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1. Heterotic compactification

1.1. Kaluza-Klein Ansatz

Today we are going to focus on the heterotic string. All superstring theories, including
the heterotic string, naturally live in ten space-time dimensions. The ten-dimensional
fields are as follows:

gravity multiplet : gMN , BMN , ϕ, ψMα, χβ̇

gauge multiplet : AM , λα (1.1)

We adopted the convention of using capital lettersM , N , P, . . . to denote ten-dimensional
space-time indices 0, . . . , 9. We use α to denote indices in the ten-dimensional positive
chirality spinor representation 16R (or 16 if we want to omit the Majorana condition),
and similarly we use β̇ for the negative chirality 16′

R. The effective ten-dimensional
action is of the form

S =
1

2κ2

∫
d10x

√
|g|e−2ϕ

[
R− 1

3
H2 + 4(∇ϕ)2 + α′

30
Tr(F 2)

]
+ SFermi(ψ, λ, χ,A, g, B, ϕ)

(1.2)
and the field strength H can be defined at least locally as

H = dB + α′ ωL −
α′

30
ωYM . (1.3)

Here ωL and ωYM denote the Chern-Simons forms for the spin and Yang-Mills connections,
respectively.

The symmetry group of this lagrangian is rather big: we have ten-dimensional super-
Poincaré invariance and an E8 × E8 or SO(32) gauge group. We are interested in more
realistic theories with only four-dimensional Poincaré invariance at large distance scales,
and a smaller gauge group. To break the symmetries we will turn on profiles for the
ten-dimensional fields.

A good Ansatz is to consider a ten-dimensional background of the form

M1,3 ×X6 (1.4)

where X6 is a compact six-dimensional real manifold, and M1,3 denotes four-dimensional
Minkowski space. As in the original Kaluza-Klein model, at scales large compared to the
inverse radius of curvature of X6, we effectively reduce to a four-dimensional theory.
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Which manifold should we take for X6? The first possibility we might consider is a
straightforward generalization of the classic Kaluza-Klein Ansatz: we simply take X6 =
T 6. One can do the Kaluza-Klein reduction very explicitly in this case. A toroidal
compactification is often referred to as a Narain compactification, and admits an elegant
formulation in terms of an even self-dual momentum lattice Γ. For the heterotic string
on T 6, the compactification is specified by a Lorentzian lattice Γ6,22. The space of such
lattices (and hence the effective four-dimensional theory) is parametrized by a coset

M = O(6, 22;Z)\O(6, 22;R)/O(6;R)×O(22;R) (1.5)

parametrizing deformations of internal components of gMN , BMN and AM . Such com-
pactifications have a lot of interesting properties, but for our purposes they are a bit
too restrictive. To understand why let us look at the Kaluza-Klein reduction of the
ten-dimensional supersymmetry transformations.

Supersymmetry transformation are parametrized by a spinor ϵα in the 16R. Under
SO(1, 3)× SO(6) a Weyl spinor decomposes as

16R → (2,4) + (2,4) (1.6)

Since a torus is simply a quotient of flat space by some translations, spinors which are
independent of the internal coordinates will be solutions, so we end up with four indepen-
dent supersymmetry transformations in four dimensions. So the N = 1 supersymmetry
in ten dimensions reduces to N = 4 supersymmetry in four dimensions. One cannot get
a chiral theory from breaking N ≥ 2 four-dimensional supersymmetry. This is perhaps a
little too much of a good thing.

In these lectures we want to focus on compactifications to four dimensions with only
N = 1 supersymmetry. There is actually a simple way to get an N = 1 compactification
out of the above: we simply quotient out by a Z3 symmetry which kills three of the four
spinors and leaves one invariant. That is, we take X6 to be an orbifold T 6/Z3. This is
not the route we are going to take here, although there is a definite connection: one can
resolve the fixed points of the Z3 action to get a smooth manifold, of the general type
that we will consider.

1.2. BPS equations

To get a handle on this, we consider the supersymmetry variations of the ten-dimensional
fields. The variation of the fermions is given by

δψM = ∇Mϵ−
1

4
HMABΓ

ABϵ+ (Fermi)2

δλ = FMNΓ
MNϵ+ (Fermi)2
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δχ = ̸ ∇ϕϵ+ 1

24
HMNPΓ

MNP ϵ+ (Fermi)2

(1.7)

There are similar equations for the bosons, of the form δ(Bose) ∼ Fermi × ϵ. However
to preserve the four-dimensional Poincaré symmetry, the Fermi fields must vanish. Then
to get a four-dimensional supersymmetry generator, we have to find a field configuration
for g,B, ϕ on X6 and a spinor ϵ such that δψ = δλ = δχ = 0. We will further assume
that H vanishes and ϕ is constant. The equations become

∇Mϵ = 0, FMNΓ
MNϵ = 0 (1.8)

So let us analyze these equations.

We first decompose ϵ according to (1.6) as

ϵ = ϵ4+ ⊗ ϵ6+ + ϵ4− ⊗ ϵ6− (1.9)

where ϵ4− = ϵ∗4+ and ϵ6− = ϵ∗6+. (It would be more accurate to write ϵ1,3 instead of ϵ4, but
we are saving notation here). Taking M to be an internal index and decomposing into
chiral parts, we get the equation

∇mϵ6± = 0. (1.10)

This equation means that X6 must admit a covariantly constant spinor. By Leibnitz’
rule, such a spinor will have constant norm, and we can normalize such that the norm is
one everywhere. We will assume this in the following.

1.3. Consequences of ∇mϵ6± = 0

The existence of a covariantly constant spinor is a strong condition on X6, and in this
subsection we will spell out the consequences. Suppose that we have such a spinor, and
let us consider

J n
m = i ϵ†6+Γ

n
m ϵ6+ (1.11)

where Γ n
m = 1

2
(ΓmΓ

n − ΓnΓm). With some algebra, one shows that J n
m squares to minus

one (i.e. J n
m J p

n = −δpm). This suggests we should introduce a complex coordinate system
zj, with conjugates z j̄, j = 1, 2, 3, such that J n

m takes the standard form

J k
j = i δkj , J k̄

j̄ = −i δk̄j̄ (1.12)

But this is generally not possible. Although it can be done at any given point, we may
not be able to extend it to an open neighbourhood around that point. Basically if we
could construct such a coordinate system, then we would have a set of tangent vector

5



fields that have eigenvalue +i under J and whose Lie bracket preserves that condition.
This integrability condition corresponds to the vanishing of a tensor (the anti-holomorphic
projection of this Lie bracket), which may be written as the Nijenhuis tensor:

N p
mn = J q

m∇qJ
p

n − J q
m∇nJ

p
q − J q

n ∇qJ
p

m + J q
n ∇mJ

p
q (1.13)

Conversely, the Newlander-Nirenberg theorem states that when this integrability condi-
tion is satisfied, then local holomorphic coordinate systems do exist and we have a complex
manifold.

Now our J n
m is actually covariantly constant (again by Leibnitz’ rule), so we see that

in our case the Nijenhuis tensor vanishes and J n
m defines an integrable complex structure.

In other words, X6 must be a complex manifold.

It will often be convenient to use complex notation. We will generally use the indices
i, j, k when we work in a complex coordinate system. The complexified tangent bundle
splits into a holomorphic tangent bundle spanned by ∂/∂zi and an anti-holomorphic
tangent bundle spanned by ∂/∂z ī. Similarly the complexified cotangent bundle splits into
a holomorphic version spanned by dzi and an anti-holomorphic version spanned by dz ī.
When X is a complex manifold, we will take TX to mean the holomorphic tangent bundle
and T ∗X to mean the holomorphic cotangent bundle. By the same token, we use TX
and T ∗X to denote their anti-holomorphic versions.

We further claim that gmn is a Hermitian metric with respect to the complex structure,
in other words that J p

m J
q

n gpq = gmn. To see this, first note that from (1.11) we get
J p
m gpq = −J p

q gpm, and hence J p
m J

q
n gpq = −J p

q J
q

n gpm = δ p
n gpm = gnm. In holomorphic

coordinates and using (1.12) this is equivalent to

gij = gīj̄ = 0 (1.14)

i.e. g only has mixed components of the form gij̄ and gīj. Next we consider the associated
two-form

Jmn = J q
m gqn (1.15)

We already noted that anti-symmetry follows from (1.11). In complex notation, this is
simply Jij̄ = igij̄ = −Jj̄i and Jij = Jīj̄ = 0. This two-form is closed, again due to
covariance constancy. It is called a Kähler form, and by definition a complex manifold
with a Hermitian metric whose Kähler form is closed is called a Kähler manifold.

From ∇mϵ = 0 it also follows that

[∇m,∇n]ϵ =
1

4
RmnpqΓ

pqϵ = 0 (1.16)

Contracting with Γn and using ΓnΓpq = Γnpq + gnpΓq − gnqΓp, we get that RmnpqΓ
npqϵ −

2RmqΓ
qϵ = 0. But RmnpqΓ

npq = 0 by the first Bianchi identity, so RmqΓ
qϵ = 0 and hence

Rmn = 0, and we find that X6 must be Ricci flat.
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On any Kähler manifold, from ∇J = 0 one finds that J n
mR

m
pqr = J s

pR
n
sqr. Contracting

with gqr and using (1.12) we see that in complex coordinates the only non-vanishing
components of the Ricci tensor are of type (1, 1). In fact with a bit more calculation one
finds that we can locally write

Rij̄ = −∂i∂j̄ log det(g) (1.17)

Now just as we constructed a two-form from gij̄, so too we construct a two-form from

Rij̄, the Ricci form Rij̄dz
i ∧ dz j̄. It is closed by virtue of the second Bianchi identity, and

hence defines a cohomology class, the first Chern class of our Kähler manifold:

c1(TX) =
1

2π
[Rij̄dz

i ∧ dz j̄] ∈ H2
dR(X6,R) (1.18)

The first Chern class is usually defined slightly differently, but one can show it is equivalent
to the above. Since we found that X6 must be Ricci flat, c1(TX) vanishes. A Kähler
manifold with c1(TX) = 0 is called a Calabi-Yau manifold. So we found that our X6

should be a Calabi-Yau three-fold. Note that for complex manifolds we typically count
the complex rather than the real dimension.

The condition that X6 is Calabi-Yau is thus clearly necessary to solve the system
∇mϵ6± = 0, but could it also be sufficient? It turns out that it is, but before we get
to it, we can gain a better understanding by looking at this from the point of view of
holonomies.

Recall that given a tangent vector v ∈ TpM and a loop γ(t) based at p, we can
parallel transport v around the loop and get another vector v′ ∈ TpM by solving the ODE
∇γ̇(t)v(t) = 0 along γ(t). On a Riemannian manifold they are related as v′ = Rv for a
rotation R ∈ SO(d). By considering general loops, these rotations generate a subgroup
H ⊂ SO(d), the holonomy group. In general, if there is no extra structure, then H is all
of SO(d). If the loop is very small, enclosing an infinitesimal area element δAmn, then by
a local calculation one finds that the holonomy around the loop is δ q

p + δAmnR q
mnp , so

curvature and holonomy are closely related.

We can similarly parallel transport spinors. We have Spin(6) = SU(4), and the
positive chirality spinor representation of SO(6) is identified with the fundamental repre-
sentation of SU(4), usually denoted as 4. Now a covariantly constant spinor comes back
to itself after parallel transport (since clearly ∇mϵ = 0 implies ∇γ̇(t)ϵ = 0). Using an
SU(4) transformation, we can write this spinor in the form

(0, 0, 0, ∗) ∈ 4 (1.19)

Thus the stabilizer, the subgroup of SU(4) that fixes such a spinor, is SU(3) ⊂ SU(4),
acting on the first three components. So the existence of a covariantly constant spinor is
the statement that there must exist a metric with SU(3) holonomy on X6.
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On a Kähler manifold the holonomy reduces to U(3) = SU(3) ×Z3 U(1). This is the
subgroup of SO(6) that preserves the Kähler form. The U(1) is the determinant of U(3).
Now vectors in the cotangent bundle transform as the 3 of U(3), so the top exterior power
Λ3T ∗X, whose sections are locally of the form

dz1 ∧ dz2 ∧ dz3 (1.20)

transforms as the determinant. The top exterior power of T ∗X appears so often that it
has a special name; it is also called the canonical bundle and denoted as KX . So the
U(1) part of the U(3) holonomy on a Kähler manifold comes from parallel transporting
(3, 0) forms, and by the relation between holonomy and curvature, the holonomy reduces
to SU(3) when the curvature of KX = Λ3T ∗X vanishes.

