
SOLUTION SET FOR ADVANCED LECTURES, WEEK 2

BRIAN MANN

This is a solution set to the exercises given by Prof. Herb Clemens for
the Advanced Undergraduate Course in week 2 of the 2008 PCMI summer
math program. I neither claim that the following solutions are perfect nor
that they are correct. Many solutions are quite terse, so one should expect
to have to do some minor computations, most of which can be done without
pen and paper. Any corrections and/or better solutions can be sent to either
Brian Mann (brmann ”at” umich ”dot” edu) or Prof. Herb Clemens.

1. Using Projective Space 6.14.08

Exercise 1. Draw a picture of RP2.

The set of one-dimensional subspaces of R3, i.e. RP2:
z

y

x

Exercise 2. Draw the affine charts for RP2.

y

z

x

Exercise 3. Graph the solution set of y2 − x3
1 + x = 0 in the R2 plane.

Find the limits (in RP2) when we go off to infinity along the graph.
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Graph:

x

y

−1 0 1

To find the points at ∞ homogenize and look at another coordinate chart.
See solution to exercise 6 for details.

Exercise 4. Exactly when do two points in Cn+1 define the same point in
CPn?

Proposition 1. Two distinct (non-zero) points p1 and p2 in Cn+1 deter-
mine the same point in Pn exactly when p1 = λp2 for λ ∈ C∗.

Proof. Two points are scalar multiples if and only if they are on the same
line. This gives the proposition. �

Exercise 5. Show that a polynomial is homogeneous iff each of its mono-
mial terms have the same total degree.

Suppose the polynomial p(x0, . . . , xn) is homogeneous. Since p =
k

∑

i=1

mi

of monomials mi, with the deg mi = di, we have for any non-zero scalar

c ∈ C that

k
∑

i=1

cdimi and

k
∑

i=1

mi vanish identically, so in particular, all the

di must be equal.
Now suppose, with notation as in the first part, that all the mi have the

same total degree. Then we have that p(cx0, . . . , cxn) = cdp(x0, . . . , xn) for
all c ∈ C∗, where d is the degree of each monomial. So the polynomials
vanish on the same set.

Exercise 6. Find the points at infinity in the equation in Ex. 3 by homog-
enizing.

Homogenizing the equation in exercise gives: y2z − x3 + xz2 = 0, letting
the corresponding algebraic set intersect the z = 0 plane will give us our
”point at ∞”. We get 0 = x3, so the point at infinity is precisely the
homogeneous 3-tuple [0 : 0 : 1].

Exercise 7. Show that there is an invertible 3 × 3 matrix M such that
MAM t is diangonal with entries only 0 or 1.
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As A is the matrix of a symmetric bilinear form defined by p, by the
Principle Axis Theorem, we can conjuagate by a change of basis matrix,
M , to diagonalize A. Since C = C̄, we can construct this M to scale all
non-zero entries to 1.

There is definitely a more elementary way of doing this.

Exercise 8. Show that every smooth conic has an algebraic, injective, and
surjective map to P1.

Will we show instead that there is an bijective map in the other direction.
To show this consider the de-homogenizing C in the open set U0. Then we

can parametrize C exactly like the circle by considering the ”slice” at x0 = 1.

We get the map P1 → C defined by (t, 1) 7→ (1, 1−t2

1+t2
, 2t

1+t2
) = (1+t2, 1−t2, 2t)

(notice that homogenizing gives us a map defined on all of P1), and sends
the point at infinity, (1, 0) 7→ [1 : 0 : 1]. This map is clearly injective, so
it remains to show that it is a surjection. However, the parametrization we
used is surjective on the circle minus a point, so when we homogenize, it
remains surjective on C − [1 : 0 : 1].

Exercise 9. Graph the solution set of y2 = x(x + 1)(x − 1) in R2.

x

y

−1 0 1

Exercise 10. Show that there are no everywhere holomorphic differentials
on P1.

Suppose the g(z)dz is an everywhere holomorphic differential on P1 on
the open set defined by x0 6= 0, where z = x1/x0. On the overlap with the
open defined by x1 6= 0 we can change coordinates so w = x0/x1, so we have
z = 1

w
. Then we have g(z)dz = g(1/w)d(1/w) = g(1/w)(−1/w2)dw. Since

g is holomorphic, g(z) =
∑

aiz
i =

∑

ai(1/w
i), which is not defined for

w = 0. But our assumption was that g was everywhere holomorphic. Thus
there exist no everywhere holomorphic differentials on P1.

