : x20 = x

3
1

in C2.

Exercise 16 Graph the real points of this curve in R2.

Now blow up (0; 0) in C2 and restrict our attention to

C2 � U0

with coordinates (x0; y1) where x1 = x0y1. As above get

1� y21 (x0y1) = 0

with no points on x0 = 0. So let�s try

C2 � U1

with coordiates
(x1; y0)

where x0 = x1y0. We get

(x1y0)
2
= x31

x21
�
y20 � x1

�
= 0

So now we get
y20 � x1

with only the point (x1; y0) = (0; 0) when x1 = 0. (If we were in the Graduate
Summer School we would have to blow this point up, then blow up one more
time to get a simple normal-crossing divisor.)

3.4 Taming the PCMI tee shirt

PCMI tee shirt: The surface W given by

W : p (x0; x1; x2) =
�
x20 � x31

�2 � �x0 + x21�x32 = 0
in C3. To �nd the singular set Z of W , �nd the solution set Z of the system of
equations

@p

@x0
= 4x0

�
x20 � x31

�
� x32

@p

@x1
= 6x21

�
x20 � x31

�
� 2x1x32

@p

@x2
= �3

�
x0 + x

2
1

�
x22
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that lie on W . Some algebra gives the equations

x20 � x31 = 0

x2 = 0

for Z.

Exercise 17 Check this assertion about the equations for Z.

So Z is our friend, the plane curve cusp singularity. Now blow up C3 at 0.
What happens to the PCMI tee shirt? The equations for Z are

p0 (x0; x1; x2) = x20 � x31
p1 (x0; x1; x2) = x2

so the equation for BZ is ����� y0 y1
p0 p1

���� = 0� : (7)

That is, the equation of BZ is

y0x2 � y1
�
x20 � x31

�
= 0:

Now remember that Z �W . So pr�1C (W ) is given by writing�
x20 � x31

�2 � �x0 + x21�x32 = 0
as

p20 �
�
x0 + x

2
1

�
p31 = 0: (8)

But on y0 6= 0 we have
p1 =

p0y1
y0

so we can rewrite this as

y30p
2
0 �

�
x0 + x

2
1

�
p30y

3
1 = 0

p20
�
y30 �

�
x0 + x

2
1

�
p0y

3
1

�
= 0:

So putting y0 = 1, ~W is given inside BZ by

1�
�
x0 + x

2
1

�
p0y

3
1 = 0: (9)

How is ~W di¤erent from W? We need only over the set Z that we blew up.
Namely look at the intersection

~W \
�
Z � CP1

�
:

That is
p0 = p1 = 0:
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So, substituting in (9) ; we get

p0 = p1 = 0

y30 = 0:

This set has no points in C3�U0 because 1 6= 0, but it has a lot of points in
C3�U1. But, from (8) and (9), the equations for ~W \

�
C3 � U1

�
are calculated

using

p0 = p1y0

(p1y0)
2 �

�
x0 + x

2
1

�
p31;

that is,

p0 = p1y0

p21
�
y20 �

�
x0 + x

2
1

�
p1
�

so that ~W \
�
C3 � U1

�
becomes

q0 (x0; x1; x2; y0) =
�
x20 � x31

�
� x2y0 = 0

q1 (x0; x1; x2; y0) = y
2
0 �

�
x0 + x

2
1

�
p1 = 0:

Exercise 18 Check my algebra.

Have we smoothed the tee shirt? Unfortunately not! A point z := (x0; x1; x2; y1) 2
~W is a smooth point if

Rank

0@ @q0
@x0

���
z

@q0
@x1

���
z

@q0
@x2

���
z

@q0
@y1

���
z

@q1
@x0

���
z

@q1
@x1

���
z

@q1
@x2

���
z

@q1
@y1

���
z

1A = 2:

Exercise 19 Show that (0; 0; 0; 0) is a singular point of ~W .

Exercise 20 (Maybe quite hard to do by hand.) See whether there are any other
singular points on ~W . (I don�t know the answer.)
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4 Cubic plane curves

4.1 Criterion for smooth points

Let
C � CP2

be a projective plane curve, that is, the solution set of one homogeneous form
F (x0; x1; x2) of degree d.

Exercise 21 Show that

d � F = x0
@F

@x0
+ x1

@F

@x1
+ x2

@F

@x2
:

Exercise 22 Show that a point (x0; x1; x2) 2 CP2 is a singular point of the
curve C if and only if

@F

@x0
=
@F

@x1
=
@F

@x2
= 0:

Now suppose that C is a smooth curve. Fix a point p 2 C. Consider the
line

@F

@x0
(p) � x0 +

@F

@x1
(p) � x1 +

@F

@x2
(p) � x2: (10)

This line certainly passes through p.

Exercise 23 Show that the above line is the tangent line to C at p.

By this last exercise, the intersection of the line (10) and C is 2p plus d� 2
points on (10).

4.2 In�ection points

Now consider the map

C !
�
lines in CP2

	 �= CP2
p 7!