Indeed, we can use our covariantly constant spinor to write down a global section:

Ω3,0
ijk = ϵT6+Γijkϵ6+ (1.21)

This is referred to as the ‘holomorphic three-form’ or sometimes the ’holomorphic volume
form’. It is nowhere vanishing, so it explicitly trivializes Λ3T ∗X, and hence c1(Λ

3T ∗X) =
−c1(TX) = 0, as we derived previously. In fact we can calculate the curvature ofKX . It is
given by RmnpqJ

q
r g

pr, which yields the Ricci form Rij̄dz
i ∧ dz j̄, tying everything together.

The conclusion is that we will have solved∇mϵ6± = 0 if we can show that the holonomy
is reduced to SU(3), which will be true if we can show that our Kähler manifold admits a
Ricci flat metric. Now finding a Ricci flat metric explicitly is extremely hard – effectively
we have to solve a complicated non-linear PDE of the form Rij̄ ∼ ∂i∂̄j̄ log det g = 0.
Checking the necessary conditions that X is a Kähler manifold with c1(TX) = 0 would
clearly be much simpler, but it seems like a weaker condition, a topological condition
instead of a differential geometric condition. This is where a famous conjecture of E.
Calabi comes in: the claim is that the vanishing of c1(TX) on a Kähler manifold is also
sufficient for the existence of Ricci flat metrics. The conjecture was settled in a Fields
Medal-worthy theorem by S.T.Yau:

A compact Kähler manifold X with c1(TX) = 0 admits a Ricci flat metric.
The metric is uniquely determined by the complex structure and the Kähler
class.

In honour of this theorem, such Ricci flat metrics are called Calabi-Yau metrics.

Let us summarize what we have seen. We were looking for compactifications of the
heterotic string to four dimensions with N = 1 supersymmetry. Using the Kaluza-Klein
Ansatz M1,9 = M1,3 ×X6, we found that X6 should admit a covariantly constant spinor.
We then further saw that all the following statements about X6 are equivalent:

1. ∇mϵ6+ = 0 (existence of a covariantly constant spinor);
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2. X6 admits a metric of SU(3) holonomy;

3. X6 is a Kähler manifold with a Ricci flat metric;

4. X6 is a Calabi-Yau manifold (a Kähler manifold with c1(TX) = 0).

In particular, to construct examples we can use formulation number four, which is the easi-
est to deal with. In order to satisfy our BPS equations we still have to solve FMNΓ

MNϵ = 0.
We will set F = 0 for now, and get back to this later.

1.4. Examples of Calabi-Yau manifolds

At this stage it is good to look at some examples. Everybody’s favourite example of
a Kähler manifold is complex projective space: CPn = (Cn\{0})/C∗, where the C∗ acts
as

(z0, . . . , zn) ∼ (λz0, . . . , λzn), λ ∈ C∗ (1.22)

There is a natural metric called the Fubini-Study metric. In the patch z0 ̸= 0 it is given
by

gij̄ = ∂i∂̄j̄ log

(
1 +

n∑
k=1

|zk/z0|2
)

(1.23)

with analogous expressions in the other patches zk ̸= 0. It’s straightforward to check
that the associated Kähler form is closed. However the metric is not Ricci flat. Indeed,
ΛnT ∗CPn is a non-trivial line bundle, often denoted as OCPn(−n − 1). (This notation
indicates it has local sections of the formQd(z)/Pd+n+1(z), whereQ and P are polynomials
of the indicated degree.)

But submanifolds cut out by algebraic equations are also Kähler manifolds. They are
clearly complex manifolds and the pull-back of the Fubini-Study form is still closed. So
subvarieties (solutions of polynomial equations) in projective spaces are a natural factory
to produce additional Kähler manifolds. By carefully choosing the degree of the equations,
we can make examples with c1(TX) = 0.

One of the most famous examples of this kind the quintic hypersurface in CP4. Its
equation is given by

P5 = z50 + z51 + z52 + z53 + z54 = 0 (1.24)

and deformations thereof. It’s not hard to show that c1(TX) = 0, either by a standard
Chern class computation or by writing down the holomorphic (3, 0) form.1 More generally,
an equation of degree n + 2 in CPn+1 yields a Calabi-Yau n-fold. For n = 2 we get the

1Eg. consider the sequence 0 → TX → TCPn |X → NX → 0, and let c1(OCPn(1)) = H denote
the hyperplane class. If X is given by an equation of degree d, then c1(NX) = dH|X , and we have
c1(TCPn) = c1(OCPn(n + 1)) = (n + 1)H. It follows that c1(TX) = (n + 1 − d)H|X , which vanishes if
d = n+ 1.
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K3 surface (where ‘surface’ is used in the complex sense; it is a four-manifold). For n = 1
we get the elliptic curve (i.e. the two-torus T 2).

By analogy with the Narain story, we would like to understand deformations we can
do that preserve the equations we have just studied, i.e. the Calabi-Yau conditions.
Such deformations are called moduli and manifest themselves as scalar fields in the four-
dimensional effective theory. The N = 1 supersymmetry pairs up these scalar fields with
chiral fermions into chiral multiplets.

Let’s see in how many ways we can deform the equation of a quintic. Naively we can
write (

4 + 5
5

)
= 126 (1.25)

different monomials of degree five on CP4. However, adding multiples of P5 yields the
same space, and we further have to mod out by the PGL(5,C) coordinate transformations,
of which there are 24. So the equation of a quintic depends on 126−1−24 = 101 complex
parameters, or ‘moduli.’

Counting the deformations of the complex structure this way can be a little hazardous.
It happens to work for the quintic, but not in general. It’s interesting to do an analogous
count for the K3 surface, realized as a quartic in CP3:

P4 = z40 + z41 + z42 + z43 = 0 (1.26)

The same type of count gives us 35 − 1 − 15 = 19 complex deformations of the quartic.
However using the results of the next subsection it is not hard to see that the K3 surface
actually lives in a 20-dimensional family, as apparently first recognized by Kodaira. The
remaining deformation cannot be realized by the embedding.

Apart from this, the quintic has a “breathing mode” inherited from CP4. This doesn’t
change the equation of the quintic, in other words it doesn’t change the complex structure,
but it does change the metric since we are changing volumes. Such a parameter is called
a ‘Kähler modulus’ since we can view it as changing the Kähler form J . In the same
way, we can use this two-form not to deform the metric, but to deform the B-field. It is
natural to combine the two in a single complex two-form

JC = J + iB (1.27)

called the complexified Kähler form, it being understood that deformations of the imagi-
nary part correspond to B-field deformations.

Another famous example of a Calabi-Yau is the Tian-Yau manifold, which is a sub-
manifold of CP3 × CP3. Using coordinates zi for the first CP3 and wj for the second
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CP3, the Tian-Yau manifold is defined by the equations

3∑
i=0

ziwi = 0,
3∑

i=0

z3i = 0,
3∑

i=0

w3
i = 0 (1.28)

and deformations thereof. It has 23 complex structure deformations and 14 Kähler defor-
mations. Only two of the Kähler deformations can be realized in CP3 ×CP3.

1.5. Moduli and Hodge diamond of a Calabi-Yau three-fold

What we saw for the quintic is indicative of the general story. To see this, let us
describe some additional properties of Kähler manifolds.

For any manifold we can define the complex of differential forms

0 → Ω0(M,R)
d→ · · · d→ Ωd(M,R) → 0 (1.29)

where d2 = 0. This allows us to define a set of topological invariants called de Rham
cohomology classes:

Hk
dR(M,R) = {closed k− forms/exact k− forms} (1.30)

where a form α is closed if dα = 0, and exact if α = dβ for some form β. The dimensions
of these cohomology groups are called the Betti numbers, and denoted by bk.

The next item we want to review is a fundamental result known as the Hodge de-
composition. First, by contracting with the ε-tensor and the metric one can define an
isomorphism ∗ : Ωk(M,R)→ Ωd−k(M,R). Explicitly it is given by

(∗α)i1...id−k
=

1

k!
ε j1...jk
i1...id−k

αj1...jk (1.31)

Using the ∗-operator we can conveniently express the L2-inner product on forms as

⟨α, β⟩ =

∫
α ∧ ∗β. (1.32)

We define the adjoint of d by
∫
a ∧ ∗dβ =

∫
d∗α ∧ ∗β for any forms α, β. Integrating by

parts and using ∗2 = (−1)k(n−k) one finds that d∗ = − ∗ d∗. The Hodge Laplacian on
differential forms is then defined as

∆d = dd∗ + d∗d. (1.33)
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Since ⟨α,∆α⟩ = ⟨dα, dα⟩+ ⟨d∗α, d∗α⟩, a form α is harmonic if and only if dα = d∗α = 0.
We denote by Hk the harmonic forms of degree k. Then the Hodge decomposition is given
by the following orthogonal decomposition:

Ωk(M,R) = Hk ⊕ dΩk−1(M,R)⊕ d∗Ωk+1(M,R) (1.34)

This decomposition has the following important consequence. Let us consider a general
k-form ω and decompose it into its harmonic, exact and co-exact pieces:

ω = αH + dβ + d∗γ (1.35)

Now suppose that we are interested in closed forms. Then 0 = dω = dd∗γ. It follows that
⟨d∗γ, d∗γ⟩ = ⟨γ, dd∗γ⟩ = 0 and hence d∗γ = 0. Thus for closed forms we have the simpler
decomposition

ω = αH + dβ (1.36)

Descending to cohomology, we see that every cohomology class contains a unique har-
monic representative. The spectrum of harmonic forms is completely determined by the
cohomology of the underlying manifold. From d∗ = −∗d∗ we also see that the ∗-operator
commutes with the Laplacian and hence descends to harmonic forms and to cohomology.
Thus we have Hk(M,R) ≃ Hd−k(M,R), which is the manifestation of Poincaré duality
in this language.

Now we would like to discuss an analogue of this story for complex manifolds. On a
complex manifold it is natural to consider complex valued forms and complex valued de
Rham cohomology classes. We can then further try to decompose such forms into forms
which have a fixed number of p holomorphic and q anti-holomorphic indices. We denote
such forms by Ωp,q(X,C) and refer to (p, q) as the type of the form, which is a refinement
of the degree.

The exterior derivative can also be decomposed as

d = ∂ + ∂̄ (1.37)

where ∂ : (p, q)→ (p+ 1, q) and ∂̄ : (p, q)→ (p, q + 1). From d2 = 0 and by preservation
of degrees one finds that ∂̄2 = 0, so we could use ∂̄ to define cohomology groups. For each
p we consider the complex

0 → Ωp,0(X,C)
∂̄→ · · · ∂̄→ Ωp,n(X,C) → 0 (1.38)

and denote the corresponding cohomology by Hp,q

∂̄
(X) or simply by Hp,q(X). The dimen-

sions of Hp,q as a vector spaces are denoted by the Hodge numbers hp,q.
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On complex forms, the Hodge ∗-operator is defined to include complex conjugation
after applying the ordinary ∗-operation. It is therefore sometimes denoted as ∗̄, but we
will leave this implicit. Analogous to the de Rham case, we can now define a Hermitian
metric on the space of complex forms and define an adjoint ∂̄†, and an associated Laplacian
∆∂̄ = ∂̄∂̄† + ∂̄†∂̄. There is a Hodge decomposition for the ∂̄-complex:

Ωp,q(X,C) = Hp,q + ∂̄Ωp,q−1(X,C) + ∂̄†Ωp,q+1(X,C) (1.39)

and as before, every class in Hp,q(X) has a unique harmonic representative.

On a Kähler manifold one gets some further nice properties, which imply additional
constraints on the hp,q. In particular one finds that the d-Laplacian and the ∂̄-Laplacian
are essentially the same, namely we have ∆d = 2∆∂̄. It follows that the d-Laplacian
commutes with the projection on (p, q) components, and the resulting harmonic forms
are those of the ∂̄-Laplacian. On a Kähler manifold then we get the decomposition

Hk
dR(X,C) =

∑
p+q=k

Hp,q(X) (1.40)

By complex conjugation we have hp,q = hq,p, and from the ∗-isomorphism we have hp,q =
hn−p,n−q. By taking powers of the Kähler form one further finds that hp,p > 0 for any p.

Let us consider Calabi-Yau three-folds in particular, and try to eliminate the redun-
dancy in the Hodge numbers using the above relations. We can also use that h3,0 = 1 on
a Calabi-Yau three-fold since there is a unique holomorphic three-form. Further, one may
show that harmonic (i, 0) forms on a Kähler manifold are covariantly constant. Briefly,
one uses a Bochner-Weitzenböck identity

∆∂̄α = −∇†∇α +Rj̄
ī
ıj̄α (1.41)

where ∇†∇α is the Laplacian constructed from the covariant derivative, ıj̄ denotes con-

traction with ∂/∂z j̄, and Rīj is the Ricci curvature. Then for harmonic (i, 0) forms we
have 0 =

⟨
α,∇†∇α

⟩
= ⟨∇α,∇α⟩ and so such forms are covariantly constant as promised.

