A theory for symmetry protected topological order

Xiao-Gang Wen, MIT PiTP, IAS, July., 2014

Xiao-Gang Wen, MIT PiTP, IAS, July., 2014 A theory for symmetry protected topological order

Try to classify quantum states of matter

Quantum states of matter:

- gapless states Very hard beyond 1+1D. I have no clue
- gapped states A classification maybe possible:

- Group theory classifies 230 crystal orders in 3D space.
- What classifies SPT orders?
- What classifies topological orders?

What is a gapped state (or a gapped system)

It is not just the energy spectrum has a gap. $\frac{\text{ground-state}}{\text{subspace}} = \Delta - \text{sinte gap}$

- We need to take thermal dynamical limit.
- But how to take large-size limit without translation symmetry?
- Gapped state may have gapless boundary.
- Avoid boundary by putting the system on manifold without boundary, but the definition will depend on "shapes/topologies" of the manifold.
- How to define gapped state by putting the system on a "ball"?
- Help us to understand what is the input to even define gapped phases
 - \rightarrow Mathematical foundation of gapped phases.

Def. of gapped liquid phase w/o translation symmetry

- A local Hamiltonian $H = \sum O_{ij} + O_{ijk} + \cdots$ on graph w/ a shape of a ball.
- A bulk-gapped local Hamiltonian: Excitations in bulk are all gapped.
 |⟨Φ_{grnd}|Ô_{bluk local}|Φ_{grnd}⟩ - ⟨Φ_{exc}|Ô_{bluk local}|Φ_{exc}⟩| < e^{-distance to boundary} where |Φ_{exc}⟩ has an energy less than, say, Δ/2. All low energy states are locally indistinguishable in the bulk. → unique bulk ground state on a "ball".

Kong-Wen 15

Xiao-Gang Wen, MIT PiTP, IAS, July., 2014 A theory for symmetry protected topological order

Def. of gapped liquid phase w/o translation symmetry

• A gapped liquid phase = an equivalent class of sequences of bulk-gapped local Hamiltonians H_{N_k} with size $N_k \to \infty$, where the equivalence relations are generated by

a) $H_{N_k} \sim (LU) H'_{N_k} (LU)^{\dagger}$

Chen-Gu-Wen, arXiv:1004.3835

b) $H_{N_{k+1}} \sim H_{N_k} \otimes H_{tri}$ $H_{tri} = -\sum S_j^z$

Zeng-Wen, arXiv:1406.5090

Two sequences of Hamiltonians:

Xiao-Gang Wen, MIT PiTP, IAS, July., 2014

Gapped liquid phases = Topological orders

Even w/o symmetry breaking (H has no symmetry), we can have

- different gapped liquid phases
 - = different topological orders
 - = different patterns of long range entanglement
- Short-range entanglement (SRE): = LU equivalent to product state
- Long-range entanglement (LRE): = LU inequivalent to product state

Wen PRB 40, 7387 (1989)

Gapped liquid phases = Topological orders

Even w/o symmetry breaking (H has no symmetry), we can have

- different gapped liquid phases
 - = different topological orders
 - = different patterns of long range entanglement
- Short-range entanglement (SRE): = LU equivalent to product state
- Long-range entanglement (LRE):
 LU inequivalent to product state

- Counter examples (non-liquid gapped states):
- Landau symmetry breaking state
- 3D layered quantum Hall states
- Haah's 3D cubic-code state

Jeongwan Haah, Phys. Rev. A 83, 042330 (2011) arXiv:1101.1962

Wen PRB 40, 7387 (1989)

Examples for gapped liquid phases (topological orders)

• Examples:

- Product state (trivial topological order) $H_{\rm tri} = -\sum \sigma_i^z$
- 1+1D *p*-wave superconductor (fermionic) Kiteav cond-mat/0010440,
- 2+1D p + ip superconductor (fermionic) Read-Green cond-mat/9906453,
- IQH states (2+1D fermionic) Klitzing-Dorda-Pepper PRL 45, 494 (80),
- FQH states (2+1D fermionic) Tsui-Stormer-Gossard, PRL 48, 1559 (82),
- Chiral-spin liquids (bosonic)

Kalmeyer-Laughlin PRL 59, 2095 (87), Wen-Wilczek-Zee PRB 39, 11413 (89), A realization by spin-1/2 on Kagome lattice

- $$\begin{split} H &= J_1 \sum_{1 \text{st}} \mathbf{S}_i \cdot \mathbf{S}_j + J_2 \sum_{2 \text{nd}} \mathbf{S}_i \cdot \mathbf{S}_j + J_3 \sum_{3 \text{rd}} \mathbf{S}_i \cdot \mathbf{S}_j \\ J_2 &= J_3 > 0.1 J_1 \\ & \text{Gong-Zhu-Balents-Sheng arXiv:1412.1571} \end{split}$$
- Z₂-spin liquid Read-Sachdev PRL 66, 1773 (91), Wen PRB 44, 2664 (91)
- Pfaffian state $\mathcal{A}(\frac{1}{z_1-z_2},\frac{1}{z_2-z_3}..)\prod(z_i-z_j)^2$ Moore-Read NPB 360, 362 (91)
- $SU(2)_2$ state $\Psi_{\nu=1}(z_i)\Psi_{\nu=2}(z_i)\Psi_{\nu=2}(z_i)$ Wen PRL 66, 802 (91)

The last two examples are non-abelian with the same non-abelian statistics: $lsing \times U(1)$ or $lsing \times U^2(1)$.

Quantitative/macroscopic characterization of topo. orders

We conjectured that topological order can be completely defined via only two topological properties (at least in 2D):

Wen IJMPB 4, 239 (90); KeskiVakkuri-Wen IJMPB 7, 4227 (93)

(1) Topological ground state degeneracy D_g

- degenerate only in size $ightarrow\infty$ limit
- robust against any impurities
- depend on topology of space

Space Deg.=1 Deg.=D₁ Deg.=D₂ Wen PRB 40, 7387 (89), Wen-Niu PRB 41, 9377 (90)

(2) **Non-Abelian goemetric phases** of the degenerate ground state from local and global deformation of space manifold.

- Local deformation detects grav. Chern-Simons term $e^{i \frac{2\pi c}{24} \int_{M^2 \times S^1} \omega_3}$
- Global deformation of torus: 90° rotation $|\Psi_{\alpha}\rangle \rightarrow |\Psi'_{\alpha}\rangle = S_{\alpha\beta}|\Psi_{\beta}\rangle$ Dehn twist: $|\Psi_{\alpha}\rangle \rightarrow |\Psi'_{\alpha}\rangle = T_{\alpha\beta}|\Psi_{\beta}\rangle$

S, T generate a rep. of modular group: $S^2 = (ST)^3 = C, C^2 = 1$ Wen IJMPB 4, 239 (90); KeskiVakkuri-Wen IJMPB 7, 4227 (93)

The above properties are robust against any impurities!

Xiao-Gang Wen, MIT PiTP, IAS, July., 2014

Monoid and group structures of topological orders

- Let $S_{d+1} = \{a, b, c, \dots\}$ be a set of topologically ordered phases in *d* spatial dimensions. Stacking *a*-TO state and *b*-TO state \rightarrow a *c*-TO state: $a \boxtimes b = c, \quad a, b, c \in S_{d+1}$ $c-TO \begin{bmatrix} a-TO \\ b-TO \end{bmatrix}$
- \boxtimes make S_{d+1} a monoid (a group without inverse). Number of the types of topological excitations $N_c = N_a N_b$.
- Some topological orders have inverse → invertible topological orders (iTO) which form an abelian group.

A topological order is invertible iff it has no non-trivial topological excitations. Kong-Wen arXiv:1405.5858; Freed arXiv:1406.7278

• Examples:

- 1. 1+1D *p*-wave SC (fermionic). 2. 2+1D IQH (fermionic).
- 3. 2+1D p + ip SC (fermionic). 4. 2+1D E_8 QH (bosonic)

2. 2+1D IQH (fermionic).
 4. 2+1D *E*₈ QH (bosonic)

Classification of (potential) invertible topological orders

• Bosonic iTO:

Kapustin arXiv:1404.6659; Kong-Wen arXiv:1405.5858; Wen arXiv:1506.05768

• Fermionic iTO:

Kapustin-Thorngren-Turzillo-Wang arXiv:1406.7329

Kitaev cond-mat/0010440; Read-Green cond-mat/9906453

Classification of (potential) invertible topological orders

(Potential) invertible topological orders are classified by possible gravitational topological terms

- In 2+1D by possible gravitational Chern-Simons terms $e^{i\frac{2\pi c}{24}\int_{M^3}\omega_3},$ which not well defined
- Using $d\omega_3 = p_1$, we define $e^{i\frac{2\pi c}{24}\int_{M^3=\partial M^4}\omega_3} = e^{i\frac{2\pi c}{24}\int_{M^4}p_1}$ which is well defined only when $e^{i\frac{2\pi c}{24}\int_{M^4}p_1} = 1$ on any closed M^4 .
- Bosonic: since $\int_{M^4} p_1 = 3 \times \text{int.}, \rightarrow c = 8 \times \text{int.}$
- Fermionic: since $\int_{spinM^4} p_1 = 48 \times \text{int.} \rightarrow c = \frac{1}{2} \times \text{int.}$ In the above we require the gravitational Chern-Simons terms to

be well defined on any space-time manifolds.

- For condensed matter Hamiltonian systems, we only require the gravitational Chern-Simons terms to be well defined on space-time of form $M^2 \rtimes S^1$ (mapping torus). In this case:
- Bosonic: since $\int_{M^2 \rtimes \Sigma^2} p_1 = 12 \times \text{int.}, \rightarrow c = 2 \times \text{int.}$
- Fermionic: since $\int_{spin(M^2 \rtimes \Sigma^2)} p_1 = 48 \times \text{int.}, \rightarrow c = \frac{1}{2} \times \text{int.}$

Kong-Wen arXiv:1405.5858

2+1D bosonic topo. orders (up to invertibles) via S, T

Dim of S, T = # of topological types > 1.

- There is a basis such that T is diagonal, S unitary & symmetric
 - $T_{ij} = e^{2\pi i s_i} e^{-2\pi i \frac{c}{24}} \delta_{ij}, \quad S_{1i} > 0, \quad N_k^{ij} = \sum_l \frac{S_{li} S_{lj} (S_{lk})^*}{S_{1l}} = \text{integer} \ge 0.$

$$(ST)^3 = S^2 = C, \quad C^2 = 1, \quad C_{ij} = N_1^{ij}.$$

 s_i : spin of i^{th} type of particle. N_k^{ij} : fusion coeff. of the particles. • N_k^{ij} satisfy

$$\begin{split} N_k^{ij} &= N_k^{ji}, \quad N_j^{1i} = \delta_{ij}, \quad \sum_{k=1}^N N_1^{ik} N_1^{kj} = \delta_{ij}, \\ \sum_{m=1}^n N_m^{ij} N_l^{mk} &= \sum_{n=1}^n N_l^{in} N_n^{jk} \text{ or } N_k N_i = N_i N_k \\ \text{where } i, j, \dots = 1, 2, \dots, n, \text{ and the matrix } N_i \text{ is given by} \\ (N_i)_{kj} &= N_k^{ij}. \text{ In fact } N_1^{ij} \text{ defines a charge conjugation } i \to \overline{i}: \\ N_1^{ij} &= \delta_{\overline{i}j}. \end{split}$$

2+1D bosonic topo. orders (up to invertibles) via S, T

There exist a $c \pmod{8}$ to make s_i to satisfy the following conditions:

• N_k^{ij} and s_i satisfy

 $\sum_{j} \tilde{M}_{ij} s_{j} = 0 \mod 1,$ where $\tilde{M}_{ij} = \delta_{ij} \frac{4}{3} \sum_{k} M_{ik} - M_{ij} = \text{integer}, \ M_{ij} = 2N_{j}^{i\bar{i}} N_{i}^{ij} + N_{j}^{i\bar{i}} N_{i}^{j\bar{j}}$

• s_i, S_{ij} satisfy

$$S_{ij} = rac{1}{\sqrt{\sum_i d_i^2}} \sum_k N_k^{ij} \mathrm{e}^{2\pi \mathrm{i} (s_i + s_j - s_k)} d_k.$$

where d_i is the largest eigenvalue of the matrix N_i .