�
@F

@x0
(p) ;

@F

@x1
(p) ;

@F

@x2
(p)

�
:

p is called an in�ection point of C if��������
@2F
@x20

(p) @2F
@x0@x1

(p) @2F
@x0@x2

(p)
@2F

@x1@x0
(p) @2F

@x21
(p) @2F

@x1@x2
(p)

@2F
@x2@x0

(p) @2F
@x2@x1

(p) @2F
@x22

(p)

�������� = 0: (11)

Exercise 24 Show that p is an in�ection point of C if and only if the intersec-
tion of the line (10) and C is 3p plus d� 3 points on (10).
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For the rest of this section we will restrict our attention to plane cubics, that
is, to the case d = 3. Then the matrix (11) of second partials is a matrix of
linear forms, so its determinant G (x0; x1; x2) is a homogeneous form of degree
3. Since F and G both have degree 3, the system of equations

F (x0; x1; x2) = 0

G (x0; x1; x2) = 0

has 3 � 3� 9 solutions. Said otherwise, there are 9 in�ection points on C. Said
still another way, there are 9 points p on C such that, if L (x0; x1; x2) is the
tangent line to C at p, then the solution set of the system of equations

F (x0; x1; x2) = 0

L (x0; x1; x2) = 0

is just the point p counted 3 times.

4.3 Weierstrass normal form for a cubic

Pick one of these in�ection points, call it p1 and call its tangent line L1. Using
an invertible 3� 3 matrix M , change coordinates

(x0; x1; x2) = ((y0; y1; y2)M)

so that
(x0 (p1) ; x1 (p1) ; x2 (p1)) = ((0; 0; 1)M)

and

L1 (x0; x1; x2) = L1 ((y0; y1; y2)M)

= y0:

Then

F (x0; x1; x2) = F ((y0; y1; y2)M)

= F̂ (y0; y1; y2)

gives a curve Ĉ in the CP2 with coordinates [y0; y1; y2]. Ĉ is isomorphic to C
so we might as well study Ĉ.
But this means that in the (y0; y1; 1)-plane, Ĉ is given by a curve which has

the form
dy31 + y0 (: : :)

and so can be written in homogeneous form as

ay0y
2
2 + y2b (y0; y1) + c (y0; y1) = 0: (12)

This equation in y2 has multiple roots when

b (y0; y1)
2 � 4ay0c (y0; y1) = 0 (13)
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Let
y0 = d; y1 = �c

be one of those multiply roots. This means that the line

cy0 + dy1 = 0

which passes through (0; 0; 1) hits Ĉ at only one other point q and is tangent to
Ĉ there. One place where this happens is when d = 0 and c 6= 0. Therefore

b (y0; y1)

has no y21-term, that is

b (y0; y1) = y0 (b
0y0 + b

00y1) ;

so we rewrite (13) as

y20 (b
0y0 + b

00y1)
2 � 4ay0c (y0; y1) = 0

The four solutions to (13) must be distinct, since otherwise Ĉ would be
singular. So the other three solutions are given by

y0 (b
0y0 + b

00y1)
2 � 4ac (y0; y1) = 0 (14)

Take two other solutions and call q0 and q00 the points at which they are tangent
to Ĉ.
Now write a new change of coordinates

(y0; y1; y2) = (z0; z1; z2)

0@ c00 c01 c02
0 c11 c12
0 0 c22

1A
such that (z0 (q0) ; z1 (q0) ; z2 (q0)) = (1; 0; 0) and (z0 (q00) ; z1 (q00) ; z2 (q00)) =
(1; 1; 0).

Exercise 25 a) Show that any transformation0@ c00 c01 c02
0 c11 c12
0 0 c22

1A (15)

doesn�t move the point (0; 0; 1) or the line y0 = 0 and so is an a¢ ne transfor-
mation

y1 =
c11z1 + c01

c00

y2 =
c22z2 + c12z1 + c02

c00

from the (1; z1; z2) to the (1; y1; y2)-plane. Show that there always is such an
invertible matrix (15) that does what we want.
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Now we rewrite(12)as

az0z
2
2 + z2b (z0; z1) + c (z0; z1) = 0 (16)

(with di¤erent a; b; c) and (14) as

z0 (b
0z0 + b

00z1)
2 � 4ac (z0; z1) = 0 (17)

(with di¤erent b0; b00) and we have that two of the three factors of this cubic are

z1 = 0

z1 � z0 = 0:

That is, for some � 6= 0; 1,

z0 (b
0z0 + b

00z1)
2 � 4ac (z0; z1) = ez1 (z1 � z0) (z1 � �z0) : (18)

So z0 does not divide c (z0; z1). On the other hand, if we set z0 = 1, z2 = 0 in
(17),

z1
z0

= 0

z1
z0

= 1

are still solutions. So

c (z0; z1) = z1 ((z1 � z0) (rz0 + sz1)) :

Substituting this in (18) we get that z1 (z1 � z0) divides (b0z0 + b00z1)2 which is
impossible unless (b0z0 + b00z1) = 0. Thus (16) becomes

az0z
2
2 + c (z0; z1) = 0:

where c (z0; z1) is a cubic not divisible by z0. Then by (18) we write (16) as

4a2

e
z0z

2
2 = z1 (z1 � z0) (z1 � �z0)

or

z0

�
2a
2
p
e
z2

�2
= z1 (z1 � z0) (z1 � �z0) :

An easy change of coordinates lets us rewrite this in the plane z0 = 1 z1 = x,
z2 = y as

y2 = x (x� 1) (x� �) : (19)

This shows us that there are only a one-parameter family of cubics which
are in any way di¤erent from each other. In fact, the �moduli space of plane
cubic curves" has dimension exactly one.
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Exercise 26 Change variables in (19) by replacing x by x� c and leaving y as
it is. Pick c such that the new equation for our curve becomes

y2 = x3 + a (�)x+ b (�) :

Exercise 27 Let f (x) be a polynomial of one complex variable with no multiple
roots. Homogenize the a¢ ne curve

y2 = f (x)

Does the resulting curve have singularities? If so resolve them by blowing up.
(The curves you get this way are called hyperelliptic curves.)
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