(On a Calabi-Yau this even works more generally since the Ricci curvature vanishes).
Since harmonic forms of type (1, 0) transform in the 3 of the SU(3) holonomy, if h1,0

were non-zero then we would have a state in the 3 which would need to be preserved, and
so the holonomy would have to be reduced to SU(2) or even smaller. This would mean
that there is another covariantly constant spinor and hence an enhanced supersymmetry
in the compactified theory. By a Calabi-Yau three-fold we will usually mean a ‘proper’
Calabi-Yau for which the holonomy group is strictly larger than SU(2). For such ‘proper’
three-folds then we must have h1,0 = 0, and by similar reasoning we also find h2,0 = 0.

Putting all this information together, it follows that the Hodge diamond takes the
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following form

h3,3

h3,2 h2,3

h3,1 h2,2 h1,3

h3,0 h2,1 h1,2 h0,3

h2,0 h1,1 h0,2

h1,0 h0,1

h0,0

=

1
0 0

0 h1,1 0
1 h2,1 h2,1 1

0 h1,1 0
0 0

1

(1.42)

After taking all the constraints into account, there are really only two independent num-
bers left, h1,1(X) and h2,1(X).

Next we want to study deformations of g and B that preserve the equations we have
just studied. We first consider deformations of the metric, δgmn. We can split these into
two types of deformations according to the type of the indices, δgij̄ and δgij.

We may view deformations δgij̄ as infinitesimal deformations of the Kähler form Jij̄.

Recall that there exists a unique Calabi-Yau metric for a given Kähler class, so δgij̄dz
i∧dz j̄

defines itself a cohomology class of type (1, 1). Such deformations are called Kähler moduli
and their number is counted by h1,1(X). Again we can complexify this by pairing with
deformations of the B-field.

We can view δgīj̄ as deformations of the complex structure, because in the original
complex structure it gives a (0, 2) component to the deformed metric, so we will have to
deform the complex structure to make the metric of type (1, 1) again. Alternatively let
us consider µj

ī
= δgīk̄g

k̄j, which is a (0, 1) form valued in the tangent bundle TX. We can
use this to deform the Dolbeault operator

∂̄ī → ∂̄′ī = ∂̄ī + µj
ī
∂j (1.43)

and hence the definition of complex coordinates. In order for this to be consistent we
need ∂̄′2 = 0, which for infinitesimal µ gives us ∂̄µ = 0. Furthermore, deformations of
the form µj

ī
= ∂̄īv

j can be undone by a non-holomorphic coordinate transformation, so
do not really correspond to complex structure deformations. This means that µ defines a
Dolbeault cohomology class in H1(TX) (defined in the next subsection).

Since I haven’t yet defined Dolbeault cohomology of holomorphic bundles, let me map
it to something more recognizable. On a Calabi-Yau three-fold we can contract µj

ī
with

the holomorphic (3, 0) form, to get the closed form ωkl̄i = µj
ī
Ω3,0

jkl of type (2, 1). Since Ω
3,0

is holomorphic and nowhere vanishing, this gives an isomorphism between H1(TX) and
H2,1(X). Thus the number of such deformations is counted by h2,1(X).

A related way to think about this is as follows. As we deform the complex structure of
the Calabi-Yau, the holomorphic (3, 0) form will no longer remain of type (3, 0) but pick
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up pieces of mixed type. Since tangent vectors to the complex structure moduli space are
given by µj

ī
, to first order the holomorphic (3, 0) form is going to deform as

Ω3,0 → Ω3,0 + µ · Ω3,0 (1.44)

But as we saw, µ · Ω3,0 corresponds to (2, 1) forms which are counted by h2,1(X).

The fact that infinitesimal complex structure deformations of a complex manifold are
counted by H1(TX) is a general result. On a Calabi-Yau manifold these infinitesimal
deformations can actually be promoted to finite deformations. This is not completely
obvious, eg. the first obstruction [µj

ī
, µl

k̄
] lies in H2(TX) ≃ H2,2(X) which is non-zero

on a Calabi-Yau, so one has to actually check that this and higher order obstructions all
vanish, and then appeal to results in deformation theory to argue that one gets a finite
deformation. This was shown independently by Tian and Todorov.

We see that the two types of deformations, complex and Kähler, precisely ‘use up’
the independent parameters in the Hodge diamond. For the quintic we have h1,1(X) = 1,
counting the real dimension of the Kähler moduli space, and h2,1(X) = 101, counting
the complex dimension of the complex structure moduli space. Thus for the metric
deformations the moduli space is given by

MCY = Mcomplex ×MKaehler (1.45)

To this we want to add deformations of theB-field. Imposing the gauge condition d∗B = 0,
the equations of motion for B simply reduce to

d∗dB = ∆dB = 0 (1.46)

So deformations of B are described by harmonic two-forms, which are counted by h1,1(X).
Adding the B-field deformations has the effect of complexifyingMK .

Note that on a K3 surface we can contract a class in H1(TX) with the holomorphic
two-form to get a cohomology class in H1,1(K3). The Hodge diamond for the K3 surface
turns out to be

1
0 0

1 20 1
0 0

1

(1.47)

In particular we have h1,1(K3) = 20, so we see that the K3 surface lives in a twenty-
dimensional complex family, as promised previously, and not in a nineteen-dimensional
family.
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We have arrived at a partial generalization of the Narain story, describing deformations
of the metric and B-field. The Narain space also included deformations of the gauge field;
we will get to these in the next subsection.

1.6. Vector bundles, stability and Dolbeault cohomology

Now we need to talk about the remaining equation FmnΓ
mnϵ = 0. Above we tem-

porarily set F = 0, but if h1,0 = 0 (more precisely if π1(X6) = 0) this means we won’t find
any non-trivial solutions. So if we want to break the ten-dimensional E8 ×E8 or SO(32)
gauge symmetry, we have to allow for F ̸= 0. Not only that, setting F to zero is not even
consistent with the tadpole cancellation condition, dH ∼ Tr(R ∧R)− Tr(F ∧ F ).

On a Kähler manifold, the equation FmnΓ
mnϵ = 0 can be broken up into two equations:

F 0,2 = 0, gij̄Fij̄ = 0 (1.48)

On a Calabi-Yau, a quick way to see this is to use ϵT6 Γ
ī1...̄inϵ6 ∼ Ωī1...̄in to get the first

equation, and iϵ†6Γµνϵ6 ∼ Jµν to get the second. On a four-dimensional Kähler manifold
these equations say that the field strength is anti-self dual (ASD), so we may think of this
as a generalization of the instanton equations. They are called the Hermitian Yang-Mills
equations. Let us discuss them in turn.

Since F 0,2 = 0, the (0, 1) part of the connection is pure gauge

A0,1 = Λ−1 · ∂̄Λ (1.49)

and can be set to zero by a gauge transformation. You must remember here that when we
switched to complex coordinates we made our gauge fields complex. Eg. if we started with
a U(N) gauge group, then A0,1 takes values in GL(N,C), and the gauge transformation
Λ used to set A0,1 to zero is also valued in GL(N,C). For otherwise we could apply the
same argument to A1,0 simultaneously and conclude that the bundle is trivial, which is
not true in general.

Now let’s consider the connection Ã0,1 on a different patch. On the overlap we would
have

Ã0,1 = ΛA0,1Λ−1 − ∂̄Λ · Λ−1 (1.50)

We saw that in their own patches, we could set A0,1 and Ã0,1 to zero by a suitable
(complexified) gauge transformation. So the condition F 0,2 = 0 says that it is possible to
choose transition functions such that ∂̄Λ = 0, i.e the transition functions are holomorphic.
A bundle which admits holomorphic transition functions is a holomorphic vector bundle.

By analogy with the Riemannian connection on the tangent bundle we will want the
connection to be compatible with a choice of Hermitian metric on our bundle V , in order
to reduce the structure group back from the complexified gauge group to the original
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group (i.e. from GL(N,C) to U(N) in the example given previously). Although not
necessary, as we saw above it is frequently convenient to further require the connection
to be “compatible with the holomorphic structure,” which means that we require that
A0,1 = 0. It’s not hard to show that given a complex structure and a Hermitian metric
on V , these two conditions determine a unique connection on V (see [2], pg. 73). It is
sometimes called the Chern connection.

To better understand the second equation, let us first consider a holomorphic subbun-
dle U ⊂ V . The Hermitian metric on V induces a Hermitian metric on U , and one can
compute the corresponding curvatures (see [2], pg. 79). Interestingly one finds that

FU ≤ FV |U (1.51)

in the sense that when contracted with holomorphic tangent vectors vi, the difference
(FV |U − FU)ij̄v

ivj̄ is positive semi-definite at every point on X. One gets equality only
when V splits as a direct sum of holomorphic bundles. In other words in contrast to real
geometry, in complex geometry curvature is always non-increasing along holomorphic
subbundles.

This is particularly interesting when the connection on V satisfies the Hermitian Yang-
Mills equations, since then the ‘Kähler trace’ gij̄FU ij̄ should be negative semi-definite at

every point on X, and similarly for then J ∧ J ∧FU ∼ gij̄FU ij̄J ∧ J ∧ J . Taking the trace
over gauge indices and integrating, we find that the degree of U , defined as

deg(U) =
1

2πvol(X)

∫
X

J ∧ J ∧ Tr(FU) (1.52)

is also negative. Since dJ = 0 the degree doesn’t depend on the full curvature but only
on the cohomology class of Tr(FU). Up to a factor of 2π this is the first Chern class c1(U)
of U , a topological quantity.

Using the Chern connection, the equation J ∧ J ∧FV = 0 is really a complicated non-
linear PDE for the Hermitian metric on V . Apart from its dependance on Kähler moduli,
the degree of a bundle on the other hand is a topological quantity, and as such requiring
the degree of every holomorphic sub-bundle to be negative seems like a much weaker
condition than the Hermitian Yang-Mills equations. Nevertheless, somewhat analogous
to the problem of finding Calabi-Yau metrics, it turns out that this condition is sufficient.
Let us make some definitions.

A stable vector bundle is defined as a vector bundle for which any holomorphic sub-
bundle has a smaller slope:

U ⊂ V ⇒ µ(U) < µ(V ) (1.53)

where the slope is defined as

µJ(V ) =
degree(V )

rank(V )
(1.54)
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A bundle is poly-stable if it is a sum of stable bundles of the same slope. Note that for a
bundle with a simple gauge group, the degree is always zero.

We’ve argued that a solution of the Hermitian Yang-Mills equations requires a holo-
morphic poly-stable bundle, at least for simple gauge groups (in the non-simple case the
Hermitian Yang-Mills equations should be slightly generalized by adding a term propor-
tional to the identity matrix). As we hinted, the converse is also true, and this is a difficult
theorem of Donaldson-Uhlenbeck-Yau:

If a vector bundle V on a compact Kähler manifold is holomorphic and poly-
stable, then there exists a unique solution to the Hermitian Yang-Mills equa-
tions.

Of course by unique we mean unique up to conventional gauge transformations.

So why is this a big deal? The beauty of this theorem is that poly-stability is an
algebro-geometric condition, so we can use purely algebraic methods to construct lots of
examples. In spirit it is similar to Yau’s theorem on Calabi-Yau manifolds: it is very
hard to write down Ricci flat metrics on a Kähler manifold explicitly, since it corresponds
to the solution of a highly non-linear PDE, but a simple criterion (vanishing of the first
Chern class) guaranteed us the existence of a solution of this PDE. In the present case,
we can get away with checking the slope of holomorphic sub-bundles.

Furthermore we generally need to know very little about the actual solution; we will
see that the massless fields in the effective four-dimensional theory can be studied with
quasi-topological methods, much like we did for the moduli of the Calabi-Yau metric.

A canonical example of a stable bundle on a Calabi-Yau is the tangent bundle TX.
Rather than use the above result, in this special case we can show it more directly as
follows: since ∇mϵ = 0 we also have 0 = [∇m,∇n]ϵ =

1
4
RmnpqΓ

pqϵ = 1
4
RpqmnΓ

pqϵ, which is
precisely FpqΓ

pqϵ = 0 for the tangent bundle. Not only that, it also automatically satisfies
the tadpole cancelation condition if we take the second E8 bundle to be trivial, since then
Tr(F ∧ F ) = Tr(R ∧R) exactly. We will come back to the tangent bundle in a moment.

There are at least two concrete ways to discuss many more examples, monads and
spectral cover constructions. They rely on Donaldson-Uhlenbeck-Yau to prove the exis-
tence of a solution to the Hermitian Yang-Mills equations. Unfortunately, lack of time
precludes us from discussing them.