• Let $\nu_i = \frac{1}{D^2} \sum_{jk} N_i^{jk} d_j d_k e^{4\pi i (s_j - s_k)}$. Then, we also have $\nu_i = 0$ if $i \neq \overline{i}$, and $\nu_i = \pm 1$ if $i = \overline{i}$.

Xiao-Gang Wen, MIT PiTP, IAS, July., 2014

2+1D bosonic topo. orders (up to invertibles) via S, T

١	Ven arXiv:1506.05	768 \mathbb{Z}_{16} : minimal be	osonic topo. orders with a fermion		
N_c^B .	d_1, d_2, \cdots	s_1, s_2, \cdots wave func.	N _c ^B	d_1, d_2, \cdots	s_1, s_2, \cdots wave func.
1_1^B	1	0			
2_{1}^{B}	1,1	$0, \frac{1}{4} \qquad \qquad \prod (z_i - z_j)^2$	2^{B}_{-1}	1,1	$0, -\frac{1}{4} \prod (z_i^* - z_i^*)^2$
$2^{B}_{14/5}$	$1, \zeta_3^1$	$0, \frac{2}{5}$	$2^{B}_{-14/5}$	$1, \zeta_{3}^{1}$	$0, -\frac{2}{5}$
3 ^B ₂	1, 1, 1	$0, \frac{1}{3}, \frac{1}{3}$	3 ^B _2	1, 1, 1	$0, -\frac{1}{3}, -\frac{1}{3}$
3 ^B /7	$1, \zeta_{5}^{1}, \zeta_{5}^{2}$	$0, -\frac{1}{7}, \frac{2}{7}$	3 ^B -8/7	$1, \zeta_5^1, \zeta_5^2$	$0, \frac{1}{7}, -\frac{2}{7}$
$3^{B}_{1/2}$	$1, 1, \zeta_2^1$	$0, \frac{1}{2}, \frac{1}{16}$	$3^{B}_{-1/2}$	$1,1,\zeta_2^1$	$0, \frac{1}{2}, -\frac{1}{16}$
$3^{\vec{B}}_{3/2}$	$1,1,\zeta_2^1$	$0, \frac{1}{2}, \frac{3}{16}$ $\Psi_{Pfaffian}$	$3^{B}_{-3/2}$	$1,1,\zeta_2^1$	$0, \frac{1}{2}, -\frac{3}{16}$
$3_{5/2}^{B}$	$1, 1, \zeta_2^1$	$0, \frac{1}{2}, \frac{5}{16} \qquad \Psi_{\nu=2}^2 SU(2)_2$	$3^{B}_{-5/2}$	$1,1,\zeta_2^1$	$0, \frac{1}{2}, -\frac{5}{16}$
$3^{B}_{7/2}$	$1,1,\zeta_2^1$	$0, \frac{1}{2}, \frac{7}{16}$	3 ^B -7/2	$1,1,\zeta_2^1$	$0, \frac{1}{2}, -\frac{7}{16}$
$4_0^{B,a}$	1, 1, 1, 1	$0, 0, 0, \frac{1}{2}$	4 ^B ₄	1, 1, 1, 1	$0, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}$
4_1^B	1, 1, 1, 1	$0, \frac{1}{8}, \frac{1}{8}, \frac{1}{2}$	4 ^B _1	1, 1, 1, 1	$0, -\frac{1}{8}, -\frac{1}{8}, \frac{1}{2}$
4 ^B ₂	1, 1, 1, 1	$0, \frac{1}{4}, \frac{1}{4}, \frac{1}{2}$	4 ^B _2	1, 1, 1, 1	$0, -\frac{1}{4}, -\frac{1}{4}, \frac{1}{2}$
4 ^B ₃	1, 1, 1, 1	$0, \frac{3}{8}, \frac{3}{8}, \frac{1}{2}$	4 ^B _3	1, 1, 1, 1	$0, -\frac{3}{8}, -\frac{3}{8}, \frac{1}{2}$
40 ^{B, b}	1, 1, 1, 1	$0, 0, \frac{1}{4}, -\frac{1}{4}$ $\prod (z_i - z_j)^4$	4 ^B _{9/5}	$1, 1, \zeta_3^1, \zeta_3^1$	$0, -\frac{1}{4}, \frac{3}{20}, \frac{2}{5}$
$4^{B}_{-9/5}$	$1, 1, \zeta_3^1, \zeta_3^1$	$0, \frac{1}{4}, -\frac{3}{20}, -\frac{2}{5}$	4 ^{B'} _{19/5}	$1, 1, \zeta_3^1, \zeta_3^1$	$0, \frac{1}{4}, -\frac{7}{20}, \frac{2}{5}$
$4^{B}_{-19/5}$	$1, 1, \zeta_3^1, \zeta_3^1$	$0, -\frac{1}{4}, \frac{7}{20}, -\frac{2}{5} \Psi_{\nu=3}^2 SU(2)_3$	4 ^{<i>B</i>, <i>c</i>}	$1, \zeta_3^1, \zeta_3^1, \zeta_3^1\zeta_3^1$	$0, \frac{2}{5}, -\frac{2}{5}, 0$
$4^{B}_{12/5}$	$1, \zeta_3^1, \zeta_3^1, \zeta_3^1 \zeta_3^1 \zeta_3^1$	$0, -\frac{2}{5}, -\frac{2}{5}, \frac{1}{5}$	$4^{B}_{-12/5}$	$1, \zeta_3^1, \zeta_3^1, \zeta_3^1 \zeta_3^1$	$0, \frac{2}{5}, \frac{2}{5}, -\frac{1}{5}$
$4^{B'}_{10/3}$	$1, \zeta_7^1, \zeta_7^2, \zeta_7^3$	$0, \frac{1}{3}, \frac{2}{9}, -\frac{1}{3}$	$4^{B}_{-10/3}$	$1, \zeta_7^1, \zeta_7^2, \zeta_7^3$	$0, -\frac{1}{3}, -\frac{2}{9}, \frac{1}{3}$
5 ⁸ 0	1, 1, 1, 1, 1, 1	$0, \frac{1}{5}, \frac{1}{5}, -\frac{1}{5}, -\frac{1}{5}$	5 ^B 4	1, 1, 1, 1, 1, 1	$0, \frac{2}{5}, \frac{2}{5}, -\frac{2}{5}, -\frac{2}{5}$
$5_{2}^{B,a}$	$1, 1, \zeta_4^1, \zeta_4^1, 2$	$0, 0, \frac{1}{8}, -\frac{3}{8}, \frac{1}{3}$	52 ^{B,b}	$1, 1, \zeta_4^1, \zeta_4^1, 2$	$0, 0, -\frac{1}{8}, \frac{3}{8}, \frac{1}{3}$
$5^{\bar{B},b}_{-2}$	$1, 1, \zeta_4^1, \zeta_4^1, 2$	$0, 0, \frac{1}{8}, -\frac{3}{8}, -\frac{1}{3}$	$5^{\overline{B},a}_{-2}$	$1, 1, \zeta_4^1, \zeta_4^1, 2$	$0, 0, -\frac{1}{8}, \frac{3}{8}, -\frac{1}{3}$
$5^{B}_{16/11}$	$1, \zeta_9^1, \zeta_9^2, \zeta_9^3, \zeta_9^4$	$0, -\frac{5}{11}, \frac{2}{11}, \frac{1}{11}, -\frac{5}{11}$	$5^{B}_{-16/11}$	$1, \zeta_9^1, \zeta_9^2, \zeta_9^3, \zeta_9^4$	$0, \frac{2}{11}, -\frac{2}{11}, -\frac{1}{11}, \frac{5}{11}$
$5^{B}_{18/7}$	$1, \zeta_5^2, \zeta_5^2, \zeta_{12}^2, \zeta_{12}^4$	$0, -\frac{1}{7}, -\frac{1}{7}, \frac{1}{7}, \frac{3}{7}$	5 ^B -18/7	$1, \zeta_5^2, \zeta_5^2, \zeta_{12}^2, \zeta_{12}^4$	$0, \frac{1}{7}, \frac{1}{7}, -\frac{1}{7}, -\frac{3}{7} < C$

Xiao-Gang Wen, MIT PiTP, IAS, July., 2014

2+1D fermionic topological orders (up to invertibles)

Classified by **modular BFC over** $sRep(Z_2^f)$.

