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Overview 

 Heterotic compactification 
 
 Perturbative IIB 
 
 F-Theory 



Part I: Heterotic compactification 



Heterotic string 

 Break the symmetry to something smaller 

 Kaluza-Klein Ansatz: 

 Bosonic fields in ten dimensions: 

 Lots of symmetry: 10d super-Poincare, SO(32) or E8 x E8 gauge symmetry 

small Effective four-dimensional theory 



Narain compactification 

 Simplest possibility:  
 
 Often referred to as Narain compactification 
 
 Admits an elegant formulation using even, self-dual momentum lattice 

 However: N=1 supersymmetry in 10d reduces to N=4 supersymmetry in 4d 
 

 Very restrictive 
 
 Want to consider more general compactifications with N=1 in 4d 

Moduli space: 

Describes deformations of  along 



Supersymmetry variations 

The 10d supersymmetry variations of the heterotic string are given by: 

We want to find non-trivial solutions to  
with 4d Poincare invariance 

Assume                     and  constant 

We are left with: 

Assume                  for now 



Covariantly constant spinors 

The spinor lives in   (Majorana-Weyl) 

This is a very strong condition on X6. Discuss structure implied by this 
requirement. 

Decompose under  

Then  implies  

i.e. X6  admits a covariantly constant spinor 



Consequences (I) 

Covariantly constant  

  

Then also Rescale and set norm to one 

Consider bilinear: 

Then we have    or  

This is an ``almost complex structure’’  

May not necessarily come from a complex structure 

Integrability condition: vanishing of the Nijenhuis tensor: 



Consequences (I) 

From      and                  we have also  

So the  Nijenhuis tensor vanishes and the complex structure is integrable 

X6  is a complex manifold 

Convenient to use complex coordinates 

Holomorphic tangent bundle spanned by  

Holomorphic co-tangent bundle         spanned by  



Consequences (II) 

From   also find that  

i.e. the metric is Hermitian. 

Using complex coordinates in which 

We get  

Then we can construct an associated two-form (the ``Kahler form’’): 

It is closed due to covariance constancy.  

Such manifolds have very nice properties, some of which we discuss later 

A complex manifold with closed associated two-form is called a Kahler manifold. 



Consequences (III) 

With a little manipulation, see that the Ricci curvature vanishes 

So X6 is a Ricci-flat Kahler manifold 

On any Kahler manifold, construct two-form from Ricci tensor: 

It is closed (by Bianchi) and defines a cohomology class, the first Chern class of X 

Ricci flatness implies that the first Chern class vanishes 

From           also find  

Conversely, it turns out that this is sufficient to solve      , but 
  first discuss holonomy. 



Holonomy 

v 

v’ 

Parallel transport a vector around a loop 

All loops   subgroup of SO(d) called the holonomy group 

Similarly parallel transport spinors or forms around loop 

For small loops enclosing area :  infinitesimal rotation 

Furthermore, close connection with curvature: 



Holonomy 

We have equivalence 

and  

Let’s parallel transport  around a loop  

Since         , just take globally defined        
and restrict to  

Holonomy group is subgroup of SU(4) that preserves  

Use SU(4) transformation to put         in the form   

Subgroup that preserves          is SU(3) 

Covariantly constant spinor means that X6 has SU(3) holonomy 

just comes back to itself 



Holonomy 

Kahler manifold has U(3) holonomy (subgroup of SO(6) that preserves Kahler form) 

Determinant comes from parallel transporting (3,0) forms 

Another way to see this: we have a global nowhere vanishing section: 

``holomorphic volume form’’ 

Conversely, the  curvature of               is the Ricci form   

So Ricci flat & Kahler        (3, 0) forms are parallel 

SU(3) holonomy/covariantly constant spinor  
 

So SU(3) holonomy     is trivial line bundle 

Again implies                  is trivial line bundle 



Calabi-Yau manifolds 

We define a Calabi-Yau manifold to be a Kahler manifold with  

We have seen that Ricci-flat & Kahler implies  

But converse is not obvious, since Ricci-flatness is differential geometric, 
  and    is merely topological. Nevertheless …. 

Calabi conjecture/Yau’s theorem: 

A compact Kahler manifold with vanishing first Chern class admits a Ricci 
flat metric. This metric is uniquely determined by the complex structure and 
the Kahler class. 

This simplifies life enormously. We don’t need to actually write down a 
Ricci flat metric or a covariantly constant spinor. 

We can get away with checking  



Thus the following conditions on X are all equivalent: 

 X admits a covariantly constant spinor  (  ) 

 X admits a metric of SU(3) holonomy 

 X is Kahler and admits a Ricci flat metric 

 X is a Calabi-Yau manifold (Kahler and                 ) 

Calabi-Yau manifolds 



Examples 

A canonical example of a Kahler manifold is complex projective space 

It is not Ricci flat. 

But holomorphic submanifolds of complex projective spaces are also Kahler. 

By choosing the degree carefully, we can make  

One can show that degree n+1 equation in    

 Quintic three-fold: 

 K3 surface: 

 Elliptic curve: 

Can write explicit polynomial equations. 