Now given a solution to the Hermitian Yang-Mills equations, how do we derive the
effective four dimensional theory obtained by Kaluza-Klein reduction of the gauge sector?
Can we do this without knowing the explicit solution? Given what we have seen earlier,
you should expect that this is possible. Massless four-dimensional fields have some kind
of harmonic form as internal wave-function, and harmonic forms tend to express quasi-
topological information. We will now turn to Dolbeault cohomology and see that this
expectation is correct.

Since ∂̄2 = 0 (or ∂̄2A = F 0,2 = 0, but we already set A0,1 = 0 earlier), on holomorphic
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bundles we can define a complex which is analogous to the de Rham complex:

0 → Ω0,0(X6, V )
∂̄→ · · · ∂̄→ Ω0,n(X6, V ) → 0 (1.55)

Concretely, these are forms with anti-holomorphic indices and which take values in V .
We can then consider the associated cohomology groups

Hp(X6, V ) = {∂̄−closed (0, p) forms}/{∂̄−exact (0, p) forms} (1.56)

which is called Dolbeault cohomology. Taking V to be ΛqT ∗X we get back the Hodge
numbers we discussed earlier

Hq,p(X) = Hp(X,ΛqT ∗X) (1.57)

but Dolbeault cohomology exists more generally; it makes sense for any holomorphic
bundle. Note that these Dolbeault cohomology groups are independent of the Hermitian
metric on the bundle; they depend only on the holomorphic data.

As we will now see, these bundle valued Dolbeault cohomology groups are just what
we need to describe the Kaluza-Klein reduction of the gauge sector. We put a complex
structure on the whole 10d space-time (including the uncompactified dimensions) and
focus on the (0, 1) part A0,1, since the (1, 0) part may be recovered by Hermitian con-
jugation. Let us decompose A0,1 into its classical profile A0,1

cl and the fluctuations δA0,1

around it. We actually used gauge transformations to set the profile A0,1
cl = 0 earlier but

we temporarily left it for clarity. Now we can decompose the fluctuations into eigenmodes
of the internal ∆∂̄-Laplacian, resulting in an expansion of the form

δA0,1 =
∑
I

AI
µ̄dx

µ̄ ∧ ω(0),I +
∑
J

θJ ω(1),J (1.58)

Note that if ∂̄Aω(0) ̸= 0, then ω(1),I ≡ ∂̄Aω(0),I is also an eigenmode of the Laplacian
with the same eigen-value. This suggest that such pairs (ω(0),I , ω(1),I) give rise to a sin-
gle physical field in four dimensions. Indeed let us now apply a ten-dimensional gauge
transformation A0,1 → A0,1 + ∂̄AΛ and decompose into eigenmodes, Λ = λIω(0),I . Then
we find

AI
µ̄ → AI

µ̄ + ∂µ̄λ
I , θI → θI + λI (1.59)

We learn a couple of things. The ten-dimensional gauge symmetry is spontaneously broken
by the compactification, and the pseudo-scalars θJ describe the longitudinal components
of massive Kaluza-Klein gauge bosons AI

µ. Only gauge transformations of the form Λ =
λIω(0),I with ∂̄Aω(0),I = 0 survive as unbroken gauge symmetries. But sections ω(0),I such
that ∂̄Aω(0),I = 0 are by definition generators of degree zero Dolbeault cohomology. So
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we conclude that generators of H0(X, V ) precisely count the unbroken four dimensional
gauge symmetries. Taking commutators of global holomorphic sections gives a natural
Lie algebra structure

H0(X,V )×H0(X, V ) → H0(X,V ) (1.60)

which yields the Lie algebra of the four-dimensional gauge group. From our expansion we
also see that the AI

µ corresponding to a generator of H0(X, V ) do not have a longitudinal
component, as expected.

Now let’s try to deform the profile of the internal components of the gauge field,
A0,1

cl → A0,1
cl + δA0,1. In order for this deformation to preserve the condition F 0,2 = 0,

we need ∂̄AδA
0,1 = 0. Furthermore deformations of the form δA0,1 = ∂̄Aλ are not hon-

est deformations but (broken) gauge symmetry transformations. Therefore infinitesimal
deformations of a holomorphic bundle are described precisely by H1(X,V ). As before de-
formations give rise to massless bosonic fields in the four-dimensional effective theory, and
the unbroken four-dimensional N = 1 supersymmetry pairs them up with chiral fermions
into chiral multiplets. Again taking commutators there is a natural action

H0(X,V )×H1(X, V ) → H1(X,V ) (1.61)

which means that the four-dimensional chiral fields live in certain representations of the
unbroken gauge group. Depending on whether they are charged under the unbroken gauge
symmetry, we call them either moduli or four-dimensional matter fields.

Let us briefly list some additional things that one can try to understand. We mentioned
previously that infinitesimal complex and Kähler moduli on a Calabi-Yau can be promoted
to finite deformations. For bundle deformations the situation is more complicated, but it
can be encoded in terms of the holomorphic Chern-Simons functional

W =

∫
X6

Ω3,0 ∧ ωYM(A) (1.62)

which gives the superpotential of the effective four-dimensional N = 1 theory. Another
interesting story is that although the individual Kaluza-Klein modes in (1.58) are hard
to understand, a certain combination of them (the holomorphic Ray-Singer torsion) is
again quasi-topological and turns out to describe loop corrections to the four-dimensional
gauge couplings. Further, since the stability condition depends on Kähler moduli there
is an interesting interplay that results in the phenomenon of stability walls in the Kähler
moduli space, where solutions of the Hermitian Yang-Mills equations come into or go out
of existence. These are slightly more advanced topics that we cannot go into here.

To compare with the Narain story, we have now seen that infinitesimal deformations
of g, B and A on X are described by the following cohomology groups:

H1(TX), H1(T ∗X), H1(X, V ) (1.63)

20



We can combine this all into a single formula by considering the bundle TX⊕T ∗X⊕V . If
you think about how the vertex operators are built from world-volume fields, this perhaps
will not seem so surprising.

1.7. The standard embedding

As we saw above, the spin connection is a Hermitian Yang-Mills connection, so let us
illustrate all this wonderful technology for the case where we embed the tangent bundle
in our E8 bundle. The tangent bundle has SU(3) holonomy, so we embed the spin
connection of the Calabi-Yau metric in the E8 connection using the maximal subgroup
SU(3)× E6 ⊂ E8. Under this subgroup, the adjoint representation of E8 decomposes as

248 = (3,27) + (3,27) + (1,78) + (8,1) (1.64)

and therefore at the level of Dolbeault cohomology we get

Hp(X,VE8) = Hp(TX)⊗ 27+Hp(T ∗X)⊗ 27

+Hp(OX)⊗ 78+Hp(End0(TX))⊗ 1 (1.65)

To relate this to (1.64), TX corresponds to the 3 representation of the SU(3) holonomy,
and T ∗X corresponds to the 3. The trivial line bundle OX corresponds to the singlet 1 of
SU(3). Further, End(TX) = T ∗X⊗TX corresponds to the 3⊗3 = 8⊕1, and End0(TX)
corresponds to the projection on the 8.

We first consider the four-dimensional gauge fields. According to our previous dis-
cussion, they come from Hp(X, VE8) with p = 0. Since H0(OX) = H0,0(X) is one-
dimensional, we find a gauge field in the 78, the adjoint of E6. We claim that we do not
get anything from the other pieces for p = 0. Indeed a generator of H0(TX) corresponds
to a global holomorphic section s : OX → TX, which embeds OX as a holomorphic
subbundle of TX. But deg(OX) = deg(TX) = 0, so this would violate the stability
condition. If a bundle associated to a faithful representation of the structure group is
stable, then bundles associated to other faithful representations of the structure group
are also stable. In the present case this means T ∗X and End0(TX) are also stable, and
by the same type of argument we see that for any higher rank stable bundle the degree
zero Dolbeault cohomology vanishes (’no symmetries’). Therefore as claimed that is all
we get from H0(X,VE8). We conclude that the effective four-dimensional theory has an
E6 gauge group.

Next we consider the four-dimensional matter fields, which come from Hp(X,VE8)
with p = 1. From H1(TX) ⊗ 27 we find h1(TX) = h2,1(X) chirals charged in the 27 of
E6. Similarly there are h1,1(X) = h1(T ∗X) chirals charged in the 27 of E6. We further
have H1(OX) = H0,1(X) = 0. Finally, H1(End0(TX)) counts the deformation moduli of
the bundle, which preserve the unbroken E6 gauge group (since they live in the singlet of
E6), but take the connection away from the standard embedding.
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Putting this together, we see that the effective four-dimensional theory is an E6 Grand
Unified Theory, plus a hidden sector with whatever descends from the second E8. The
net number of chiral generations is given by

N27 −N27 = h1,2(X)− h1,1(X) = −χ(X)/2 (1.66)

where χ(X) is the Euler character of X. For the Tian-Yau manifold this gives nine
generations, and one can actually mod out this manifold by a discrete symmetry to get
precisely three-generations.

We can make the model more realistic. By taking the E8 connection to be valued in
special SU(6) bundles that take the form of an S(U(5)×U(1))-bundle, we break the gauge
group precisely to the Standard Model gauge group, SU(3)c × SU(2)w × U(1)Y . Such
configurations can be written down using the general constructions that we mentioned
previously.
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2. Perturbative IIB

I will spend relatively little time on type IIB, but there are a few things we should
discuss. This will be mostly set-up for F -theory, so I will focus on D7 and O7-planes.
There will likely be a more extended discussion in the lectures by H. Ooguri.

2.1. Kaluza-Klein Ansatz

The ten-dimensional fields of the IIB theory are:

gMN , BMN , ϕ, C
(0), C

(2)
MN , C

(4)+
MNPQ, ψ

1
Mα, ψ

2
Mα, χ

1
β̇
, χ2

β̇
(2.1)

The C(i) are anti-symmetric tensor fields, with C(4) satisfying a self-duality condition.
There are now two ten-dimensional gravitinos of the same chirality, ψ1

Mα and ψ2
Mα, and

similarly two ten-dimensional dilatinos. There are no gauge fields in ten dimensions. In
the Einstein frame, the action may be written as

S =
1

2κ2

∫
d10x

√
|g|
[
R− ∂µτ̄ ∂

µτ

2 Im(τ)2
− 1

2
|dC(0)|2 −

1

2
MijF

i
3F

j
3 −

1

2
|F̃(5)|2

]
+SCS +SFermi

(2.2)
where τ = ie−ϕ + C(0) is the axio-dilaton, F3 = (dB, dC(2)) combines the RR and NSNS

two-forms, F̃(5) = dC(4)− 1
2
C(2)∧dB+ 1

2
B2∧dC(2) is the self-dual version of the four-form

field strength, and

Mij =
1

Im(τ)

(
|τ |2 −Re(τ)
−Re(τ) 1

)
(2.3)

The Chern-Simons term is given by SCS = − ϵij
4κ2

∫
C4 ∧ F i

3 ∧ F
j
3 .

The Kaluza-Klein reduction proceeds much like for the heterotic string. We make an
Ansatz

M1,9 =M1,3 ×X6 (2.4)

and set the fluxes to zero. Then we are left with solving δψ1
M = ∇Mϵ

1 = 0 and
δψ2

M = ∇Mϵ
2 = 0, where ϵ1α and ϵ2α parametrize the two ten-dimensional supersymme-

tries. As before the supersymmetry variations tell us that X6 should admit a covariantly
constant spinor, and so X6 is Calabi-Yau. However our supersymmetry transformations
were parametrized by two ten-dimensional spinors, so compactifying type II strings on a
Calabi-Yau yields N = 2 supersymmetry in four dimensions.

The natural multiplets for four-dimensional N = 2 supersymmetry are the gravity
multiplet, the vector multiplet and the hypermultiplet. The bosonic fields in a vector
multiplet are (Aµ, φ) where Aµ is a vector field and φ is a complex scalar field. The

23



N = 2 multiplet multiplicity

gravity 1

vector h2,1(X)

hyper h1,1(X) + 1

Table 1: Spectrum of type IIB compactified on a Calabi-
Yau three-fold.

bosonic fields in a hypermultiplet are a pair of complex scalar fields (φ1, φ2). The bosonic
fields of the gravity multiplet consist of (gµν , Aµ), where gµν is the metric and Aµ is a
vector field called the gravi-photon.

The story for the NS-NS fields is exactly the same as for the heterotic string. What’s
new is that their modes will pair up with modes of RR fields into N = 2 multiplets.