NF	Share	D^2	d: do	St. St	
2F	0	2	1 1	0 1	trivial Fe
20 AF	0	2	1,1	0, 2	T o o ^B
40 F	0.5	4	1, 1, 1, 1	0, 2, 4, -4	$\mathcal{F}_0 \otimes \mathcal{I}_1$
$4'_{1/5}$	0.9276	7.2360	$1, 1, \zeta_3^+, \zeta_3^+$	$0, \frac{1}{2}, \frac{1}{10}, -\frac{1}{5}$	$\mathcal{F}_0 \otimes 2^{D}_{-14/5}$
$4^{F}_{-1/5}$	0.9276	7.2360	$1, 1, \zeta_3^1, \zeta_3^1$	$0, \frac{1}{2}, -\frac{1}{10}, \frac{2}{5}$	$\mathcal{F}_0 \otimes 2^B_{14/5}$
4 ^F _{1/4}	1.3857	13.6568	$1, 1, \zeta_6^2, \zeta_6^2$	$0, \frac{1}{2}, -\frac{1}{4}, \frac{1}{4}$	$\mathcal{F}_{(A_1,6)}$
6 ^F	0.7924	6	1, 1, 1, 1, 1, 1	$0, \frac{1}{2}, \frac{1}{6}, -\frac{1}{3}, \frac{1}{6}, -\frac{1}{3}$	$\mathcal{F}_0 \otimes 3^B_{-2}$
6 ^F	0.7924	6	1, 1, 1, 1, 1, 1	$0, \frac{1}{2}, -\frac{1}{6}, \frac{1}{3}, -\frac{1}{6}, \frac{1}{3}$	$\mathcal{F}_0 \otimes 3_2^B$
6 ^F	1	8	$1, 1, 1, 1, \zeta_2^1, \zeta_2^1$	$0, \frac{1}{2}, 0, \frac{1}{2}, \frac{1}{16}, -\frac{7}{16}$	$\mathcal{F}_0 \otimes 3^B_{1/2}$
6 ^F	1	8	$1, 1, 1, 1, \zeta_2^1, \zeta_2^1$	$0, \frac{1}{2}, 0, \frac{1}{2}, \frac{3}{16}, -\frac{5}{16}$	$\mathcal{F}_0 \otimes 3^{B}_{3/2}$
6 ^F	1	8	$1, 1, 1, 1, \zeta_2^1, \zeta_2^1$	$0, \frac{1}{2}, 0, \frac{1}{2}, \frac{5}{16}, -\frac{3}{16}$	$\mathcal{F}_0 \otimes 3^{B'}_{-3/2}$
6 ^F	1	8	$1, 1, 1, 1, \zeta_2^1, \zeta_2^1$	$0, \frac{1}{2}, 0, \frac{1}{2}, \frac{7}{16}, -\frac{1}{16}$	$\mathcal{F}_0 \otimes 3^B_{-1/2}$
6 ^F _{1/7}	1.6082	18.5916	$1, 1, \zeta_5^1, \zeta_5^1, \zeta_5^2, \zeta_5^2$	$0, \frac{1}{2}, \frac{5}{14}, -\frac{1}{7}, -\frac{3}{14}, \frac{2}{7}$	$\mathcal{F}_0 \otimes 3^{B'}_{8/7}$
6 ^F / _{-1/7}	1.6082	18.5916	$1, 1, \zeta_5^1, \zeta_5^1, \zeta_5^2, \zeta_5^2$	$0, \frac{1}{2}, -\frac{5}{14}, \frac{1}{7}, \frac{3}{14}, -\frac{2}{7}$	$\mathcal{F}_0 \otimes 3^{B'}_{-8/7}$
6 ^F	2.2424	44.784	$1, 1, \zeta_{10}^2, \zeta_{10}^2, \zeta_{10}^4, \zeta_{10}^4$	$0, \frac{1}{2}, \frac{1}{3}, -\frac{1}{6}, 0, \frac{1}{2}$	primitive
6 ^F	2.2424	44.784	$1, 1, \zeta_{10}^2, \zeta_{10}^2, \zeta_{10}^4, \zeta_{10}^4$	$0, \frac{1}{2}, -\frac{1}{3}, \frac{1}{6}, 0, \frac{1}{2}$	$\mathcal{F}_{(A_1,10)}$
8 ^F	1	8	1, 1, 1, 1, 1, 1, 1, 1, 1	$0, \frac{1}{2}, 0, \frac{1}{2}, \frac{1}{8}, -\frac{3}{8}, \frac{1}{8}, -\frac{3}{8}$	$\mathcal{F}_0 \otimes 4_1^B$
8 ^F	1	8	1, 1, 1, 1, 1, 1, 1, 1, 1	$0, \frac{1}{2}, 0, \frac{1}{2}, -\frac{1}{4}, \frac{1}{4}, -\frac{1}{4}, \frac{1}{4}$	$\mathcal{F}_0 \otimes 4_0^B$
8 ^F 0	1	8	1, 1, 1, 1, 1, 1, 1, 1, 1	$0, \frac{1}{2}, 0, \frac{1}{2}, \frac{3}{8}, -\frac{1}{8}, \frac{3}{8}, -\frac{1}{8}$	$\mathcal{F}_0 \otimes 4^B_{-1}$
8 ^F 0	1	8	1, 1, 1, 1, 1, 1, 1, 1, 1	$0, \frac{1}{2}, 0, \frac{1}{2}, \frac{1}{2}, 0, \frac{1}{2}, 0$	$\mathcal{F}_0 \otimes 4^B_0$
8 ^F _{1/5}	1.4276	14.4720	$1, 1, 1, 1, 1, \zeta_3^1, \zeta_3^1, \zeta_3^1, \zeta_3^1$	$0, \frac{1}{2}, -\frac{1}{4}, \frac{1}{4}, \frac{1}{10}, -\frac{2}{5}, \frac{7}{20}, -\frac{3}{20}$	$\mathcal{F}_0 \otimes 4^B_{-9/5}$
8 ^F -1/5	1.4276	14.4720	$1, 1, 1, 1, 1, \zeta_3^1, \zeta_3^1, \zeta_3^1, \zeta_3^1$	$0, \frac{1}{2}, -\frac{1}{4}, \frac{1}{4}, -\frac{1}{10}, \frac{2}{5}, \frac{3}{20}, -\frac{7}{20}$	$\mathcal{F}_0 \otimes 4^B_{9/5}$

Xiao-Gang Wen, MIT PiTP, IAS, July., 2014

• A symmetric gapped liquid phase

- \equiv a symmetry enriched topological (SET) order
- = an equivalent class of gapped quantum states, with **symmetric** equivalence relations generated by
- a) $H \sim (symm.LU)H(symm.LU)^{\dagger}$
- b) $H \sim H \otimes H_{tri}$, with $H_{tri} = \mathbf{S}_1 \cdot \mathbf{S}_2 + \mathbf{S}_3 \cdot \mathbf{S}_4 + \cdots$

Symmetric gapped liquid phases w/o topo. order

• Gapped liquid phases with symmetry and no topological order \rightarrow symmetry protected topological/trivial (SPT) order $(LU)H_{SPT}(LU)^{\dagger} \sim H_{tri} \rightarrow$ trivial topological order $(symm.LU)H_{SPT}(symm.LU)^{\dagger} \approx H_{tri} \rightarrow$ non-trivial SPT order

Gu-Wen arXiv:0903.1069; Chen-Gu-Wen arXiv:1004.3835

• Examples:

- 1. Haldane phase of spin-1 chain (bosonic) Haldane 83
- 2. Topological insulators (fermionic).

2D: Kane-Mele 05; Bernevig-Zhang 06; 3D: Moore-Balents 07; Fu-Kane-Mele 07

An SO(3) SPT state in spin-1 chain (Haldane phase)

- If we do not project out the spin-0 state and consider spin-1, 0 chain \rightarrow ideal SO(3) SPT state (RG fixed point). Gu-Wen arXiv:0903.1069
- Degenerate spin-1/2 doublet at each boundary, if we do not break the *SO*(3) symmetry.
- The above is a different gapped symmetric phase than the local singlet state of spin-1, 0 chain

A Z₂ SPT state on square lattice Chen-Liu-Wen arXiv:1106.4752

 $(spin-1/2)^4$

One

• Haldane phase with SO(3) symm.:

- 2D SPT phase with Z₂ symm.:
 - Physical states on each site: $(\text{spin}-\frac{1}{2})^4 = |\alpha\rangle \otimes |\beta\rangle \otimes |\gamma\rangle \otimes |\lambda\rangle$ _{CZ}
 - The ground state wave function: $|\Psi_{CZX}\rangle = \bigotimes_{\text{all squares}} (|\uparrow\uparrow\uparrow\uparrow\uparrow\rangle + |\downarrow\downarrow\downarrow\downarrow\downarrow\rangle)$

A Z₂ SPT state on square lattice Chen-Liu-Wen arXiv:1106.4752

• Haldane phase with SO(3) symm.:

- 2D SPT phase with Z₂ symm.:
 - Physical states on each site: $(\text{spin}-\frac{1}{2})^4 = |\alpha\rangle \otimes |\beta\rangle \otimes |\gamma\rangle \otimes |\lambda\rangle$ $_{\text{CZ}_{12}}$
 - The ground state wave function: $|\Psi_{CZX}\rangle = \otimes_{\text{all squares}} (|\uparrow\uparrow\uparrow\uparrow\uparrow\rangle + |\downarrow\downarrow\downarrow\downarrow\downarrow\rangle)$
 - The on-site Z_2 symmetry: (acting on each site $|\alpha\rangle \otimes |\beta\rangle \otimes |\gamma\rangle \otimes |\lambda\rangle$): $U_{CZX} = U_{CZ}U_X, \quad U_X = X_1X_2X_3X_4, \quad U_{CZ} = CZ_{12}CZ_{23}CZ_{34}CZ_{41}$ $CZ_{ij} : |\uparrow\uparrow\rangle \rightarrow |\uparrow\uparrow\rangle, \quad |\uparrow\downarrow\rangle \rightarrow |\uparrow\downarrow\rangle, \quad |\downarrow\uparrow\rangle \rightarrow |\downarrow\uparrow\rangle, \quad |\downarrow\downarrow\rangle \rightarrow -|\downarrow\downarrow\rangle$

 $(spin-1/2)^4$

One

イロン イヨン イヨン イヨン

A Z_2 SPT state on square lattice Chen-Liu-Wen arXiv:1106.4752

• Haldane phase with SO(3) symm.:

- 2D SPT phase with Z₂ symm.:
 - Physical states on each site: $(\text{spin}-\frac{1}{2})^4 = |\alpha\rangle \otimes |\beta\rangle \otimes |\gamma\rangle \otimes |\lambda\rangle$ $_{\text{CZ}_{12}}$
 - The ground state wave function: $|\Psi_{CZX}\rangle = \bigotimes_{all \ squares}(|\uparrow\uparrow\uparrow\uparrow\uparrow\rangle + |\downarrow\downarrow\downarrow\downarrow\downarrow\rangle)$
 - The on-site Z_2 symmetry: (acting on each site $|\alpha\rangle \otimes |\beta\rangle \otimes |\gamma\rangle \otimes |\lambda\rangle$): $U_{CZX} = U_{CZ}U_X$, $U_X = X_1X_2X_3X_4$, $U_{CZ} = CZ_{12}CZ_{23}CZ_{34}CZ_{41}$ $CZ_{ij} : |\uparrow\uparrow\rangle \rightarrow |\uparrow\uparrow\rangle$, $|\uparrow\downarrow\rangle \rightarrow |\uparrow\downarrow\rangle$, $|\downarrow\uparrow\rangle \rightarrow |\downarrow\uparrow\rangle$, $|\downarrow\downarrow\rangle \rightarrow -|\downarrow\downarrow\rangle$

 $(spin-1/2)^4$

Ð

=

One

- Z_2 symm. Hamiltonian $H = \sum_{\square} H_p$, $H_p = -X_{abcd} P_{ef} P_{gh} P_{ij} P_{kl}$, $X_{abcd} = |\uparrow\uparrow\uparrow\uparrow\rangle\langle\downarrow\downarrow\downarrow\downarrow\rangle |+|\downarrow\downarrow\downarrow\downarrow\rangle\langle\uparrow\uparrow\uparrow\uparrow\uparrow\rangle |$, $P = |\uparrow\uparrow\rangle\langle\uparrow\uparrow\downarrow\rangle |+|\downarrow\downarrow\downarrow\rangle\langle\downarrow\downarrow\rangle |$.

Edge excitations for the 2D Z_2 SPT state

- Bulk Hamiltonian $H = \sum_{\square} H_p$, $H_p = -X_{abcd} P_{ef} P_{gh} P_{ij}$, P_{kl} , $X_{abcd} = |\uparrow\uparrow\uparrow\uparrow\rangle\langle\downarrow\downarrow\downarrow\downarrow\rangle |+|\downarrow\downarrow\downarrow\rangle\langle\uparrow\uparrow\uparrow\uparrow\uparrow|$, $P = |\uparrow\uparrow\rangle\langle\uparrow\uparrow\uparrow| + |\downarrow\downarrow\rangle\langle\downarrow\downarrow\downarrow|$.
- Edge excitations: gapless or break the Z₂ symmetry, robust against any perturbations that do not break the Z₂ symmetry.
- Edge effective spin $|\tilde{\uparrow}\rangle$ and $|\tilde{\downarrow}\rangle$.