2. Blowing Up Subvarieties of Projective Space 6.15.08

Exercise 11. Show that the map prC : B → (Cn+1 − 0) is injective and
surjective.
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To show that the map is a surjection, note that for any point (a0, . . . , an) ∈
Cn+1 − 0, a preimage is the point (a0, . . . , an, a0, . . . , an) ∈ Cn+1 ×Pn.

For injectivity, note that for a point (a0, . . . , an) ∈ Cn+1 − 0 since the
defining equations for the B are xiyj = xjyi, each yj is uniquely deter-
mined. Indeed, for ai 6= 0, we have yj =

aj

ai
yi, so setting yi = ai gives

(y0, . . . , yn) = (a0, . . . , an). Thus the map is injective.

In fact, this map is an isomorphism. It is a morphism, since it is just
projection onto the first n + 1 coordinates. The inverse morphism is just
given by (a0, . . . , an) 7→ (a0, . . . , an, a0, . . . , an).

Exercise 12. Show that pr−1
C

(0) = Pn.

The defining equations for B are all 0 as polynomials for the point 0. So
they provide no vanishing condition. Thus the fiber over 0 is all of P1.

Exercise 13. Draw the real blow-up of (0,0) in R2.

This is actually nothing like what the blow up of R2 at the origin looks
like, but it’s the best I can do. Just a warning...

     R^2

 CP^1

Exercise 14. Show that the blow-up of an ideal does not depend on the
choice of generators for that ideal.

Suppose I = (f1, . . . , fr). Let q1, . . . , qs be another generating set for I.
Since each qi is in I, it can be written as a linear combination of the fi.
Applying the previous discussion in the handout s times, we have that the
blow-up of the zeroes of (f1, . . . , fr) is the same as the blow-up of the zeroes
of (f1, . . . , fr, q1, . . . , qs). Since the qi also generate the ideal, we can repeat
the same process, using the qi in place of the fi, giving that the blow-up of
the zeroes of (fi) = blow-up of the zeroes of (gj).

3. What Can You Do With a Blow-up? 6.16.08 amd 6.17.08

Exercise 15. Graph the real points of the curve y2 = x2 + x3 in R2.
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  x

y

Exercise 16. Graph the real points of the curve y2 = x3 in R2.

  x

y

Exercise 17. Check the above assertion about the equations for Z.

The conditions x2
0 −x3

1 = 0 and x2 = 0 are clearly sufficient for the above
equations to hold. To show these are necessary conditions, we must solve
the above equations.

Exercise 18. Check the above algebra.

More or less we did this in class while Prof. Clemens was presenting the
material. If you weren’t there, it’s just high school algebra.

Exercise 19. Show that (0, 0, 0, 0) is a singular point of W̃ .

We have q0(x, y, z, u) = (x2−y3)−zu = 0 and q1(x, y, z, u) = u(u2− (x+
y2)z) = 0. So the matrix of partials at a point (x0, y0, z0, u0) is

[

2x −3y −u −z
−zu −2yzu −xu − y2u 3u2 − xz − y2z

]

evaluated at (x0, y0, z0, u0). When (x0, y0, z0, u0) = (0, 0, 0, 0), each of the
terms evaluates to 0, so the rank of the above matrix is 0. Thus (0, 0, 0, 0)

is a singular point of W̃ .

Exercise 20. See whether there are any other singular points on W̃ .

See solution from Stefan Sabo and David Perkinson on the website.



6 BRIAN MANN

4. Cubic Plane Curves 6.17.08 and 6.18.08

Exercise 21. Show that

d · F = x0

∂F

∂x0

+ x1

∂F

∂x1

+ x2

∂F

∂x2

Proof. For F (x0, x1, x2) =
∑

i

aix
d0,i

0 x
d1,i

1 x
d2,i

2 we have by some simple com-

putation with derivatives:

x0
∂F
∂x0

+x1
∂F
∂x1

+x2
∂F
∂x2

=
∑

i

x0x1x2





∑

j∈{0,1,2}

dj,i



 aix
d0,i−1

0 x
d1,i−1

1 x
d2,i−1

2

and since F is homogeneous,
∑

j∈{0,1,2}

dj,i = d

So x0
∂F
∂x0

+ x1
∂F
∂x1

+ x2
∂F
∂x2

= d · F .
�

Exercise 22. Show that a point (x, y, z) ∈ P2 is a singular point of the
curve C iff

0 =
∂F

∂x0

|x =
∂F

∂x1

|y =
∂F

∂x2

|z

Proof. A point [x0, x1, x2] of a curve F = 0 in P2 is singular iff the points
(x0, x1, x2) of the ray above that point are singular for the surface in C3

given by F = 0. Since the Jacobian matrix is:

J =
[

∂F
∂x0

∂F
∂x1

∂F
∂x2

]

the rank of J at (x, y, z) is < 1 iff 0 = ∂F
∂x0

|x = ∂F
∂x1

|y = ∂F
∂x2

|z. So the
proposition is proved. �

Exercise 23. Show that the line ∂F
∂x0

(p)x0 + ∂F
∂x1

(p)x1 + ∂F
∂x2

(p)x2 = 0 is
tangent to C at p.