The compactification works out as follows. As for the B-field, the massless modes of
RR fields are obtained from expanding in harmonic forms. The only way to get massless
four-dimensional vectors is by expanding C+

4 in harmonic three-forms:

C+
4 = AI

µdx
µ ∧ ω3,I (2.5)

From the Hodge diamond we see that there are 2h2,1(X) + 2 such forms, however only
half of these are independent due to the self-duality condition. The vector coming from
h3,0(X) is the gravi-photon which ends up in the gravity multiplet, the remaining h2,1

pair with the complex structure moduli in h2,1 vector multiplets.

We further get 4 × h1,1(X) scalars from expanding C+
4 in four-forms, B2 and C2 in

two-forms, and Kähler moduli of the metric on X6. These precisely fill up h1,1 hyper-
multiplets. Two-forms B2 and C2 with all indices in the uncompactified directions can
be dualized to scalars. They combine with the remaining scalars (ϕ and C0) into an
additional hypermultiplet. We have summarized the spectrum in table 1.

There are two ways we could break further to N = 1 supersymmetry. One is to turn
on some of the fluxes. To get a solution, we have to allow a more general warped Ansatz
of the form

ds2 = Z−1/2ηµνdx
µdxν + Z1/2gmndx

mdxn (2.6)

where ηµν is the four-dimensional Minkowski metric, gmn is the metric on the six-dimensional
internal space, and Z is a non-trivial function on the internal space. The other way to
break to N = 1 supersymmetry is to add 1/2 BPS branes.

It turns out that if we take gmn to be a Calabi-Yau metric and impose certain conditions
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on the fluxes, then finding a solution with N = 1 supersymmetry is reduced to solving

−∇2Z = (2πα′)2ρD3 (2.7)

Here ∇ refers to the covariant derivative for gmn, and ρD3 is the ‘D3-brane density.’ The
latter really refers to anything that sources C(4), whether it is explicit D3-branes, H3∧F3

(through the Chern-Simons term SCS), or fluxes and curvature terms on higher dimen-
sional defects. Deriving the effective four-dimensional theory for a warped background can
be a difficult business. We are going to think of the warping as a higher order effect and
not consider it further, but there are apparently situations where this is not correct and
you can miss an important mode, with the mode discovered by Gubser/Herzog/Klebanov
in the warped deformed conifold being an example.

2.2. Orientifolds

The perturbative IIB theory has two basic Z2 symmetries. The first is world-sheet
parity, which interchanges the left- and right-movers. This changes the signs of C0, B2

and C+
4 , and interchanges the two gravitini (as well as ϵ1 and ϵ2). The other basic Z2

symmetry is the left-moving fermion number (−1)FL , which changes the sign if the left-
movers are in the Ramond sector. This therefore changes the sign of C0, C2 and C+

4 ,
as well as the sign of one of the gravitini, say ψ1

M (and similarly for ϵ1). We could
further combine such involutions with an involution σ of the IIB space-time manifold.
By definition, an orientifold is a quotient of the IIB theory that involves the world-sheet
parity transformation P .

We are going to consider orientifolds of the following form. We will quotient by

(−1)FL · P · σ (2.8)

where σ is a holomorphic involution of the Calabi-Yau X6 that reverses the sign of the
holomorphic (3, 0) form and has a fixed point locus of complex codimension one. In
other words, locally it is of the form (z1, z2, z3)→ (z1, z2,−z3). Such a quotient preserves
only one linear combination of the two unbroken spinors ϵ1 and ϵ2, and so leads to four-
dimensional N = 1 supersymmetry. The fixed point locus is called an O7-plane. If we
denote the holomorphic submanifold that is fixed by S, then we say that the O7-plane
‘wraps’ S.

We can be very explicit. Let B3 = X/Z2, which will be a Kähler manifold, and let b2
be a section of K−2

B3
, where KB3 is the canonical bundle KB3 ≡ Λ3T ∗X. Simple examples

would be

B3 = CP3, B3 = CP2 ×CP1, B3 = CP1 ×CP1 ×CP1. (2.9)
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but there are many more. For example when B3 = CP3, we would have that b2 is simply
a polynomial of degree 2× 4 = 8. Given b2, we can write an equation for X explicitly as

ξ2 = b2. (2.10)

It has the involution ξ → −ξ and fixed locus b2 = 0. The Calabi-Yau condition on X
is precisely the condition that b2 lives in K−2

B3
(since dξ ∼ db2/

√
b2 gives KX = π∗KB3 +

1
2
Nb2=0).

2.3. D-branes

The second type of objects we can add are D-branes. By definition, a D-brane is
a defect where a fundamental string can end. By quantizing open strings, we find new
degrees of freedom propagating along the D-brane. The low energy world-volume theory
on a single D-brane is the dimensional reduction of the ten-dimensional supersymmetric
Yang-Mills theory with U(1) gauge group. When N D-branes coincide, the gauge group
enhances from U(1)N to U(N). The extra off-diagonal fields come from the ground states
of open strings stretched between the different D-branes. The mass of these modes is
proportional to the distance between the branes, so they become massless when the branes
coincide.

A common case is for the branes to fill the four uncompactified dimensions (as did the
ten-dimensional gauge fields in the heterotic string). Then the branes ‘wrap’ even dimen-
sional submanifolds of the Calabi-Yau three-fold. To be 1/2 BPS, a D-brane should wrap
a holomorphic cycle and the world-volume fields should satisfy a dimensional reduction
of the Hermitian Yang-Mills equations that we discussed in the context of the heterotic
string.

If we want to preserve the same N = 1 supersymmetry that is preserved by (2.8), then
we can consider D7-branes wrapped on holomorphic four-cycles and D3-branes localized
at points of X6. The bosonic world-volume fields on a D7-brane are a gauge field AM and
a complex adjoint field Φ. When we wrap the D7-brane on a holomorphic cycle S, these
fields may have a non-zero profile along S, satisfying the dimensionally reduced version
of the Hermitian Yang-Mills equations. In the abelian case, these equations are simply

∂̄Φ = 0, F 0,2 = 0, J ∧ F = 0 (2.11)

where J is the pull-back of the Kähler form ofX6 to S. When multiple branes are wrapped
on the same cycle, we get a non-abelian version of these equations, often referred to as
Hitchin’s equations.

There is something peculiar going on with the adjoint field Φ, so let us say a few
more words about this. We take (z1, z2) to be holomorphic coordinates along S, and z3

for the normal direction. Then to carry out the dimensional reduction, in the Hermitian
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Yang-Mills equations we would like to replace gauge fields along the normal direction by
adjoint fields and take all the fields to be independent of z3:

A1̄(z
1, z2, z3), A2̄(z

1, z2, z3), A3̄(z
1, z2, z3) → A1̄(z

1, z2), A2̄(z
1, z2),Φ3̄(z

1, z2) (2.12)

and similarly for their Hermitian conjugates. Restricted to S, the tangent bundle splits
holomorphically as TX|S = TS ⊕NS, where NS is the normal bundle to S. Similarly the

anti-holomorphic cotangent bundle splits as TX|S = T ∗S ⊕ N
∨
S , where N

∨
S is the dual

of the normal bundle. The gauge fields (with anti-holomorphic indices) are sections of
T ∗S⊗Ad(P ), where P is a principal G-bundle and Ad(P ) is its associated adjoint vector

bundle. Then the adjoint scalar field should be a section of N
∨
S ⊗ Ad(P ). Using the

Hermitian metric restricted to S, we can consider Φ3 = Φ3̄g
3̄3 which takes values in NS.

We say the adjoint field is “valued in” or “twisted by” the normal bundle.

We can go one step further. Using the holomorphic (3, 0) form, we can consider
Φij = Φ3̄g

3̄3Ω3ij, which is a (2, 0) form on S, so we may also consider Φ as a section of
KS ⊗ Ad(P ). Similarly, the Hermitian conjugate Φ† may get mapped to a (0, 2) form on
S. Thus the U(1) R-symmetry of the Yang-Mills theory (under which Φ has charge one)
is identified with a subgroup of the Lorentz group of the 7-brane. This is the phenomenon
of topological twisting, so we found that the world-volume theory of a D7 brane wrapped
on a non-trivial cycle in a Calabi-Yau is a topologically twisted Yang-Mills theory.

With these identifications, the dimensionally reduced Hermitian Yang-Mills equations
can be written as

F 0,2 = 0, ∂̄Φ = 0, J ∧ F + i[Φ†,Φ] = 0 (2.13)

(Here we used physicists’ conventions in which the gauge generators are Hermitian; in
math papers the factor of i would be dropped). The rest of the story is parallel to the
heterotic string. The first two equations are equivalent to saying that we need a Higgs
bundle, i.e. a holomorphic bundle together with a holomorphic section of the twisted
adjoint bundle. The last equation is then equivalent to saying that the Higgs bundle is
poly-stable.

In the literature you will often find an alternative description of such a configuration as
a poly-stable coherent sheaf L. These two descriptions are complementary to each other,
with different regimes of validity. Unfortunately I do not have time to go into coherent
sheaves here.

In an orientifold, the D-brane configuration should be invariant under the orientifold
symmetry. More precisely, the gauge field on the brane transforms as

A → −γ−1σ∗ATγ (2.14)

where γ is taken to be a constant gauge transformation, which satisfies γ−1γT = 1 (up to
a further gauge transformation) in order to get an involution. This leads to the following
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D7

O7

Figure 1: Tilting a D-brane away from an O-plane by turning on
a position dependent profile for the adjoint field of the worldvolume
gauge theory.

possibilities. A stack of branes that gets mapped to itself, and hence coincides with an
O-plane, yields an SO(N) or USp(N) gauge group in the quotient theory, depending on
whether γT = ±γ; a pair of stacks that gets interchanged yields a U(N) gauge group
in the quotient theory. An O-plane is called an O−-plane if γT = γ and an O+-plane
if γT = −γ. Note that unlike for the heterotic string, we do not get exceptional gauge
groups in this set-up.

We cannot add these defects arbitrarily. In the heterotic case we had the tad-
pole/generalized Gauss law constraint dH = Tr(R ∧ R) − Tr(F ∧ F ). In the type II
case we get analogous constraints for all the Ramond-Ramond and NS-NS fluxes.

A concrete and generic way to write down a configuration is as follows. A D7-brane
generates one unit of RR flux for F(1) = dC(0), so we try to cancel this flux by including
an O7−-plane, which generates −4 units of RR flux. (O7+-planes source positive RR
flux, so they would not be much help). Recall we could write our geometry X with such
an O7-plane as ξ2 = b2, where b2 is a section of K−2

B3
, B3 = X/Z2 (eg. B3 = CP3 for

simplicity), and b2 = 0 is the O7-locus. To cancel the RR charge the D7 would then have
to be wrapped on a cycle of the form b8 = 0, where b8 is a section of K−8

B3
. This guarantees

that there are no net sources for dF(1) through any closed two-cycle.

However consistency imposes a further constraint: a D7 brane cannot wrap a generic
cycle, because aD7-brane should self-intersect (i.e. have singularities of the form z2−w2 =
0) when it intersects the O7-plane.

To see this, briefly let us consider a coinciding O7/D7 system, leading to gauge group
SO(2). Now we tilt the D7-plane away from the O7-plane by turning on a position
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N = 1 multiplet multiplicity

gravity 1

vector h2,1+ (X)

chiral h1,1+ (X) + h1,1− (X) + h2,1− (X) + 1

Table 2: Closed string spectrum of type IIB compactified on
a Calabi-Yau three-fold, with an orientifold involution of the
form (−1)FLPσ.

dependent expectation value for the SO(2)-valued field Φ,

Φ(z) ∼ z

(
0 1
−1 0

)
(2.15)

where z is a complex coordinate along the worldvolume of the O7-plane. Then the eigen-
values of Φ are ±z, indicating a pair of D7-branes meeting the orientifold plane in a
double intersection at z = 0, as claimed. This means that our D7-brane cannot wrap a
generic cycle of the form b8 = 0, but must wrap a cycle of the form

ξ2b6 − b24 = 0 (2.16)

in order to have double point singularities when the D7 and O7 intersect (at ξ = b4 = 0).
A more generic expression of the form b8 = 0 would not have this property. We conclude
that we need three sections, b2, b4 and b6 to write down a generic D7/O7 configuration.
With a bit more effort we can also specify a gauge field configuration. The easiest way to
do this is by using the fact that that a quantized field strength F 1,1/2π of type (1, 1) can
be dually described by a linear combination of holomorphic curves on the D7-brane.