• Edge eff. Z_2 symm. : $\tilde{U}_{Z_2} = \prod_i CZ_{i,i+1} \prod_i \tilde{X}_i$ which cannot be written as $U_{Z_2} = \prod_i O_i$, such as $U_{Z_2} = \prod \tilde{X}_i$. Not an on-site symmetry!

• Edge effective Ham. (c = 1 gapless if the Z_2 is not broken) $H = \sum \left(-J\tilde{Z}_i\tilde{Z}_{i+1} + B_x[\tilde{X}_i + \tilde{Z}_{i-1}\tilde{X}_i\tilde{Z}_{i+1}] + B_y[\tilde{Y}_i - \tilde{Z}_{i-1}\tilde{Y}_i\tilde{Z}_{i+1}] \right)$ $H = \sum (\tilde{X}_i + \tilde{Z}_{i-1}\tilde{X}_i\tilde{Z}_{i+1})$ dual to $H = -\sum (X_iX_{i+1} + Y_iY_{i+1})$ • Non-on-site $\tilde{U}_{Z_2} \rightarrow$ anomalous symmetry. Not gaugable. On-site $U_{Z_2} \rightarrow$ anomaly-free symm. – the usual global symm. ≥ 0.000 Xiao-Gang Wen, MIT PITP, IAS, July, 2014 • A theory for symmetry protected topological order

Field theory for edge of the 2+1D Z_2 SPT state

- The primary field of U(1) current algebra $V_{l,m}$ has dimensions $(h_R, h_L) = (\frac{(l+2m)^2}{8}, \frac{(l-2m)^2}{8}).$
- The Z_2 symmetry action $V_{l,m} \rightarrow (-)^{l+m} V_{l,m}$
- Edge effective (chiral boson) theory:

Chen-Wen arXiv:1206.3117

$$\mathcal{L}_{edge} = -\frac{1}{4\pi} (\partial_x \phi_1 \partial_t \phi_2 + \partial_x \phi_2 \partial_t \phi_1) - \frac{1}{4\pi} V (\partial_x \phi_1 \partial_x \phi_1 + \partial_x \phi_2 \partial_x \phi_2)$$

where $\phi_1 \sim \phi_1 + 2\pi$, $\phi_2 \sim \phi_2 + 2\pi$.

- Z_2 symmetry = $(\phi_1, \phi_2) \rightarrow (\phi_2, \phi_1)$
- Choose $\phi_{\pm} = \phi_1 \pm \phi_2$ (Under $Z_2: \phi_{\pm} \to \pm \phi_{\pm}$)

$$\mathcal{L}_{edge} = -\frac{1}{8\pi} (\partial_x \phi_+ \partial_t \phi_+ - \partial_x \phi_- \partial_t \phi_-) - \frac{1}{8\pi} V[(\partial_x \phi_+)^2 + (\partial_x \phi_-)^2]$$

 ϕ_+ right movers with no Z_2 charge. ϕ_- left movers with Z_2 charge.

- The 1+1D theory has a Z_2 anomaly
 - \rightarrow It is the edge of a 2+1D Z_2 SPT state.

Non-linear σ -model (NL σ M) for generic SPT states

- Consider an d + 1D system: $S = \int d^d x dt \frac{1}{2\lambda} |g^{-1}(x)\partial g(x)|^2$, Symmetry $g(x) \to hg(x)$. h, g are unitary matrices in G.
- λ is small \rightarrow the ground state is ordered $\langle g(x,t) \rangle = g_0$. λ is large \rightarrow the ground state is disordered $\langle g(x,t) \rangle = 0$.
- The fixed point action of the disordered phases: Under RG, $\lambda \to \infty \to$ the disordered symmetric phase is described by a fixed point theory $S_{\text{fixed}} = 0$ or $e^{-S_{\text{fixed}}} = 1$. All correlations are short ranged. All excitations are gapped.
- We thought that the disordered ground states are trivial, no excitations at low energies.

But the disordered ground states can be non-trivial: they can belong to different phases, even without symmetry breaking.

 \rightarrow the notions of topological orders and SPT orders.

Chen-Gu-Liu-Wen arXiv:1106.4772

$NL\sigma M$ with topological terms

Different disordered phases can arise from NL σ M with different topological terms.

3 > 4 3

$NL\sigma M$ with topological terms

Different disordered phases can arise from NL σM with different topological terms.

- Another *G* symmetric system
 - $S = \int \mathrm{d}^d x \,\mathrm{d}t \Big(\frac{1}{2\lambda} |g^{-1} \partial g|^2 + 2\pi \mathrm{i} W_{\mathsf{G-top}} \Big)$

where $W_{G-top}[g(x^i, t)]$ is a topological term.

- The topo. term $W_{G-top}[g(x^i, t)]$ can appear if $\pi_{d+1}(G) \neq 0$. Example 1: 0 + 1D with $G = U_1 = S^1$ ($g = e^{i\theta}$), $\pi_1(U_1) = \mathbb{Z}$ $W_{G-top} = -k\frac{i}{2\pi}g^{-1}\partial_t g = k\frac{\dot{\theta}}{2\pi}$, $k \in \mathbb{Z}$. $\int dt W_{G-top} = k \times$ winding number. Example 2: 2 + 1D with $G = SU_2 = S^3$, $\pi_3(SU_2) = \mathbb{Z}$ $W_{G-top} = k\frac{1}{24\pi^2} \epsilon^{\mu\nu\lambda} (ig^{-1}\partial_{\mu}g)(ig^{-1}\partial_{\nu}g)(ig^{-1}\partial_{\lambda}g)$, $k \in \mathbb{Z}$. $\int dt d^2x W = k \times$ winding number.
- The topological term has no dynamical effect $e^{-S_{fixed}} = 1$, but can give rise to different symmetric phases classified by k

コン 不得 とくき とくき とうき

• If λ is large \rightarrow disordered state.

Under RG, $\lambda \to \infty \to$ disordered symmetric ground state is described by a low energy fixed-point theory $S_{\rm fixed} = 2\pi\,{\rm i}\int W_{\rm G-top}$

– topological non-linear σ -model with pure topological term.

向下 イヨト イヨト

• If λ is large \rightarrow disordered state.

Under RG, $\lambda \to \infty \to$ disordered symmetric ground state is described by a low energy fixed-point theory $S_{\text{fixed}} = 2\pi i \int W_{\text{G-top}}$

- topological non-linear σ -model with pure topological term.
- Fixed point theories (2π-quantized topological terms) ↔ symmetric phases:

The symmetric phases are classified by different 2π -quantized topological terms $(Hom(\pi_{d+1}(G), \mathbb{Z}) \text{ linear maps } \pi_{d+1}(G) \to \mathbb{Z})$ Ex. $S = 2\pi i \int W_{G-top} = k \frac{2\pi i}{24\pi^2} \int (ig^{-1} dg)^3, \quad k \in \mathbb{Z}$ Hom $(\pi_{d+1}(G), \mathbb{Z}) = \{k\}.$

• If λ is large \rightarrow disordered state.

Under RG, $\lambda \to \infty \to \text{disordered symmetric ground state is}$ described by a low energy fixed-point theory $S_{\text{fixed}} = 2\pi i \int W_{\text{G-top}}$

- topological non-linear σ -model with pure topological term.
- Fixed point theories (2π-quantized topological terms) ↔ symmetric phases:

The symmetric phases are classified by different 2π -quantized topological terms $(Hom(\pi_{d+1}(G), \mathbb{Z}) \text{ linear maps } \pi_{d+1}(G) \to \mathbb{Z})$ Ex. $S = 2\pi i \int W_{G-top} = k \frac{2\pi i}{24\pi^2} \int (ig^{-1} dg)^3, \quad k \in \mathbb{Z}$ Hom $(\pi_{d+1}(G), \mathbb{Z}) = \{k\}.$

• Hom $(\pi_{d+1}(G),\mathbb{Z})$ is wrong. The right answer is $\mathcal{H}^{d+1}(G, U_1)$.

イロト イポト イヨト イヨト

• If λ is large \rightarrow disordered state.

Under RG, $\lambda \to \infty \to \text{disordered symmetric ground state is}$ described by a low energy fixed-point theory $S_{\text{fixed}} = 2\pi i \int W_{\text{G-top}}$

- topological non-linear σ -model with pure topological term.
- Fixed point theories (2π-quantized topological terms) ↔ symmetric phases:

The symmetric phases are classified by different 2π -quantized topological terms $(Hom(\pi_{d+1}(G), \mathbb{Z}) \text{ linear maps } \pi_{d+1}(G) \to \mathbb{Z})$ Ex. $S = 2\pi i \int W_{G-top} = k \frac{2\pi i}{24\pi^2} \int (ig^{-1} dg)^3, \quad k \in \mathbb{Z}$ Hom $(\pi_{d+1}(G), \mathbb{Z}) = \{k\}.$

- Hom $(\pi_{d+1}(G),\mathbb{Z})$ is wrong. The right answer is $\mathcal{H}^{d+1}(G,U_1)$.
- In the $\lambda \to \infty$ limit, $g(x^i, t)$ is not a continuous function. The mapping classes $\pi_{d+1}(G)$ does not make sense. The above result is not valid. However, the idea is OK.

ヘロン 人間 とくほと くほとう

• If λ is large \rightarrow disordered state.

Under RG, $\lambda \to \infty \to \text{disordered symmetric ground state is}$ described by a low energy fixed-point theory $S_{\text{fixed}} = 2\pi i \int W_{\text{G-top}}$

- topological non-linear σ -model with pure topological term.
- Fixed point theories (2π-quantized topological terms) ↔ symmetric phases:

The symmetric phases are classified by different 2π -quantized topological terms $(Hom(\pi_{d+1}(G), \mathbb{Z}) \text{ linear maps } \pi_{d+1}(G) \to \mathbb{Z})$ Ex. $S = 2\pi i \int W_{G-top} = k \frac{2\pi i}{24\pi^2} \int (ig^{-1} dg)^3, \quad k \in \mathbb{Z}$ Hom $(\pi_{d+1}(G), \mathbb{Z}) = \{k\}.$

- Hom $(\pi_{d+1}(G),\mathbb{Z})$ is wrong. The right answer is $\mathcal{H}^{d+1}(G,U_1)$.
- In the $\lambda \to \infty$ limit, $g(x^i, t)$ is not a continuous function. The mapping classes $\pi_{d+1}(G)$ does not make sense. The above result is not valid. However, the idea is OK.
- Can we define topological terms and topological non-linear σ-models when space-time is a discrete lattice?

Xiao-Gang Wen, MIT PiTP, IAS, July., 2014 A theory for symmetry protected topological order

$\mathsf{NL}\sigma\mathsf{M}$ on 1+1D space-time lattice

• Path integral on 1+1D space-time lattice with branching structure: $e^{-S} = \prod \nu_2^{s_{ijk}}(g_i, g_j, g_k),$

where $\nu^{s_{ijk}}(g_i, g_j, g_k) = e^{-\int_{\triangle} L}$ and $s_{ijk} = 1, *$

 The above defines a LNσM with target space G on 1+1D space-time lattice.