Suppose that p(t) = (x0(t), x1(t), x2(t)) is a holomorphic path on C. Then
we have F (p(t)) = 0. By the chain rule we have

(1)
∂F

∂x0

∂x0

∂t
+

∂F

∂x1

∂x1

∂t
+

∂F

∂x2

∂x2

∂t
= 0
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and so the tangent plane to C in C3 is

(2)
∂F

∂x0

(p)(x0 − x0(p)) +
∂F

∂x1

(p)(x1 − x1(p)) +
∂F

∂x2

(p)(x2 − x2(p)) = 0

which, by Ex. 21 reduces to

(3)
∂F

∂x0

(p)x0 +
∂F

∂x1

(p)x1 +
∂F

∂x2

(p)x2 = 0

Thus, the above line in equation (3) is the tangent line in P2 to C.

Exercise 24. Show that p is an inflection point of C if and only if the in-
tersection of the line (9) and C is 3p plus d − 3 points on (9).

First we show that p is an inflection point if and only if the tangent line
intersects C at p with multiplicity at least 3. We homogenize on the chart
y2 6= 0, and make a linear change of coordinates moving the tangent line to
the x-axis and p to (0, 0, 1). Since F is homogeneous and F (0, 0, 1) = 0, it
must be of the form F (x0, x1, 1) = x0(. . . ) + xk

1(. . . ). A little computation
yields that the determinant of the Hessian matrix of second partials vanishes
at p if and only if k ≥ 3. Thus p is an inflection point if and only if the
tangent line intersects C at p with multiplicity 3. Since by Bezout’s Theorem
we have that the tangent line and C intersect in exactly d points (counted
with multiplicity), the points of intersection must be 3p and d − 3 other
points on C.

Exercise 25. Show that any transformation





c00 c01 c02

0 c11 c12

0 0 c22



 doesn’t move

the point (0, 0, 1) or the line y0 = 0 and so is an affine transformation

y1 =
c11z1 + c01

c00

y2 =
c22z2 + c12z1 + c02

c00

from the (1, z1, z2) to the (1, y1, y2) plane. Show that there is always such
an invertible matrix as above that does what we want.

That





c00 c01 c02

0 c11 c12

0 0 c22



 doesn’t move (0,0,1) or the line y0 = 0 is a simple

check by multiplying against the matrix. So we must show that there is
always such an invertible matrix.
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We have from the notes that y1 = c11z1+c01
c00

and y2 = c22z2+c12z1+c02
c00

.

So for (z0, z1, z2)(q
′) = (1, 0, 0), y1 = c01/c00 and y2 = c02/c00, and for

(z0, z1, z2)(q
′′) = (1, 1, 0) we have y1 = (c11+c01)/c00 and y2 = (c12+c02)/c00.

Homogenizing wrt to the first coordinate, we can assume WLOG that
c00 = 1. Then y1(q

′) = c01, y2(q
′) = c02, y1(q

′′) = c11 + c01, and y2(q
′′) =

c12 + c02. Clearly we can pick c22 to be any non-zero scalar, so it remains
to show that c11 can be chosen to be non-zero, since then the determinant
of the above matrix will be non-zero as well. But by the above equations,
we have y1(q

′) = c01, which yields for us the equation y1(q
′′) = c11 + y1(q

′).
Since q′ and q′′ are distinct lines through [0, 0, 1], c11 must be non-zero. So
the above matrix is invertible.

Exercise 26. Change variables in y2 = x(x − 1)(x − λ) by replacing x by
x− c and leaving y as it is. Pick the c such that the new equation becomes
y2 = x3 + a(λ)x + b(λ).

Replacing x by x + λ+1
3

works. Check it.

Exercise 27. Let f(x) be a polynomial of one complex variable and no
multiple roots. Homogenize the affine curve y2 = f(x). Does the resulting
curve have any singularities? If so resolve them by blowing up.

Unless I get more time or feel particularly zealous, the rest of this exercise
is left to the reader.