Given a IIB compactification with branes, we would also like to know the effective
four-dimensional theory obtained by Kaluza-Klein reduction. The reduction of the closed
string fields was already discussed above, with only the slight complication that a subset of
the fields will get projected out by the orientifold projection. Briefly, since the involution
σ is holomorphic, the cohomology groups Hp,q(X) split into eigenspaces with eigenvalue
±1, Hp,q

+ (X) and Hp,q
− (X). Since C+

4 is even under (−1)FLP , its modes only survive in
the quotient theory if its internal wave-function is also even. So for example we only get
h2,1+ (X) vector fields, with the remaining h2,1+ (X) of the underlying N = 2 theory being
projected out. The complex structure moduli on the other hand, which where paired
with these vector fields under N = 2 supersymmetry, came from expanding deformations
of the holomorphic (3, 0)-form. Since Ω3,0 is is odd under the involution, only h2,1− (X)
deformations survive in the quotient theory. Continuing in this way, Kähler moduli and
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modes of C+
4 with four internal indices give h1,1+ (X) chirals, modes of (B2, C2) with two

internal indices give h1,1− (X) chirals, and the axio-dilaton gives one final chiral. This
spectrum is summarized in table 2.

But how do we reduce the degrees of freedom from the open string sector? It turns
out there’s a very simple general answer, but because I didn’t have time to talk about
coherent sheaves I will only mention it in passing.

Recall that in the heterotic string, the massless fields obtained from reduction of
the gauge sector were counted by Hp(X, V ). For p = 0 we get four-dimensional gauge
fields and for p = 1 we get four-dimensional matter fields and moduli. In IIB the 1/2
BPS D-brane configuration can be expressed as a coherent sheaf L, and the deformation
theory of sheaves then tell us that the massless fields are then counted by the Ext groups
ExtpX(L,L). For p = 0 we get gauge fields and for p = 1 we get matter fields and moduli.
In an orientifold we keep the odd generators and throw out the even generators.

2.4. S-duality

The type IIB theory also has a strong coupling duality, S-duality which takes gs →
1/gs. It is convenient to formulate this in terms of the axio-dilaton

τ = i e−ϕ + C0 (2.17)

It naively takes values in the upper half plane (since Im(τ) = e−ϕ > 0), but due to
the symmetries we have to make some identifications. The axion has a shift symmetry
C0 → C0 + const which is non-perturbatively broken to C0 → C0 + n, n ∈ Z. Together
these two symmetries act on τ as

S : τ → −1/τ, T : τ → τ + 1 (2.18)

and generate an SL(2,Z) duality group. The two-form fields (B2, C2) transform as a
doublet under SL(2,Z), and the Einstein frame metric is invariant. The whole IIB su-
pergravity action that we wrote in (2.2) is invariant under this duality group.

S-duality takes a fundamental IIB string to a D-string. Since a D7-brane is defined as
a locus where a fundamental string can end, the S-dual of a D7-brane is a defect where
a D-string can end. More generally, SL(2,Z) dualities can take a fundamental string to
a (p, q) string, a bound state of p fundamental strings and q D-strings. We can define a
(p, q) 7-brane as a defect of codimension two where a (p, q) string can end.

This concludes our lightning quick review of perturbative IIB compactification.
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3. F-Theory

Heterotic and IIB probably looked quite familiar. They are conventional string theories
with a small string coupling. F -theory is a different beast, generalizing some of the
structures we have seen previously in the language of geometry. It can reduce to heterotic
or IIB in suitable weak coupling limits, but the way in which it does is not obvious.

3.1. Elliptic fibrations

Let us briefly recall some properties of elliptic curves. We have H1(T
2,Z) = Z2,

generated by one-cycles a and b such that a ∩ a = b ∩ b = 0 and a ∩ b = 1. Denote
the holomorphic one-form by Ω. Then the complex structure of an elliptic curve can be
parametrized as

τ =

∫
b
Ω∫

a
Ω

(3.1)

The torus has large diffeomorphism or modular transformations which map the one-cycles
as (a, b)→M(a, b), whereM ∈ SL(2,Z). The basic transformations are (a, b)→ (a, b+a)
and (a, b) → (−b, a), and the others are generated by these. On the complex structure
parameter these act as

τ → τ + 1, τ → −1/τ (3.2)

This looks exactly like the S-duality transformations for the axio-dilaton of type IIB. So
why not identify the axio-dilaton with the complex structure parameter of an auxiliary
torus? This is the basic idea that leads to F -theory [3].

The one-sentence description of F -theory is as follows. F -theory is basically a book-
keeping device to describe vacua of IIB string theory with a varying axio-dilaton. We do
this by identifying the axio-dilaton τ with the modular parameter of an auxiliary torus,
and imagining that this auxiliary torus is real in some sense, by formally attaching this
torus at each point in the IIB space-time. In this way we promote the ten-dimensional
space-time of the IIB theory to twelve dimensions, and we speak of twelve-dimensional
compactifications of F -theory.

You should keep in mind that this is nothing more than a very clever change of variable.
Specifying a varying τ directly would get rather complicated due to the branch cuts for τ
and the SL(2,Z) monodromies around them. It is much simpler to write down the torus
directly, and thereby specify τ implicitly. The T 2 is typically written in Weierstrass form,
i.e. described as a cubic equation of the form

y2 = x3 + fx+ g (3.3)
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τ     τ+1

Branch cut

Figure 2: Elliptic fiber degenerating over the discriminant locus,
due to one of its one-cycles pinching to zero size. Singular fibers
generate monodromies for τ , and hence are associated to 7-branes.

which can be done globally on the IIB space-time. Instead of specifying τ , we specify f
and g. The area of the torus has no meaning in F -theory and should be taken zero.

Now 7-branes source the axio-dilaton, and supergravity solutions for 7-branes have an
axio-dilaton which varies non-trivially over the IIB space-time. The reformulation above
is particulary efficient for encoding such solutions, as we discuss next.

As above we label the generating one-cycles of the elliptic fiber as a and b, with
a ∩ b = 1, a ∩ a = b ∩ b = 0. On a subset of real codimension two on the IIB space-
time, the elliptic fiber pinches due to a one-cycle γ = pa + qb shrinking to zero. One
can calculate that this happens when ∆ ≡ 4f 3 + 27g2 = 0. As we go around this locus,
which is called the discriminant locus, the one-cycles undergo a monodromy following the
Picard-Lefschetz formula:

δ → δ + (δ ∩ γ)γ (3.4)

Let us use our earlier expression τ =
∫
b
Ω/
∫
a
Ω. With a little algebra, we see that the

monodromy acts on τ as

τ → K[p,q]τ, K[p,q] =

(
1 + pq p2

−q2 1− pq

)
(3.5)

We claim this identifies the locus with a (p, q) 7-brane, i.e. a type of 7-brane on which
a (p, q) string can end. To see this, consider the case of a (1, 0) brane. In this case we
have τ → τ + 1 as we go around a 7-brane, i.e. C0 → C0 + 1 and e−ϕ invariant. This is
precisely the right monodromy for a single D7-brane, because it means that the 7-brane
sources one unit of RR flux. To see this, integrate dF(1) around a small disk in the IIB
space-time containing the point where the discriminant vanishes. Then we have

∫
disk

dF(1) =

∫
S1

dC(0) = C(0)|2π − C(0)|0 = 1 (3.6)
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where we used the multi-valuedness of C(0) around the discriminant locus. By applying
SL(2,Z) duality transformations, we recover the other cases.

You may start to get suspicious here: we seem to find only 7-branes on which strings
can end. But in perturbative IIB we also had O7-planes, and strings don’t end on O7-
planes, so what happened to them? It turns out that the O7-plane is not an elementary
object in F -theory, but is composed of two distinct (p, q) 7-branes. In fact the SL(2,Z)
monodromy around an O7-plane is given by(

−1 4
0 −1

)
=

(
2 1
−1 0

)(
0 1
−1 2

)
(3.7)

so we see that it can be composed out of a (1, 1) brane and a (1,−1) brane. As we turn
on the string coupling, the O7-plane splits into its two components.

3.2. The view from M-theory

There is another perspective on F -theory by starting with M -theory, as follows. M -
theory on T 2, in the limit that the area goes to zero, is equivalent to type IIB on a circle
of radius R = 1/A, with axio-dilaton given by the modular parameter τ of the T 2, and A
is the area of the T 2. Now let us fiber this duality over a base.

In particular, let us consider an M -theory compactification to three dimensions with
N = 2 supersymmetry. (This will eventually lift to N = 1 supersymmetry in four
dimensions). We haven’t considered M -theory compactifications so far but the principles
are very similar to the other cases we discussed. We make an Ansatz

M1,10 = M1,2 × Y, (3.8)

set the fluxes to zero, and analyze the BPS equations. As usual we have to solve an
equation of the form δψM = ∇Mϵ = 0. The main difference with the cases we discussed
previously is that to get N = 2 supersymmetry, we need two covariantly constant spinors
on Y of the same chirality. The positive chirality spinor representation of SO(8) is the 8s,
which we therefore want to decompose as 6+ 1+ 1, with the holonomy group preserving
the two singlets. This means that Y should have Spin(6) ≃ SU(4) holonomy, and so one
finds that Y should be a Calabi-Yau four-fold, henceforth denoted Y4.

To make use of the M -theory/IIB duality in nine dimensions cited above, we now
further require that Y4 admits an elliptic fibration, i.e. a fibration

π : Y4 → B3 (3.9)

where the fibers are elliptic curves. As usual the subscripts on Y4 and B3 denote the
complex dimension. If we represent this fibration in Weierstrass form

y2 = x3 + fx+ g (3.10)
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then in order for the total space Y4 to be Calabi-Yau, we must have that f is a section of
K−4

B3
and g is a section of K−6

B3
. Applying the M -theory/IIB duality fiberwise, we deduce

that

M − theory on R1,2 × Y4 ←→ IIB on R1,2 × S1
R ×B3, (3.11)

with a varying axio-dilaton over B3 on the IIB side. Since R = 1/A, we then send A→ 0.
In the limit that the elliptic fiber shrinks to zero, the S1 decompactifies and we recover
type IIB compactified on R1,3×B3, with varying axio-dilaton and N = 1 supersymmetry
in four dimensions. We say that this corresponds to an F -theory compactification on Y4
to four dimensions.

3.3. Abelian gauge fields

Since our F -theory compactification contains 7-branes, we expect to see eight-dimensional
Yang-Mills theory come out in some way. The way that this happens is quite unlike what
we have seen so far from the heterotic string and perturbative IIB, and it will occupy us
for the next few subsections.

Although we have some kind of 7-brane defect, the string coupling is not small and
we can’t go and quantize open strings. Indeed, what we are really doing is describing
the 7-brane as a solitonic solution of type IIB supergravity, the ‘stringy cosmic string’
solution (string here referring to the fact that the soliton is localized in codimension two,
which means it’s really a 7-brane in ten dimensions). This means that we should expect
the world-volume theory to arise from the collective coordinates of the soliton.

In particular, abelian tensor fields on a defect arise as zero modes of the ten-dimensional
tensor fields that are roughly localized on the soliton. Since the gauge symmetry we are
looking for exists already in eight dimensions, the eight-simensional gauge field must
come from zero modes of B2 and C2. However B2 and C2 are not invariant under the
monodromies; they form a doublet under the SL(2,Z) duality group.

In keeping with the philosophy of F -theory, we thus want to reformulate B2 and C2

in terms of an object that can be specified globally over the IIB space-time, and is not
subject to monodromies. This can be done by encoding the two-form fields in a three-form
field:

C(3) ∼
i

Im(τ)
(C2 − τB2) ∧ (dx+ τ̄ dy) + c.c. (3.12)

where x and y are the two coordinates on the T 2 fiber. Note this is not a completely
general three-form, since it has two indices on the IIB space-time and one index on
the elliptic fiber. Three-form fields with different numbers of indices in the base and
the fiber do not exist in F -theory. This three-form field C(3) is SL(2,Z) invariant and
can be defined globally. By compactifying on S1 and going to M -theory, it corresponds
to the usual C(3) field of eleven-dimensional supergravity, except that components with
disallowed indices are frozen out in the F -theory limit. The four-form flux of this tensor
field is conventionally called the G-flux, G = dC(3).
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Now to get a 7-brane gauge field, we need to expand C(3) in terms of real harmonic
two-forms, with one index on the base and one index on the fiber (so that the gauge field
index lives in the IIB space-time):

C(3) = AI ∧ ω(2),I (3.13)

As a toy example, let us consider F -theory compactified on an elliptically fibered K3-
surface to eight dimensions. We describe ourK3 in Weierstrass form as an elliptic fibration
over CP1:

y2 = x3 + f8(z)x+ f12(z) (3.14)

Here f and g are sections of K−4
P1 and K−6

P1 , so they correspond to polynomials of degree
eight and twelve respectively. Then the discriminant ∆ = 4f 3

8 + 27g212 = 0 is of degree
twenty-four, so a generic elliptic K3 has twenty-four singular fibers. From the perspective
of IIB this corresponds to a compactification of the formR1,7×CP1 with twenty-four (p, q)
7-branes inserted at special positions on the CP1. From the Hodge numbers discussed
earlier it follows that there are twenty-two harmonic two-forms on a K3 surface, but one
of these has two indices on the base and one has two indices on the fiber. Thus there
are twenty harmonic forms we can expand in, yielding twenty U(1) gauge fields in the
eight-dimensional theory.