• The NL σ M will have a symmetry G if $g_i \in G$ and

 $u_2(g_i,g_j,g_k) = \nu_2(hg_i,hg_j,hg_k), h \in G$

• The above is the lattice version of NL σ M field theory:

 $\mathcal{L} = \frac{1}{\lambda} |g^{-1} \partial g|^2$, symm. $h: g(x) \to hg(x)$

Topo. term and topo. NL σ M on space-time lattice

- $\nu(g_i, g_j, g_k)$ give rise to a topological NL σ M if $e^{-S_{fixed}} = \prod \nu^{s_{ijk}}(g_i, g_j, g_k) = 1$ on any sphere, including a tetrahedron (simplest sphere).
- $\nu(g_i, g_j, g_k) \in U_1$
- \bullet On a tetrahedron \rightarrow 2-cocycle condition

*g*₁ *g*₂ *g*₃ *g*₁ *g*

 $\nu_2(g_1, g_2, g_3)\nu_2(g_0, g_1, g_3)\nu_2^{-1}(g_0, g_2, g_3)\nu_2^{-1}(g_0, g_1, g_2) = 1$

The solutions of the above equation are called group cocycle.

- The 2-cocycle condition has many solutions: $\nu_2(g_0, g_1, g_2)$ and $\tilde{\nu}_2(g_0, g_1, g_2) = \nu_2(g_0, g_1, g_2) \frac{\beta_1(g_1, g_2)\beta_1(g_0, g_1)}{\beta_1(g_0, g_2)}$ are both cocycles. We say $\nu_2 \sim \tilde{\nu}_2$ (equivalent).
- The set of the equivalent classes of u_2 is denoted as

 $\mathcal{H}^2(G, U_1) = \pi_0$ (space of the solutions).

• $\mathcal{H}^2(G, U_1)$ (\rightarrow topo. terms) describes 1+1D SPT phases protected by G.

Xiao-Gang Wen, MIT PiTP, IAS, July., 2014

Group cohomology $\mathcal{H}^{d}[G, U_{1}]$ in any dimensions

• *d*-Cochain: U_1 valued function of d + 1 variables

 $u_d(g_0,...,g_d) =
u_d(gg_0,...,gg_d) \in U_1, \ o \ ext{on-site} \ \ {\sf G} \ ext{-symmetry}$

• δ -map: ν_d with d + 1 variables $\rightarrow (\delta \nu_d)$ with d + 2 variables $(\delta \nu_d)(g_0, ..., g_{d+1}) = \prod \nu_d^{(-)^i}(g_0, ..., \hat{g}_i, ..., g_{d+1})$

• Cocycles = cochains that satisfy

 $(\delta \nu_d)(g_0, ..., g_{d+1}) = 1.$

• Equivalence relation generated by any d - 1-cochain:

 $\nu_d(g_0,...,g_d) \sim \nu_d(g_0,...,g_d)(\delta\beta_{d-1})(g_0,...,g_d)$

• $\mathcal{H}^{d+1}(G, U_1)$ is the equivalence class of cocycles ν_d . d + 1D lattice topological NL σ Ms with symmetry G in are classified by $\mathcal{H}^{d+1}(G, U_1)$:

 $e^{-S} = \prod \nu_{d+1}^{\mathfrak{s}(i,j,\ldots)}(g_i,g_j,\ldots), \ \nu_{d+1}(g_0,g_1,\ldots,g_{d+1}) \in \mathcal{H}^{d+1}(G,U_1)$

Topological invariance in topological NL σ Ms

As we change the space-time lattice, the action amplitude e^{-S} does not change:

 $\nu_2(g_0, g_1, g_2)\nu_2^{-1}(g_1, g_2, g_3) = \nu_2(g_0, g_1, g_3)\nu_2^{-1}(g_0, g_2, g_3)$

 $\nu_2(g_0, g_1, g_2)\nu_2^{-1}(g_1, g_2, g_3)\nu_2(g_0, g_2, g_3) = \nu_2(g_0, g_1, g_3)$

as implied by the cocycle condition:

 $\nu_2(g_1, g_2, g_3)\nu_2(g_0, g_1, g_3)\nu_2^{-1}(g_0, g_2, g_3)\nu_2^{-1}(g_0, g_1, g_2) = 1$

The topological NL σ M is a RG fixed-point.

• What is the ground state wave function of the topological NL σ M?

- 4 回 2 - 4 □ 2 - 4 □ 0 = 0 □ 0 = 0 □ 0 = 0 □ 0 = 0 □ 0 = 0 □ 0 = 0 □ 0 = 0 □ 0 = 0 □ 0 = 0 □ 0 = 0 □ 0 = 0 □ 0 = 0 □ 0 = 0 □
The NL σ M ground state is short-range entangled

The ground state wave function $\Psi(\{g_i\}) = \prod_i \nu_2(g_i, g_{i+1}, g^*)$

The NL σ M ground state is short-range entangled

The ground state wave function $\Psi(\{g_i\}) = \prod_i \nu_2(g_i, g_{i+1}, g^*)$

• It is symmetric under the G-transformation

The NL σ M ground state is short-range entangled

The ground state wave function $\Psi(\{g_i\}) = \prod_i \nu_2(g_i, g_{i+1}, g^*)$

- It is symmetric under the G-transformation
- It is equivalent to a product state $|\Psi_0\rangle = \bigotimes_i \sum_{g_i} |g_i\rangle$ under a LU transformation (note that $\Psi_0(\{g_i\}) = 1$)

 $\Psi(\{g_i\}) = \prod_{i=\text{even}} \nu_2(g_i, g_{i+1}, g^*) \prod_{i=\text{odd}} \nu_2(g_i, g_{i+1}, g^*) \Psi_0(\{g_i\})$ $= \bigoplus_{i=\text{odd}} \Psi_0(\{g_i\}) \rightarrow \text{Short-range entangled}$

The ground state is symmetric with a trivial topo. order

Xiao-Gang Wen, MIT PiTP, IAS, July., 2014 A theory for symmetry protected topological order

Does the partition function $Z[M^{d+1}]$ have any no trivial dependence on the "shape" or topology of the space-time manifold M^{d+1} ?

$$Z[M^{d+1}] = \sum_{\{g_i\}} \prod \nu_{d+1}^{s_{012\cdots}}(g_0, g_1, g_2, \cdots) = |G|^{N_{\nu}}$$

for any space-time manifold M^{d+1} obtained by gluing S^{d+1} 's.

No topological order (?)

$\overline{\mathsf{SPT}}$ phases from $\mathcal{H}^{d+1}(G,U_1)$ Chen-Gu-I

Chen-Gu-Liu-Wen arXiv:1106.4772

Symmetry G	<i>d</i> = 0	<i>d</i> = 1	<i>d</i> = 2	<i>d</i> = 3	
$U_1 \rtimes Z_2^T$ (top. ins.)	Z	Z ₂ (0)	\mathbb{Z}_2 (\mathbb{Z}_2)	\mathbb{Z}_2^2 (\mathbb{Z}_2)	1 oren
$U_1 \rtimes Z_2^T imes trans$	Z	$\mathbb{Z} imes \mathbb{Z}_2$	$\mathbb{Z} imes \mathbb{Z}_2^3$	$\mathbb{Z} \times \mathbb{Z}_2^8$	
$U_1 imes Z_2^T$ (spin sys.)	0	\mathbb{Z}_2^2	0	\mathbb{Z}_2^3	
$U_1 imes Z_2^T imes$ trans	0	\mathbb{Z}_2^2	\mathbb{Z}_2^4	\mathbb{Z}_2^9	A CONTRACT OF
Z_2^T (top. SC)	0	$\mathbb{Z}_2(\mathbb{Z})$	0 (0)	$\mathbb{Z}_2(0)$	1250
$Z_2^T imes trans$	0	\mathbb{Z}_2	\mathbb{Z}_2^2	\mathbb{Z}_2^4	
U_1	\mathbb{Z}	0	Z	0	
$U_1 imes$ trans	\mathbb{Z}	\mathbb{Z}	\mathbb{Z}^2	\mathbb{Z}^4	(marks)
Z_n	\mathbb{Z}_n	0	\mathbb{Z}_n	0	1251
$Z_n \times Z_n$	\mathbb{Z}_n^2	\mathbb{Z}_n	\mathbb{Z}_n^3	\mathbb{Z}_n^2	
$Z_n \times Z_n \times Z_n$	\mathbb{Z}_n^3	\mathbb{Z}_n^3	\mathbb{Z}_n^7	\mathbb{Z}_n^8	
$D_{2h} = Z_2 \times Z_2 \times Z_2^T$	\mathbb{Z}_2^2	\mathbb{Z}_2^4	\mathbb{Z}_2^6	\mathbb{Z}_2^9	
<i>SU</i> (2)	0	0	\mathbb{Z}	0	
<i>SO</i> (3) (spin sys.)	0	\mathbb{Z}_2	Z	0	
$SO(3) \times Z_2^T$ (spin sys.)	0	\mathbb{Z}_2^2	\mathbb{Z}_2	\mathbb{Z}_2^3	
" Z_2^T ": time reversal,	g ₂ t	opological order	82 ⁸ SY-LRE 1	SY–LRE 2	SET orders (tensor category
"trans": translation,	I	RE 1 LRE 2	SB-LRE 1	topo. order -	w/ symmetry)
0 \rightarrow only trivial phase.			SB-SRE 1	SB-SRE 2	symmetry breaking
$(\mathbb{Z}_2) \to \text{free fermion result}$		SRE	SY-SRE 1	SY-SRE 2	SPT orderes =

Xiao-Gang Wen, MIT PiTP, IAS, July., 2014

A theory for symmetry protected topological order

Universal probe for SPT orders

• How do you know the NL σ M's with different cocycles produce different SPT orders? Why "seemsly-the-same" path integrals can produce different SPT phases? How do you measure SPT orders?

Universal probe = one probe to detect all possible orders.

A B K A B K

Universal probe for SPT orders

• How do you know the NL σ M's with different cocycles produce different SPT orders? Why "seemsly-the-same" path integrals can produce different SPT phases? How do you measure SPT orders?

Universal probe = one probe to detect all possible orders.

Universal probe for SPT orders

• How do you know the NL σ M's with different cocycles produce different SPT orders? Why "seemsly-the-same" path integrals can produce different SPT phases? How do you measure SPT orders?

Universal probe = one probe to detect all possible orders.

• Universal probe for crystal order

- Partitional function as an universal probe, but Z^{SPT}_{top}(M^d) = 1 → does not work.
- Twist the symmetry by "gauging" the symmetry on M^d

Levin-Gu arXiv:1202.3120; Hung-Wen arXiv:1311.5539

A theory for symmetry protected topological order

Symmetry twist and "gauging" $NL\sigma M$

• In the NL σ M path integral

$$Z(M^d) = \int D[g(x)] e^{-\int d^d x \ \mathcal{L}(g,g^{-1}dg)},$$

we sum over all the cross-sections of a trivial bundle $G \times M^d$.

- In the "gauged" NL σ M (with symmetry twist), we sum over all the cross-sections of a flat bundle $G \rtimes M^d$ with a flat connection.
- "Gauging" (adding symmetry twist) in more details • Change variable $g(x) \rightarrow h(x)g(x)$: $\mathcal{L}(hg, (hg)^{-1}d(hg)) = \mathcal{L}(g, g^{-1}dg + A), A = h^{-1}dh \rightarrow$ $Z(M^d) = \int D[g(x)] e^{-\int d^d x \ \mathcal{L}(g, g^{-1}(d-iA)g)}, A = ih^{-1}dh.$

"Gauged" partition function (with symmetry twist)

 $Z(A, M^d) = \int D[g(x)] e^{-\int d^d x \mathcal{L}(g, g^{-1}(d-iA)g)}, \quad F = dA + i[A, A] = 0$

• For continuous group *G*, we can generalize the above to non-flat connection and non-flat bundle.