Examples 

Another famous example of a Calabi-Yau three-fold: the Tian-Yau manifold 

Coordinates: 

Equations: 



Properties of Calabi-Yau manifolds 

We are now going to discuss some general properties of Calabi-Yau manifolds. 

These properties will also tell us about the  structure of the effective four-
dimensional theory obtained by compactifying on the Calabi-Yau. 

We quickly review some properties of differentiable manifolds, and then 
state their complex analogues. 



Hodge decomposition 

Let’s review some facts about manifolds.  

Complex of differential forms: 

De Rham cohomology: 

Adjoint of exterior derivative: 

Hodge Laplacian: 



Hodge decomposition 

The Hodge decomposition is the following orthogonal decomposition: 

“Harmonic + exact + co-exact” 

In particular for closed forms: 

Every cohomology class has a unique harmonic representative 

On a complex manifold: decomposition by (holomorphic, anti-holomorphic) indices 



Hodge numbers 

Since                    , get a complex 

Define Dolbeault cohomology: 

Dolbeault Laplacian:  
“Hodge numbers” 

Hodge decomposition for  : 

Every class in   has a unique harmonic representative 



Hodge numbers on a Kahler manifold 

On a Kahler manifold it turns out that  

Harmonic forms agree and   preserves (p,q) type 

Complex conjugation: 

Hodge *-isomorphism : 

On a Calabi-Yau with SU(n) holonomy, further have 

Then we are only left with two independent Hodge numbers:  

and  

Further symmetries: 



Hodge diamond of a Calabi-Yau 

Hodge diamond for a Calabi-Yau three-fold with  SU(3) holonomy: 

counts complex structure deformations 

Eg. For quintic three-fold: deform to general degree five polynomial 

There are 101 such deformations 

counts Kahler deformations (deformations of  Kahler form J ) 

Eg for quintic: only “breathing mode” inherited from  

By uniqueness of CY metric, metric deformations are complex structure and 
Kahler deformations. 



Moduli space of a Calabi-Yau 

B-field deformations give further                  real parameters: 

We can economically think of this as deformations of a complexified Kahler form:  

Thus adding B-field deformations has the effect of complexifying  



Bundles 

We’ve discussed the consequences of                       in quite some detail. 

Now it is time to return to the remaining condition: 

This equation can be written as: 

These are called the Hermitian Yang-Mills equations. 

We first discuss the meaning of 

Split the connection into                                  . We have: 

So             is pure gauge,   

We can locally set               by a (complexified) gauge transformation. 



Holomorphic bundles 

Now consider the gauge field on two different patches: 

On the overlap we have 

But we saw that on each patch we could set 

With this choice we will have 

i.e. the transition functions can be chosen holomorphic. 

Thus the gauge field is a connection on a holomorphic bundle. 



Stability 

It turns out that curvature always decreases along holomorphic sub-bundles 

If the connection satisfies      , then                 along holomorphic 
  sub-bundle U is negative (or possibly zero). 

Then if U is a holomorphic sub-bundle of our Hermitian YM bundle V,  
  it is not hard to see that the degree of U must be negative, where 

A bundle V is said to be stable if  

where slope = degree/rank. A bundle is poly-stable if it is a sum of stable bundles 
of the same slope.  

Hermitian-Yang-Mills (HYM) implies poly-stability.  



Stability 

Writing down interesting holomorphic bundles requires some more 
technology, which unfortunately we do not have time for. But we can give one 
canonical example of a Hermitian-Yang-Mills bundle. 

Hermitian-YM implies poly-stability. Remarkably the converse is also true: 

Donaldson-Uhlenbeck-Yau: 

If a vector bundle V on a Kahler manifold is holomorphic and poly-stable, 
then there exists a unique solution to the Hermitian Yang-Mills equations. 

Finding explicit solutions of the HYM equations is practically impossible. 

The above says that we can get away with writing down holomorphic bundles 
and checking the slope of holomorphic sub-bundles. 



Tangent bundle 

We have already seen that  

But this is precisely  

We didn’t need Donaldson-Uhlenbeck-Yau for that. 

Virtually every other interesting example does require DUY.  

A simple example of a HYM bundle is the holomorphic tangent bundle of a 
Calabi-Yau. 



Bundle-valued Dolbeault cohomology 

Since we had         , for holomorphic bundles we can define a generalization  
  of the Dolbeault complex: 

These cohomology groups are just what we need to understand the Kaluza-
Klein reduction of the gauge sector. They have the following interpretation: 

Counts unbroken gauge generators that survive 
in effective 4d theory 

Counts charged matter fields in effective 4d theory 

Let’s illustrate this with an example. 



Example: the standard embedding 

We consider the E8 x E8 heterotic string. 

Take the connection for the first E8 bundle to be the spin connection of X_6. 

Under the maximal subgroup           , the adjoint representation  
  decomposes as: 

At the level of Dolbeault cohomology, this yields 

The 4d spectrum is then: 

Gauge field in  78 , the adjoint of  E_6 

chirals in 27;  

chirals in  

E_6 Grand Unified Theory with                             generations 