This is precisely the number of U(1) gauge fields you will find in generic string theory
compactifications to eight-dimensions with half-maximal supersymmetry, for example in
a heterotic compactification on T 2. Indeed it turns out that there is a duality

F − theory on R1,7 ×CP1 n T 2 ←→ Heterotic on R1,7 × T 2 (3.15)

(Here we used the imprecise notation CP1nT 2 to denote an elliptically fibered K3.) This
is one of the fundamental dualities in the business and has been studied in great detail.
Unfortunately lack of time precludes us from discussing it further.

Note that the harmonic forms giving rise to U(1) gauge fields cannot be normalizable in
the local supergravity solution for a 7-brane: if so we would get an independent gauge field
for each singular fibre, but there are twenty-four singular fibers in an elliptically fibered
K3 and only twenty gauge field from the 7-branes. Thus in contrast to perturbative IIB,
thinking about 7-branes in F -theory as being sharply localized at a codimension two locus
(here the discriminant locus) is actually quite misleading: their energy density is quite
spread out, much like for other solitonic objects.

Let us say a few more words about F -theory compactifications to four dimensions
with N = 1 supersymmetry. We saw that if the flux vanishes then F -theory needs to
be compactified on an elliptically fibered Calabi-Yau four-fold Y4. Now suppose we want
to consider compactifications with non-zero flux. This situation was analyzed by Becker
and Becker. It turns out that the Kaluza-Klein Ansatz needs to be generalized slightly to
a warped Ansatz, but when this is done one finds that Y4 is still a Calabi-Yau four-fold,
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and the G-flux on Y4 needs to satisfy the following conditions:

G ∈ H2,2(CY4) (F− term equation) (3.16)

J ∧G = 0 (D− term equation)

Here J is the Kähler form on the Calabi-Yau four-fold. Note that these conditions are
similar to the ASD equations on the internal worldvolume of a 7-brane, F 2,0 = 0 = J∧F 1,1.

It may seem somewhat strange that we get the simple condition J ∧ G = 0, whereas
in type IIB and heterotic compactification we found stability conditions, which are even
qualitatively dissimilar. It’s not hard to see the problem: the equations for the G-flux
above were obtained by extrapolating fromM -theory. There is a non-renormalization the-
orem for F -terms but not for D-terms, so the D-terms should be taken with a grain of salt.
In fact one should regard even the F-terms with some suspicion; the non-renormalization
theorem does not guarantee that after extrapolation the F -terms are expressed in terms
of the right degrees of freedom, and ignoring this can easily lead to puzzles.

3.4. Digression on ADE singularities

In order to understand where non-abelian gauge fields come from, we need to make a
digression on ADE singularities, their resolutions and their deformations.

Let us consider an isolated singularity of a complex surface. Using complex coordinates
x, y, z, the simplest such singularity takes the local form

P (x, y, z) = xy + z2 = 0 (3.17)

It is clearly singular as ∂xP = ∂yP = ∂zP = 0 at x = y = z = 0. This singularity
goes under many names in the literature. Algebraic geometers tend to call it an ordinary
double point singularity.

Now we can think of P (x, y, z) as the determinant of the following matrix:

M =

(
x z
−z y

)
(3.18)

The vanishing of P = det(M) implies that the matrix M has an eigenvector with eigen-
value zero. We can parametrize the eigenvector as (λ1, λ2). Then instead of the surface
P = 0, we can consider the new surface defined by the pair of equations(

x z
−z y

)(
λ1
λ2

)
= 0 (3.19)

More precisely, this pair of equations defines a surface (and not a three-fold) if we identify
(λ1, λ2) ≃ (cλ1, cλ2) for any c ∈ C∗. In other words, we consider the above as a pair of
equations on C3 ×CP1.
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Figure 3: Pictures for the deformed singularity xy = P2(z). (A):
Fibration of conics over the z-plane, with the conic fiber degener-
ating over two special points. (B): Fibering the shrinking S1 of the
conic fibers over a path in the z-plane.

When (x, y, z) are not all zero, we can solve for the ratio λ1/λ2 in terms of (x, y, z),
and so we get back the same surface as before. But when (x, y, z) are all zero, the pair
(λ1, λ2) is undetermined and parametrizes a CP1, which we denote by E1. Furthermore
it is easy to check that this new surface is non-singular. The surface defined by (3.19) is
said to be the blow-up or resolution of the singular surface P = 0 at x = y = z = 0, and
the new CP1 is the exceptional divisor of the blow-up.

Note that since (λ1, λ2) are never simultaneously zero, our eigenvalue equation still
implies that P = det(M) = 0, so the process of blowing up is not a complex structure
deformation, but rather a Kähler deformation. By varying the Kähler form we can con-
tinuously change the size of the exceptional CP1, making it large or shrinking it back to
a singularity.

An alternative way to smooth the singularity is to change the equation to

xy + z2 = µ, µ ̸= 0 (3.20)

This is a complex structure deformation, and not a Kähler deformation. In this case the
smoothed geometry again contains a topological S2, but unlike for the resolution it is
not a holomorphic submanifold. To see it define x = u + iv, y = u − iv, in which case
the equation becomes u2 + v2 + z2 = µ. Restricting all the variables to be real, this is
precisely the equation of a (non-holomorphically embedded) two-sphere. Again as µ→ 0
this two-sphere shrinks to zero size.

It will be useful to formulate the latter construction in a way that will generalize more
easily. Let us write the deformation of the singularity as

xy = P2(z) (3.21)

where P2(z) is a quadratic polynomial with leading term z2. An equation of the form
xy = t is a conic, so we may think of our surface as a conic bundle (a fibration of conics)
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Figure 4: Picture for the deformed singularity xy = P3(z). Fibering
the shrinking S1 of the conic fibers over different paths in the z-
plane results in topologically distinct two-spheres.

over the z-plane. As t → 0 the conic degenerates to a pair of lines, given by x = 0 and
y = 0. The conic has a minimal S1, which can be seen by rewriting xy = t as u2 + v2 = t
and taking the variables to be real. Note that the S1 shrinks to zero as t→ 0. There are
exactly two points on the z-plane where this happens: the roots z∗1 and z

∗
2 of the quadratic

equation P2(z) = 0. Now we take a path from z∗1 to z∗2 on the z-plane, and construct a
manifold by fibering the minimal S1 of the conic over this path. The resulting manifold
is topologically a sphere, see figure 3.

Let us make the singularity a bit more complicated. We consider

Q(x, y, z) = xy + z3 = 0 (3.22)

Again as a first step we can consider replacing this by the following pair of equations:(
x z
−z2 y

)(
λ1
λ2

)
= 0 (3.23)

However from the second equation −z2λ1 + yλ2 = 0 we see that our new surface is still
singular at z = y = λ2 = 0. But we can repeat the procedure, and replace this equation
by the pair of equations (

λ2 z
zλ1 y

)(
µ1

µ2

)
= 0 (3.24)

This creates another exceptional CP1, which we denote E2, this time parametrized by
(µ1, µ2). Taking into account that (λ1, λ2) and (µ1, µ2) each live on a CP1 and cannot
vanish simultaneously, it’s not hard to see the surface resulting from our two blow-ups
is now non-singular. You can also check that the two exceptional CP1’s intersect at
precisely one point. Indeed when x = y = z = 0 the equations simply reduce to λ2µ1 = 0,
which describes two CP1’s with a simple intersection at λ2 = µ1 = 0.
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Dynkin type equation restrictions

An xy + zn+1 = 0 n ≥ 1

Dn x2 + y2z + zn−1 = 0 n ≥ 4

E6 x2 + y3 + z4 = 0

E7 x2 + y3 + yz3 = 0

E8 x2 + y3 + z5 = 0

Table 3: Canonical forms of the ADE surface singu-
larities.

We can play a similar game with deforming the singularity, see figure 4. We write the
deformed equation as

xy = P3(z) (3.25)

where P3(z) is a generic degree three polynomial with leading term z3. Then the conic
fibers degenerate when P3(z) = 0, which happens at three special points on the z-plane,
say z∗1 , z

∗
2 and z∗3 . Then by fibering the shrinking S1’s over paths from z∗1 to z∗2 , and from

z∗2 to z∗3 , we get two topologically distinct two-spheres with intersection number one. We
can make a further two-sphere by fibering the S1’s over a path from z∗1 to z∗3 , but by
deforming this path to go through z∗2 , we see that the homology class of this two-sphere
is the sum of the homology classes of the other two-spheres.

In general one can make some very nasty surface singularities. But there is a special
class of surface singularities, of which the two cases above are the simplest examples, that
have the property that the blow-up does not affect the topological type of the canonical
bundle. (In algebraic geometry parlance, the singularity should admit a crepant resolu-
tion). This class is particularly interesting for us, because we are interested in Calabi-Yau
spaces, and we want the topological type of the canonical bundle on the resolution to be
trivial.

This class of surface singularities goes under many names: Kleinian singularities, Du-
Val singularities, etc. They turn out to have many nice properties, for example they admit
a Calabi-Yau metric that is Aymptotically Locally Euclidean (meaning that asymptoti-
cally they look like flat space modded out by a finite group), hence they are also called
ALE spaces. We will just call them ADE surface singularities, because they turn out to
admit an ADE classification: the homology lattice of SADE, either after deformation or
resolution, is isomorphic to an ADE root lattice:

H2(SADE,Z) = ΓADE (3.26)

In particular, picking a set of two-cycles Ei corresponding to fundamental roots, their
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intersections are given the corresponding Cartan matrix:

CADE
ij = Ei · Ej. (3.27)

The only difference with conventional root lattices is that we take the Cartan matrix to be
negative-definite instead of positive-definite, by including a minus sign. Up to coordinate
transformations, the ADE surface singularities fit in the list shown in table 3.

The appearance of an ADE classification suggests a connection with Lie groups, and
hence with gauge theories. Indeed let us consider M -theory compactified on a resolved
ADE surface. As before we can recover U(1) gauge fields by expanding C(3) in harmonic
two-forms. Since we are considering compactifying on a non-compact manifold, in order
to get dynamical modes we should expand in normalizable harmonic forms. We have
H2(SADE,Z) ≃ H2

c (SADE,Z)
∗, where the subscript ‘c’ refers to compactly supported

cohomology, and it turns out that the image H2
c (SADE,Z) → H2(SADE,Z) is generated

by L2-harmonic forms. Thus the number of abelian U(1) gauge fields that we get matches
with the number of Cartan generators of the corresponding ADE gauge group. These
modes are paired with metric modes that correspond to the scalar fields of the 7d Yang-
Mills theory. Namely we take the holomorphic (2, 0) form and the Kähler form and expand
these in the above harmonic forms, yielding three real scalars for each Cartan generator.

A big surprise in the ’90s was that we also recover the non-abelian W -bosons. M -
theory has solitonic M2-branes which we can wrap on the two-cycles. Suppose that
an M2-brane is wrapped on a cycle α =

∑
niEi, yielding a particle-like object in the

low-energy theory. The intersection product is negative definite, since up to a minus
sign it is actually the Killing form on the ADE Lie algebra. There are no integer linear
combinations with α·α = −1, andM2-branes wrapped on a cycle with α·α < −2 turn out
not to form bound states, in other words if they exist they correspond to multi-particle
states. So one is interested in M2-branes wrapping cycles such that α · α = −2, i.e. such
that α corresponds to a root. Quantizing the collective coordinates of such a wrapped
M2-brane yields a massive vector multiplet, indeed that’s really the only multiplet we
could expect given that the resulting particle has no internal structure (the only bosonic
collective coordinates are translations) and the theory has sixteen supercharges. Almost
by definition the non-abelian fields have the right U(1) Cartan charges. In this way we
recover a non-abelian gauge theory with ADE gauge group.

The mass of each non-abelian W -boson is proportional to the volume of the cycle that
the M2-brane is wrapped on. In the limit where we shrink the volume of these cycles
to zero size and the geometry becomes singular, the mass of the non-abelian W -bosons
goes to zero, and we recover the full unbroken non-abelian gauge symmetry. This is the
general mechanism by which string or M -theory relates ADE singularities to ADE gauge
theories. Unlike in perturbative IIB, where we could only get classical gauge groups, we
also get exceptional gauge symmetries this way.
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(A) (B)

Figure 5: An open fundamental string in type IIB lifts to a mem-
brane wrapping an exceptional cycle in F -theory. Some W-bosons
may correspond to ground states of multi-pronged (p, q) strings .