Xiao-Gang Wen, MIT PiTP, IAS, July., 2014

A theory for symmetry protected topological order

Examples of symmetry twist (gauge configuration)

• U(1) symmetry twist: closed one-form A with

- Z_2 symmetry twist: closed quantized one-form A with $\oint_{S_x^1} A = 0, \pi, \oint_{S_y^1} A = 0, \pi$.
- We can choose the one-form *A* to be non-zero only on some codimension-1 closed sub-manifolds.

 Z_2 symmetry twist \leftrightarrow codimension-1 sub-manifolds

(Poincaré duality).

- Contractable loop ightarrow exact one-form $\textit{A} = \mathrm{d}\textit{f}$

(pure gauge or coboundary)

Universal topo. inv.: "gauged" partition function

 $\frac{Z(A, M^d)}{Z(0, M^d)} = \frac{\int Dg \,\mathrm{e}^{-\int \mathcal{L}(g^{-1}(\mathrm{d-i}A)g)}}{\int Dg \,\mathrm{e}^{-\int \mathcal{L}(g^{-1}\mathrm{d}g)}} = \mathrm{e}^{-\mathrm{i}\,2\pi\int W_{A\text{-top}}(A)}$

• $W_{A-top}(A)$ and $W'_{A-top}(A)$ are equivalent if

$$W'_{\text{A-top}}(A) - W_{\text{A-top}}(A) = \frac{1}{\lambda_g} \text{Tr}(F^2) + \cdots$$

- The equivalent class of the gauge-topological term $W_{A-top}(A)$ is the topological invariant that probe different SPT state.
- The topological invariant W_{A-top}(A) are Chern-Simons terms or Chern-Simons-like terms.

• Such Chern-Simons-like terms are classified by $H^{d+1}(BG,\mathbb{Z}) = \mathcal{H}^{d}[G, U(1)]$ Dijkgraaf-Witten CMP 129, 393 (90) The topological invariant $W_{A-top}(A)$ can probe all the NL σ M SPT states

*W*_{A-top}(*A*) can be viewed as a Lagrangian that defines a gauge theory:
 Dijkgraaf-Witten gauge theory

Xiao-Gang Wen, MIT PiTP, IAS, July., 2014

A theory for symmetry protected topological order

Calculate the SPT invariants for SPT phases

- Topological NLσM, as a fixed-point theory, contain only the pure topological term, and it is easy to calculate W_{A-top}(A):
- Lattice: cocycle $\nu_d(\{g_i\}) \to \mathsf{DW}$ action $W_{\mathsf{A-top}}(A)$
- NL σ M: $Z = \sum_{\{g_i\}} \prod \nu_3^{s_{ijk}}(g_i, g_j, g_k) = \int D[g] e^{i2\pi W_{G-top}(g^{-1}dg)}$ - DW-gauge theory $Z = \sum_{\{g_{ij}\}} \prod \omega_3^{s_{ijk}}(g_{ij}, g_{jk}) = \int D[A] e^{i2\pi W_{A-top}(A)}$
- DW-gauge theory $Z = \sum_{\{g_{ij}\}} \prod \omega_3^{s_{ijk}}(g_{ij}, g_{jk}) = \int D[A] e^{i 2\pi W_{A-top}(A)}$ where the amplitude $e^{i 2\pi W_{A-top}(A)}$ is non-zero only for flat connections: $g_{ik} = g_{ij}g_{jk}$.
- Connection: $\nu_3(g_i, g_j, g_k) = \nu_3(hg_i, hg_j, hg_k) = \omega_3(g_i^{-1}g_j, g_j^{-1}g_k)$

• **Continuum**: *G*-topo. term $W_{\text{G-top}}(g^{-1} dg)_{g^{-1} dg \to A} \to W_{\text{A-top}}(A)$

An example: SU_2 SPT state

- Topo. term for *SU*₂ **SPT state**:
- In 2 + 1D $\pi_3(SU_2) = \mathbb{Z}$: $W_{G-top}^3 = k \frac{\operatorname{Tr}(\mathrm{i}g^{-1}dg)^3}{24\pi^2}$.

・ 同 ト ・ ヨ ト ・ ヨ ト

An example: SU_2 SPT state

- Topo. term for *SU*₂ **SPT state**:
- In 2 + 1D $\pi_3(SU_2) = \mathbb{Z}$: $W^3_{G-top} = k \frac{\text{Tr}(ig^{-1}dg)^3}{24\pi^2}$. $W^3_{A-top} = k \text{Tr} \frac{A^3}{24\pi^2}$.

向下 イヨト イヨト

• Topo. term for SU_2 SPT state: SU_2 connection $A \sim ig^{-1}dg$

• In 2 + 1D
$$\pi_3(SU_2) = \mathbb{Z}$$
: $A = 2x2$ matrix;
 $W^3_{G-top} = k \frac{\text{Tr}(ig^{-1}dg)^3}{24\pi^2}$.
 $W^3_{A-top} = k \text{Tr} \frac{A^3}{24\pi^2}$.

- Topo. term for SU_2 SPT state: SU_2 connection $A \sim ig^{-1}dg$
- In 2+1D $\pi_3(SU_2) = \mathbb{Z}$: $W^3_{G-top} = k \frac{\operatorname{Tr}(\mathrm{i}g^{-1}dg)^3}{24\pi^2}$. $W^3_{A-top} = k \operatorname{Tr} \frac{A^3 + 3AF}{24\pi^2}$.

向下 イヨト イヨト

• Topo. term for SU_2 **SPT state**: SU_2 connection $A \sim ig^{-1}dg$

• In 2 + 1D $\pi_3(SU_2) = \mathbb{Z}$: $W_{G-top}^3 = k \frac{\operatorname{Tr}(\mathrm{i}g^{-1}dg)^3}{24\pi^2}$.

 $W_{\Delta_{\text{top}}}^3 = k \operatorname{Tr} \frac{A^3 + 3AF}{24\pi^2}.$

A = 2x2 matrix; $F \equiv dA + [A, A]$

d	$\mathcal{H}^{d}(SU_{2})$	W^d_{A-top}
0+1	0	
1 + 1	0	
2+1	\mathbb{Z}	$\operatorname{Tr} \frac{A^3 + 3AF}{24\pi^2}$
3+1	0	

向下 イヨト イヨト

• Topo. term for SU_2 **SPT state**: SU_2 connection $A \sim ig^{-1}dg$

A = 2x2 matrix; $F \equiv dA + [A, A]$

• In 2 + 1D $\pi_3(SU_2) = \mathbb{Z}$: $W^3_{G-top} = k \frac{\text{Tr}(ig^{-1}dg)^3}{24\pi^2}$. $W^3_{A-top} = k \text{Tr} \frac{A^3 + 3AF}{24\pi^2}$.

SPT inv. \rightarrow **phys. measurement:** \rightarrow Spin quantum Hall conductance $\sigma_{xy}^{\text{spin}} = \frac{k}{4\pi}$ \rightarrow Gapless state if the *SU*₂ symm. is not broken.

d	$\mathcal{H}^{d}(SU_{2})$	W^d_{A-top}
0+1	0	
1 + 1	0	
2+1	\mathbb{Z}	$\operatorname{Tr} \frac{A^3 + 3AF}{24\pi^2}$
3+1	0	

向下 イヨト イヨト

(No topo. order, need symm. protection) Liu-Wen arXiv:1205.7024

The edge of the SU(2) SPT state must be gapless

Bulk fixed-point action: $S_{\text{bulk}} = -i \frac{k}{12\pi} \int_{M^3} \text{Tr}(g^{-1} dg)^3, \quad k \in \mathbb{Z}, \quad g \in SU(2) \text{ The } SU(2)$ symmetry $g(x) \rightarrow hg(x), \quad h, g(x) \in SU(2)$

.

The edge of the SU(2) SPT state must be gapless

Bulk fixed-point action: $\begin{aligned} S_{\text{bulk}} &= -i \frac{k}{12\pi} \int_{M^3} \text{Tr}(g^{-1} dg)^3, \quad k \in \mathbb{Z}, \quad g \in SU(2) \text{ The } SU(2) \\ \text{symmetry } g(x) \to hg(x), \quad h, g(x) \in SU(2) \end{aligned}$

• The edge excitations on ∂M^3 described by fixed-point WZW: $S_{\text{edge}} = \int_{\partial M^3} \frac{k}{8\pi} \text{Tr}(\partial g^{-1} \partial g) - i \int_{M^3} \frac{k}{12\pi} \text{Tr}(g^{-1} dg)^3,$

• At the fixed point, we have a equation of motion

 $\partial_{\bar{z}}[(\partial_z g)g^{-1}] = 0, \quad \partial_z[(\partial_{\bar{z}}g^{-1})g] = 0, \quad z = x + \mathrm{i} t.$

Right movers $[(\partial_z g)g^{-1}](z) \rightarrow SU(2)$ -charges Left movers $[(\partial_{\bar{z}}g^{-1})g](\bar{z}) \rightarrow SU_L(2)$ -charges, $g(x) \rightarrow g(x)h_L$ Level-k Kac-Moody algebra Witten NPB 223, 422 (83)

• The *SU*(2) symmetry is anomalous at the edge. In general, *G* SPT state has anomalous *G*-symmetry at the boundary – a defining property of SPT phases.

Theorem: The boundary of any 2+1D SPT states must be
gapless or symmetry breaking.Chen-Liu-Wen arXiv:1106.4752;

Xiao-Gang Wen, MIT PiTP, IAS, July., 2014 A theory for

A theory for symmetry protected topological order

- Topo. terms for U_1 SPT state:
- In 0 + 1D, $W_{A-top}^1 = k \frac{A}{2\pi}$.

d	$\mathcal{H}^{d}[U_{1}]$	W^d_{A-top}
0+1	\mathbb{Z}	$\frac{A}{2\pi}$
1 + 1	0	
2 + 1	\mathbb{Z}	$\frac{AF}{(2\pi)^2}$
3+1	0	

イロト イポト イラト イラト 一日

- Topo. terms for U_1 SPT state:
- In 0 + 1D, $W_{A-top}^1 = k \frac{A}{2\pi}$. $Z[A] = Tr(U_{\theta}^{twist} e^{-H}) = e^{i k \oint_{S^1} A} = e^{i k\theta}$ SPT inv. \rightarrow phys. measurement:
 - ightarrow ground state carries charge k

d	$\mathcal{H}^{d}[U_{1}]$	W^d_{A-top}
0 + 1	\mathbb{Z}	$\frac{A}{2\pi}$
1 + 1	0	
2 + 1	\mathbb{Z}	$\frac{AF}{(2\pi)^2}$
3 + 1	0	

伺下 イヨト イヨト

- Topo. terms for U_1 SPT state:
- In 0 + 1D, $W_{A-top}^1 = k \frac{A}{2\pi}$. $Z[A] = Tr(U_{\theta}^{twist} e^{-H}) = e^{ik \oint_{S^1} A} = e^{ik\theta}$ SPT inv. \rightarrow phys. measurement: \rightarrow ground state carries charge k

• In 2+1D, $W_{A-top}^3 = k \frac{AF}{(2\pi)^2}$ (?)

d	$\mathcal{H}^{d}[U_{1}]$	W^d_{A-top}
0 + 1	\mathbb{Z}	$\frac{A}{2\pi}$
1 + 1	0	
2 + 1	\mathbb{Z}	$\frac{AF}{(2\pi)^2}$
3+1	0	