3.5. Non-abelian gauge fields and the Kodaira classification

Given what we said in the previous subsection, and considering that F -theory com-
pactifications are closely related to M -theory, we would expect that non-abelian gauge
fields are closely related to ADE singularities. Let us now discuss how we can see this
from the point of view of (p, q) 7-branes and elliptic fibrations.

Let us consider two parallel D7-branes. The non-abelian gauge bosons that enhance
the symmetry to SU(2) come from open strings stretched between the two 7-branes.
How is this seen in F -theory? Consider the path associated to an open string stretching
between the branes. On top of each point of this path we can associate a 1-cycle of the
T 2 fiber, which we take to be the (1, 0) cycle. On the left and right ends of the path,
this (1, 0) cycle shrinks to zero. Altogether then we reconstruct a topological S2. Using
the M -theory perspective, we can wrap an M2-brane on this S2, which turns into the
fundamental open string as we go to F -theory. As the we let the 7-branes approach each
other, the S2 shrinks to zero and the Calabi-Yau fourfold develops an A1 singularity. (The
IIb space-time is still perfectly smooth, only when we add the elliptic fibration do we see
the singularity). As the S2 shrinks to zero, the ground states of the wrapped M2 brane
or open fundamental string become massless, yielding the off-diagonal components of an
SU(2) vector multiplet. We get both W+ and W− by reversing the orientation of the
membrane.

The type of singularities in an elliptic fibration were classified by Kodaira (see table 4).
The elliptic fibration may develop an ADE singularity by letting various branes approach
each other, and one would naturally expect that by wrappingM2 branes on the vanishing
cycles one gets an enhanced ADE gauge symmetry.

In perturbative IIB we didn’t see exceptional gauge symmetries. How do we un-
derstand these more general situations from the IIB space-time? It turns out that the
exceptional cycles of a resolved ADE singularity do not necessarily project to open strings
with two ends, but may yield so-called multi-pronged strings with multiple ends. This
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ord(f) ord (g) ord(∆) fiber type singularity type

≥ 0 ≥ 0 0 smooth −

0 0 n In An−1

≥ 1 1 2 II −

1 ≥ 2 3 III A1

≥ 2 2 4 IV A2

2 ≥ 3 n+ 6 I∗n Dn+4

≥ 2 3 n+ 6 I∗n Dn+4

≥ 3 4 8 IV ∗ E6

3 ≥ 5 9 III∗ E7

≥ 4 5 10 II∗ E8

Table 4: Kodaira classification of singularities of ellip-
tic fibrations, indicating the order of vanishing of ∆, f
and g.

is the key to getting the exceptional groups and can happen when the dilaton cannot be
taken small. All the ADE Lie algebras have been reproduced from such (generally multi-
pronged) strings. For instance the roots of E8 can be recovered from a configuration of
seven A-branes, one B brane, and two C-branes, where A = (1, 0), B = (1,−1), C = (1, 1),
see figure 6. Configurations for the type D Lie algebras are similar except that they just
use one C brane instead of two. A B-brane and C-brane can be combined into an ori-
entifold plane and yield weak coupling limits, but this is not possible for the exceptional
cases.

Another difference is that in perturbative IIB we found U(N) gauge symmetry, but
in F -theory we find SU(N) gauge symmetry. A similar issue also appears in M -theory.
So what happened to the extra U(1) when we turn on the string coupling? It turns out
that this extra U(1) is typically already massive in perturbative IIB due to a Stückelberg
coupling to Ramond-Ramond fields, with a mass proportional to the string coupling.
When the string coupling is finite this mass is of order the Kaluza-Klein scale, so it must
correspond to a massive Kaluza-Klein mode.

3.6. Application to Grand Unification

As an application of what we have learned, let us make a Calabi-Yau four-fold by
writing down a fibration of deformed E8 surfaces over a compact Kähler manifold S. For
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Figure 6: Representation of the fundamental roots of E8 from [4]. Here a cross denotes
an A-brane, a circle denotes a B-brane, and a box denotes a C-brane.

example we could take S to be CP2 or CP1×CP1, or a del Pezzo surface, i.e. a blow-up
of CP2. We write our fibration over S as the following equation:

y2 = x3 + a0z
5 + a2z

3x+ a3z
2y + a4zx

2 + a5z
5 (3.28)

Here ai is a section of Ki
S ⊗ L for some line bundle L on S. The equation has a term

linear in y and a term with x2, so it is not in Weierstrass form, but can be rewritten as
such with a few coordinate changes.

The terms y2 = x3 + a0z
5 describe an E8 singularity (see table 3) and the remaining

terms are a partial deformation of it, making the fibers less singular. The situation is
somewhat analogous to what we saw in the heterotic string: there we started with an
E8 gauge theory, which was broken to a smaller gauge group by turning on a non-trivial
profile for the gauge field. Here we also see some kind of breaking of E8, but it seems less
clear how this breaking comes about. You can actually translate this into the language of
eight-dimensional gauge theory and see that the breaking of E8 here is due to a non-trivial
Higgs bundle (A,Φ). In particular, the sections ai with i > 0 appearing in equation (3.28)
are essentially invariant polynomials in the adjoint field Φ.

If you do the algebra for (3.28) you will see that one generically gets an SU(5) singu-
larity along x = y = z = 0, which is a copy of S. So from a IIB space-time perspective
we have a stack of five D7-branes with SU(5) gauge symmetry wrapped on S. Inspecting
the discriminant, one finds that there are some additional 7-branes which intersect with
the 7-branes wrapped on S along two curves. The singularity type enhances there to
either SU(6) or SO(10), and one can show that charged matter fields propagate along
these 7-brane intersections, in a representation that depends on the type of enhance-
ment. In particular, one finds matter fields in the 10 of SU(5) propagating along the
curve Σ10 = {a5 = 0} on S, and matter in the 5 of SU(5) propagating along the curve
Σ5 = {a0a25 − a2a3a5 + a23a4 = 0}. These are precisely the representations that the de-
scribe the quarks and leptons (as well as the Higgses) in SU(5) Grand Unified models,
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Figure 7: Schematic picture of SU(5) GUT models, for generic values of the complex
structure moduli. Indicated are the matter curves, branch locus (related to Weyl group
monodromies that we did not discuss), and their intersections.

and the curves where they are localized are called the matter curves. We get additional
enhancements when the matter curves intersect, contributing to the Yukawa couplings.
The geometry (3.28) therefore describes SU(5) Grand Unified Models in F -theory.

3.7. Relation with perturbative IIB and heterotic strings

Finally we would like to briefly describe how the ingredients of perturbative string
compactifications that we studied emerge from F -theory.

Let us start with the IIB limit, also known as the Sen limit of an F -theory compact-
ification, which is really the easier one of the known limits. We take our Calabi-Yau
four-fold to be an elliptic fibration over a (non-Calabi-Yau) Kähler three-fold B3. Recall
that the elliptic fibration was presented in Weierstrass form as

y2 = x3 + fx+ g (3.29)

where f is a section of K−4
B3

, and g is a section of K−6
B3

. Now we are going to introduce
an alternative parametrization of the Weierstrass form, as follows. We consider three
sections b2, b4, b6, where bi is a section of K−i

B3
. Then we will write the equation of the

elliptic fibers in the form

y2 =
1

3
s3 + b2s

2 + 2b4s+ b6 (3.30)
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This version has perhaps a bit more redundancy than the Weierstrass form, due to the
extra quadratic term s2 on the right hand side, but it is clearly a perfectly legal way to
write a family of elliptic curves. One can relate it explicitly to the Weierstrass form by
putting s = x − b2 to eliminate the quadratic term. The coefficients were deliberately
denoted by b2, b4 and b6. As we will see shortly, they are closely related to their namesakes
in the section on perturbative IIB compactifications.

Next we introduce a parameter t, as follows:

y2 =
1

3
s3 + b2s

2 + 2b4st+ b6t
2 (3.31)

The discriminant takes the form ∆ = 324 t2b22(b2b6 − b24) +O(t3). We claim that the IIB
limit corresponds to t→ 0, i.e. one can show that the string coupling eϕ = Im(τ)−1 goes
to zero almost everywhere in this limit. So let’s see what happens to our geometry when
we take this limit.

If we take t→ 0 in (3.31), then we are simply left with y2 = s2(b2+s/3), or equivalently
ỹ2 = b2+s/3 with ỹ = y/s. This is just a CP1, so it might seem that our elliptic fibration
has degenerated to a boring CP1-fibration over B3. However, there is a slightly different
way to take the limit. Let us define s = ts̃, y = tỹ, and then take the limit t→ 0. In this
case (3.31) becomes

ỹ2 = b2s̃
2 + 2b4s̃+ b6 (3.32)

which describes a fibration of conics over B3.

The overall picture then is that in the t → 0 limit, our elliptic fibers have split into
two pieces, and hence the whole Calabi-Yau four-fold has split into two pieces. It’s not
hard to see that the intersection of these two pieces is precisely the Calabi-Yau three-fold
ξ2 = b2 that we discussed in the context of IIB orientifolds. Our conics further degenerate
to a pair of lines when b2b6 − b24 = 0, so there is an S1 shrinking to zero in the fibers
there, which should correspond to the D7-brane locus as we have seen before. Indeed it
has precisely the required form of the locus wrapped by the D7-branes discussed in the
section on perturbative IIB.

It is somewhat amazing to see what has happened here. We discussed perturbative
type IIB compactifications in terms of Calabi-Yau three-folds, orientifold planes and D7
branes. Now we see that much of this information can also be captured by Calabi-Yau
four-fold with slightly degenerate elliptic fibers. Turning on the string coupling simply
corresponds to a smoothing of this degenerate four-fold. To complete the picture we also
have to discuss the fluxes, which one can also do quite explicitly.

It is interesting to see how the perturbative IIB spectrum that we discussed previ-
ously emerges from the Calabi-Yau four-fold. A precise comparison requires logarithmic
cohomology on the degenerate Y4, but there is a simple intuitive rule that works reason-
ably well: even cohomology groups Hp,q

+ (X) on the IIB side lift directly to the four-fold,
whereas odd cohomology groups Hp,q

− (X) only lift after wedging with a one-form dz on
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the elliptic fibers. So the h2,1− (X) complex structure moduli on the IIB side lift to (3, 1)
forms on Y4, which do indeed describe complex structure moduli of Y4. Similarly the
h1,1+ (X) Kähler moduli lift to Kähler moduli of Y4, and the h1,1− (X) periods of (B2, C2)
lift to (2, 1)-forms, which describe periods of the F -theory three-form C(3). The h2,1+ (X)
vectors are a little harder to see. The four-form C+

4 of IIB lifts to C(6) on Y4 with two

indices on the elliptic fiber, where C(6) is the dual of C(3) in M -theory. The h2,1+ (X) lifts
to (3, 2)-forms on Y4, and expanding C(6) in such forms yields the expected vectors.

One can show that the open string spectrum of perturbative IIB, which we did not
discuss in detail, is also reproduced by the four-fold Y4. Roughly they consist of gauge field
deformations on the 7-brane worldvolume described by (0, 1)-forms, and deformations of
the adjoint field described by (2, 0)-forms. By a (1, 1) shift they lift to (1, 2)-forms and
(3, 1)-forms on Y4, corresponding to additional deformations of C(3) and complex structure
moduli of Y4 respectively. Additional open string modes are obtained by quantizing
wrapped M2-branes, as mentioned previously.

The heterotic limit is similar in spirit, but technically more complicated to discuss,
essentially due to the more complicated group theory of E8. Let us consider as a special
case a Weierstrass fibration of the form

y2 = x3 + z5 + fxz4 + gz6 + z7 (3.33)

where we assumed that B3 admits a P1-fibration, z is a coordinate on that P1, and f
and g are independent of z. This form can only be achieved in very special cases, because
in general all the coefficients are non-trivial sections, but let us ignore that here. The
four-fold has an E8 singularity at y = x = z = 0 and another at z =∞. We introduce a
parameter t as

y2 = x3 + tz5 + fxz4 + gz6 + z7 (3.34)

Again as we take t → 0 the Calabi-Yau four-fold splits into two pieces. The first piece
is given by taking t → 0 directly in the above equation, and the second is given by
defining (x, y, z) = (t2x̃, t3ỹ, tz̃) and then taking t → 0. These two pieces intersect over
a Calabi-Yau three-fold, which is identified with the heterotic Calabi-Yau. Since we have
an E8 × E8 gauge symmetry in this case, the heterotic bundle is trivial.
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