向下 イヨト イヨト

- Topo. terms for U_1 SPT state:
- In 0 + 1D, $W_{A-top}^1 = k \frac{A}{2\pi}$. $Z[A] = Tr(U_{\theta}^{twist} e^{-H}) = e^{ik \oint_{S1} A} = e^{ik\theta}$ SPT inv. \rightarrow phys. measurement: \rightarrow ground state carries charge k
- In 2 + 1D, $W_{A-top}^3 = k \frac{AF}{(2\pi)^2}$ (?)

d	$\mathcal{H}^{d}[U_{1}]$	W^d_{A-top}
0+1	\mathbb{Z}	$\frac{A}{2\pi}$
1 + 1	0	
2 + 1	\mathbb{Z}	$\frac{AF}{(2\pi)^2}$
3 + 1	0	

- SPT inv. \rightarrow phys. measurement:
- \rightarrow Hall conductance $\sigma_{xy} = 2k \frac{e^2}{h}$
- \rightarrow The edge of U_1 SPT phase must be gapless with left/right movers and has anomalous U(1) symm.
- → Choose space-time $S^1 \times M^2$ and put $2\pi m$ flux through M^2 . $\mathcal{L}^{2+1D} = kA dA/2\pi \rightarrow \mathcal{L}^{0+1D} = k \int_{M^2} A dA/2\pi = 2kmA$.
- The 2+1D U_1 SPT state labeled by k reduces to a 0+1D U_1 SPT state labeled by 2km (with charge 2km in ground state).
- $2\pi m$ flux in space M^2 induces 2km unit of charge \rightarrow Hall conductance $\sigma_{xy} = 2ke^2/h$. Lu-Vishwanath arXiv:1205.3156

From probe to mechanism of SPT states

• To probe:

 2π flux inducing 2k charge probes U(1) SPT state.

• To create:

Attaching 2k charges to a U(1) vortex makes U(1) SPT state.

・ 同 ト ・ ヨ ト ・ ヨ ト

From probe to mechanism of SPT states

• To probe:

 2π flux inducing 2k charge probes U(1) SPT state.

• To create:

Attaching 2k charges to a U(1) vortex makes U(1) SPT state.

- Start with 2+1D bosonic superfluid: proliferate vortices \rightarrow trivial Mott insulator. proliferate vortex+2k-charge $\rightarrow U(1)$ SPT state labeled by k.
- Why? U(1) flux is the U(1) symmetry twist. A vortex in U(1) superfluid is a $2\pi U(1)$ symmetry twist = 2π flux.

 $\frac{U(1) \text{ twist } \theta - \text{flux}}{U_{\theta}} \times$

イロト イポト イヨト イヨト

The vortex condensed state (or the vortex proliferated state) remembers the binding of vortex and 2k-charge: a $2\pi U(1)$ symmetry twist (2π flux) carries 2k charges.

Why bind even charge to vortex?

• Can we bind charge-1 to a vortex, to make a new U(1) SPT state beyond group cohomology, which has $\sigma_{xy} = \frac{e^2}{h}$?

Why bind even charge to vortex?

Can we bind charge-1 to a vortex, to make a new U(1) SPT state beyond group cohomology, which has σ_{xy} = e²/h? No!

 Inserting 2π flux will always create a quasiparticle. Such a quasiparticle would carry a unit U(1) charge. The bound state of charge-1+2π-flux is a fermion, which implies that the σ_{xy} = e²/h SPT state must carry a non-trivial topological order.

Why bind even charge to vortex?

• Can we bind charge-1 to a vortex, to make a new U(1) SPT state beyond group cohomology, which has $\sigma_{xv} = \frac{e^2}{h}$? No! (1) Inserting 2π flux will always create a quasiparticle. Such a quasiparticle would carry a unit U(1) charge. The bound state of charge-1+2 π -flux is a fermion, which implies that the $\sigma_{xy} = \frac{e^2}{L}$ SPT state must carry a non-trivial topological order. (2) The bound state of charge-1+vortex is a fermion. They cannot condense to make the superfluid into an insulator. But a (charge-1+vortex)-pair is a boson. Proliferate/condensing such (charge-1+vortex)-pairs can make the superfluid into an insulator with non-trivial Z_2 topological order described by Z_2 gauge theory.

The duality between the probe and the mechanism is a general phenomenon which also appears for other SPT orders.

イロト イポト イヨト イヨト

Electromagnetic responce in state with no topological order

- Bosons with no topo. order: $\frac{2k}{4\pi} \int_{M^3} A dA$
- Fermions with no topo. order: $\frac{k}{4\pi} \int_{M^3} A dA$ An understanding via algebraic topology:
- The Chern-Simons term is better defined by going to one higher dimension: $\sigma_{\rm min} = \int dA \, dA$

$$\frac{\sigma_{xy}}{4\pi} \int_{M^3 = \partial M^4} A dA = \frac{\sigma_{xy}}{2} 2\pi \int_{M^4} (\frac{dA}{2\pi})^2$$

which well defined only when $\frac{\sigma_{xy}}{2} \int_{M^4} (\frac{dA}{2\pi})^2$ is always integer for closed M^4 .

- Two math relations:
 - 1) $Sq^{2}(x_{2}) = x_{2} \cup x_{2}$ for any 2-cocycle $x_{2} \in H^{2}(M^{4}, \mathbb{Z}_{2})$ 2) $Sq^{2}(x_{2}) = u_{2} \cup x_{2} = (w_{2} + w_{1} \cup w_{1}) \cup x_{2}$ in 4-dimensions Choose $x_{2} = \frac{dA}{2\pi} \mod 2 \rightarrow (\frac{dA}{2\pi})^{2} = (w_{2} + w_{1} \cup w_{1}) \cup \frac{dA}{2\pi} \mod 2$.
- On CP^2 , $\int_{M^4} (\frac{\mathrm{d}A}{2\pi})^2 = 1 \rightarrow \frac{\sigma_{xy}}{2} = \mathrm{int.}$ for bosons.
- On spin manifold, $w_1, w_2 = 0$ and $\int_{M^4} (\frac{dA}{2\pi})^2 = 0 \mod 2$

 $\rightarrow \sigma_{xy} = \text{int.}$ for fermions.

イロト イポト イヨト イヨト

The boundary of the 2+1D bosonic U(1) SPT state has a 1+1D bosonic U(1) gauge anomaly

The boundary of the 2+1D U(1) SPT state must be gapless. • Partition function of U(1)-SPT state on space-time with boundary: $Z(A, M^3) = e^{-\epsilon Vol} e^{i \int_M \frac{2k}{4\pi} A dA + \int_{\partial M} dt dx} \mathcal{L}_{edge}$

The total Z(A, M³) is gauge invariant under A → A + df, but the bulk CS-term and the edge action separately are not gauge invariant if 2k ≠ 0. We need a U(1) anomalous edge described by L_{edge} to cancell the gauge non-invariance of the CS-term.
Such an edge must be gapless. Wen PRB 43, 11025 (89)

A mechanism for 2+1D $U_1 \rtimes Z_2^T$ SPT state

Liu-Gu-Wen arXiv:1404.2818

- 2+1D boson superfluid + gas of vortex \rightarrow boson Mott insulator.
- 2+1D boson superfluid + gas of S^z -vortex

- \rightarrow boson topological insulator ($U_1 \rtimes Z_2^T$ SPT state)
- The boson superfluid + spin-1 system S^{z} -vortex = vortex + (S_{z} = +1)-spin

anti S^z -vortex = anti-vortex + ($S_z = -1$)-spin

Probing 2+1D $U_1 \rtimes Z_2^T$ **SPT state**

Let Φ_{vortex} be the creation operator of the vortex. Then $\mathcal{T}^{-1}\Phi_{\text{vortex}}\mathcal{T} = \Phi_{\text{vortex}}^{\dagger}, \quad \Phi_{S_z\text{-vortex}} = S^{+}\Phi_{\text{vortex}}, \quad \mathcal{T}^{-1}\Phi_{S_z\text{-vortex}}\mathcal{T} = -\Phi_{S_z\text{-vortex}}^{\dagger}$. The π -flux in the $U_1 \rtimes Z_2^{\mathcal{T}}$ SPT state is Kramer doublet: $\Phi_{S_z\text{-vortex}}|-\pi\rangle = |\pi\rangle, \quad \Phi_{S_z\text{-vortex}}^{\dagger}|\pi\rangle = |-\pi\rangle, \quad \text{and } \mathbb{R} \to \mathbb{R}$

• Topological terms:

$$\oint A_{Z_2} = 0, \pi; \ a \equiv \frac{A_{Z_2}}{\pi};$$

d	$\mathcal{H}^{d}[Z_{2}]$	W^d_{A-top}
0 + 1	\mathbb{Z}_2	$\frac{1}{2}a$
1 + 1	0	
2 + 1	\mathbb{Z}_2	$\frac{1}{2}a^{3}$
3 + 1	0	

Wen arXiv:1410.8477

・ 同 ト ・ ヨ ト ・ ヨ ト

æ

• Topological terms:

• In
$$0 + 1$$
D, $W_{A-top}^1 = k \frac{A_{Z_2}}{2\pi} = ka$.

$$\oint A_{Z_2} = 0, \pi; \ a \equiv \frac{A_{Z_2}}{\pi};$$

d	$\mathcal{H}^{d}[Z_{2}]$	W^d_{A-top}
0+1	\mathbb{Z}_2	$\frac{1}{2}a$
1 + 1	0	
2 + 1	\mathbb{Z}_2	$\frac{1}{2}a^{3}$
3+1	0	

Wen arXiv:1410.8477

(4月) イヨト イヨト

æ

• Topological terms:

$$\oint A_{Z_2} = 0, \pi; \ a \equiv \frac{A_{Z_2}}{\pi};$$

• In 0 + 1D, $W_{A-top}^1 = k \frac{A_{Z_2}}{2\pi} = ka$. $Z[a] = Tr(U_{\pi}^{twist} e^{-H}) = e^{2\pi i \oint_{S^1} W_{A-top}}$ $= e^{i k\pi \oint_{S^1} a} = e^{i k\pi} = \pm 1, \ k = 0, 1$

SPT inv. \rightarrow **phys. measurement:** \rightarrow ground state Z_2 -charge = k = 0, 1

d	$\mathcal{H}^{d}[Z_{2}]$	W^d_{A-top}
0+1	\mathbb{Z}_2	$\frac{1}{2}a$
1 + 1	0	
2 + 1	\mathbb{Z}_2	$\frac{1}{2}a^{3}$
3 + 1	0	

Wen arXiv:1410.8477

- Topological terms:
- In 0+1D, $W^{1}_{A-top} = k \frac{A_{Z_2}}{2\pi} = ka$. $Z[a] = \operatorname{Tr}(U_{\pi}^{\text{twist}} e^{-H}) = e^{2\pi i \oint_{S^1} W_{\text{A-top}}}$ $= e^{i k \pi \oint_{S^1} a} = e^{i k \pi} = \pm 1, \ k = 0, 1$

SPT inv. \rightarrow phys. measurement:

- \rightarrow ground state Z₂-charge = k = 0, 1
- In 2 + 1D, $\int_{M^3} W^3_{A-top} = \int_{M^3} \frac{1}{2} a^3$. Here we do not view a as 1-form

but as 1-cocycle $a \in H^1(M^3, \mathbb{Z}_2)$, and $a^3 \equiv a \cup a \cup a$: $\int_{M^3} a \cup a \cup a = 0 \text{ or } 1 \rightarrow e^{2\pi i \oint_{M^3} W_{A-top}} = e^{\pi i \oint_{M^3} a^3} = \pm 1$

$$\oint A_{Z_2} = 0, \pi; \ a \equiv \frac{A_{Z_2}}{\pi};$$

d	$\mathcal{H}^{d}[Z_{2}]$	W^d_{A-top}
0+1	\mathbb{Z}_2	$\frac{1}{2}a$
1 + 1	0	
2 + 1	\mathbb{Z}_2	$\frac{1}{2}a^{3}$
3 + 1	0	

Wen arXiv:1410.8477

向下 イヨト イヨト
Z_2 SPT phases and their physical properties

- Topological terms:
- In 0 + 1D, $W_{A-top}^1 = k \frac{A_{Z_2}}{2\pi} = ka$. $Z[a] = Tr(U_{\pi}^{twist} e^{-H}) = e^{2\pi i \oint_{S^1} W_{A-top}}$ $= e^{i k\pi \oint_{S^1} a} = e^{i k\pi} = \pm 1, \ k = 0, 1$

SPT inv. \rightarrow phys. measurement:

- \rightarrow ground state Z₂-charge = k = 0, 1
- In 2 + 1D, $\int_{M^3} W^3_{A-top} = \int_{M^3} \frac{1}{2}a^3$. Here we do not view *a* as 1-form

 $\oint A_{Z_2}=0,\pi; a\equiv \frac{A_{Z_2}}{\pi};$

d	$\mathcal{H}^{d}[Z_{2}]$	$W^d_{ extsf{A-top}}$
0+1	\mathbb{Z}_2	$\frac{1}{2}a$
1 + 1	0	
2 + 1	\mathbb{Z}_2	$\frac{1}{2}a^{3}$
3 + 1	0	

Wen arXiv:1410.8477

but as 1-cocycle $a \in H^1(M^3, \mathbb{Z}_2)$, and $a^3 \equiv a \cup a \cup a$: $\int_{M^3} a \cup a \cup a = 0 \text{ or } 1 \to e^{2\pi i \oint_{M^3} W_{A-top}} = e^{\pi i \oint_{M^3} a^3} = \pm 1$

 $\int_{M^3} a^3 = \#$ of loop creation/annihilation + # of line reconnection

How calculate $\int_{M^3} a^3$ (which can be 0 or 1 mod 2)

- $\int_{M^3} a_1 \cup a_2 \cup a_3 = \#$ of intersections of $N_1, N_2, N_3 \mod 2$, where $a_i \rightarrow N_i$.
- $\int_{M^3} a \cup a \cup a = \#$ of intersections of N, N', N'' mod 2, where $a \to N, N', N''$.

イロト イポト イヨト イヨト

How to probe Z_2 SPT phase; How to measure $\int_{M^3} \frac{1}{2} a^3$

$$\frac{Z[a, M^3]}{Z[0, M^3]} = e^{i 2\pi \int_{M^3} \frac{1}{2}a^3}$$

How to design (a, M^3) such that $\frac{Z[a, M^3]}{Z[0, M^3]} = e^{i 2\pi \int_{M^3} \frac{1}{2} a^3} = -1$

- If we choose $M^3 = T^3$, $e^{i2\pi \int_{M^3} \frac{1}{2}a^3} = 1$ no matter how we choose the Z_2 symmetry twists $a \in H^1(T^3, \mathbb{Z}_2)$.
- Let us choose $M^3 = T^2 \rtimes_{\text{Debn}^2} S^1$, then, we can have a Z_2 symmetry twist to make $e^{i2\pi \int_{M^3} \frac{1}{2}a^3} = -1$ The Z_2 symmetry twist **a** is represented by a 2D surface in space-time M^3 , which is a curve in space.

Hung-Wen arXiv:1311.5539

It is hard to probe the Z_2 SPT order (or Z_2 SPT inv.) using bulk measurement.

Xiao-Gang Wen, MIT PiTP, IAS, July., 2014

A theory for symmetry protected topological order

How to create $2+1D Z_2$ SPT phase?

- Start with a Z_2 symmetry breaking state, the, proliferate the symmetry breaking domain walls to restore the Z_2 -symmetry.
- Domain wall quantum liquid = disordered Z_2 -symmetric state.
- If Domain wall quantum liquid = $\sum \left| \bigotimes \bigotimes \bigotimes \bigotimes i \right\rangle$, then the

 Z_2 -symmetric state is the trivial Z_2 SPT state.

- If Domain wall quantum liquid = $\sum (-)^{\# \text{ of loops}} \left| \bigcup_{i=1}^{\infty} \bigcup_{j=1}^{\infty} \right\rangle$, then the

 Z_2 -symmetric state is the non-trivial Z_2 SPT state.

$$\cdot \rightleftharpoons (a) \qquad (b) \qquad (c) \qquad$$

A theory for symmetry protected topological order

Why there is no non-trivial 1+1D Z_2 SPT phase?

- Because $\mathcal{H}^2(Z_2, U_1) = 0$. But this only implies that our NL σ M construction fails to produce a non-trivial 1+1D Z_2 SPT state.
- May be non-trivial 1+1D Z_2 SPT state exists since we have a potential Z_2 SPT invariant in 1+1D $W^2_{A-top}(a) = \frac{1}{2}a \cup a$.

向下 イヨト イヨト

Why there is no non-trivial 1+1D Z_2 SPT phase?

- Because $\mathcal{H}^2(Z_2, U_1) = 0$. But this only implies that our NL σ M construction fails to produce a non-trivial 1+1D Z_2 SPT state.
- May be non-trivial 1+1D Z_2 SPT state exists since we have a potential Z_2 SPT invariant in 1+1D $W^2_{A-top}(a) = \frac{1}{2}a \cup a$.
- However, $\int a \cup a = 0 \mod 2$ on oriented manifold. There is not even non-trivial potential Z_2 SPT invariant in 1+1D \rightarrow there is no non-trivial 1+1D Z_2 SPT phase.

Proof:

 $Sq^1(a) = a \cup a$ and $Sq^1(a) = u_1 \cup a = w_1 \cup a$

 $w_1 = 0$ for oriented manifold, and thus $a \cup a = 0 \mod 2$.

- 4 同 6 4 日 6 4 日 6

Wang-Gu-Wen arXiv:1405.7689

3

 $H^{3}[Z_{N_{1}} \times Z_{N_{2}}, U(1)] = \mathbb{Z}_{N_{12}} = \{0, 1, \cdots, k, \cdots, N_{12} - 1\}$

where $N_{12} = \text{gcd}(N_1, N_2)$.

- We consider a SPT state labeled by $k \in \mathbb{Z}_{N_{12}}$ and assume $N_1 = N_2 = N$.
- What is the SPT invariant?

Wang-Gu-Wen arXiv:1405.7689

 $H^{3}[Z_{N_{1}} \times Z_{N_{2}}, U(1)] = \mathbb{Z}_{N_{12}} = \{0, 1, \cdots, k, \cdots, N_{12} - 1\}$

where $N_{12} = \text{gcd}(N_1, N_2)$.

- We consider a SPT state labeled by $k \in \mathbb{Z}_{N_{12}}$ and assume $N_1 = N_2 = N$.
- What is the SPT invariant?

The fixed-point partition function on space-time $T^2 = S^1 \times S^1$ with symmetry twists in x, t directions:

$$\begin{split} \frac{Z[a_1,a_2,T^2]}{Z[0,0,T^2]} &= \mathrm{e}^{\mathrm{i}\,k\frac{2\pi}{N_{12}}\int a_1a_2},\\ \oint a_1 \in \mathbb{Z}_{N_1}; \quad \oint a_2 \in \mathbb{Z}_{N_2}. \end{split}$$

伺い イヨト イヨト

SPT inv. \rightarrow physical measurement

A symmetry twist of Z_{N_1} carries Z_{N_2} -charge k. **Example**: 1D $Z_2 \times Z_2 = D_2$ SPT state (spin-1 Haldane chain) $Z_2 \times Z_2 = D_2 = 180^\circ$ spin rotations in S^x , S^z . Untwisted case:

$$H_{D_2} = \sum_{i} J_x S_i^x S_{i+1}^x + J_y S_i^y S_{i+1}^y + J_z S_i^z S_{i+1}^z + J_x S_L^x S_1^x + J_y S_L^y S_1^y + J_z S_L^z S_1^z$$

The ground state has $e^{i\pi \sum S_i^z} = 1$. Twisted case (by $e^{i\pi \sum S_i^x}$):

$$H_{D_2}^{\text{twist}} = \sum_{i} J_x S_i^x S_{i+1}^x + J_y S_i^y S_{i+1}^y + J_z S_i^z S_{i+1}^z + J_x S_L^z S_1^x - J_y S_L^y S_1^y - J_z S_L^z S_1^z$$

The ground state has $e^{i\pi \sum S_i^z} = -1$.

イロト イポト イヨト イヨト

For a 1D $Z_{N_1} \times Z_{N_2}$ SPT state

• SPT invariant: a symmetry twist of Z_{N_1} carries a "charge" of Z_{N_2} Wen arXiv:1301.7675

Since the symmetry twist of Z_{N_1} = the domain wall of Z_{N_1}

• Bind $k Z_{N_2}$ -charge to the domain wall of Z_{N_1} $\rightarrow 1D Z_{N_1} \times Z_{N_2}$ SPT state labeled by $k \in \mathcal{H}^2[Z_{N_1} \times Z_{N_2}, U(1)]$

・ 同 ト ・ ヨ ト ・ ヨ ト

Example: A $Z_2^x \times Z_2^z$ spin-1 chain, & its symmetric phases

• $|x\rangle, |y\rangle, |z\rangle$ basis:

S

$$\begin{split} |\uparrow_{z}\rangle &= \frac{|x\rangle + \mathrm{i}|y\rangle}{\sqrt{2}} \ , |0_{z}\rangle = |z\rangle, \ |\downarrow_{z}\rangle = \frac{|x\rangle - \mathrm{i}|y\rangle}{\sqrt{2}} \\ ^{\mathrm{x}} &= \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -\mathrm{i} \\ 0 & \mathrm{i} & 0 \end{pmatrix}, \ S^{y} = \begin{pmatrix} 0 & 0 & \mathrm{i} \\ 0 & 0 & 0 \\ -\mathrm{i} & 0 & 0 \end{pmatrix}, \ S^{z} = \begin{pmatrix} 0 & -\mathrm{i} & 0 \\ \mathrm{i} & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}. \end{split}$$

•
$$Z_2^{\times} \times Z_2^{z}$$
 symmetry: $U^{\times} : (|x\rangle, |y\rangle, |z\rangle) \rightarrow (-|x\rangle, |y\rangle, |z\rangle)$
 $U^{z} : (|x\rangle, |y\rangle, |z\rangle) \rightarrow (|x\rangle, |y\rangle, -|z\rangle)$

Two kinds of domain walls with the same energy, but different Z_2^z -charges and different hopping operators:

$$H_1^{\text{hop}} = \sum_i -K[(S_i^+)^2 + h.c.], \quad H_2^{\text{hop}} = \sum_i -J_{xy}(S_i^+S_{i+1}^+ + h.c.).$$

- $H^0 + H_1^{\text{hop}} \& H^0 + H_2^{\text{hop}} \to \text{different symm. ground states} = 0$

Xiao-Gang Wen, MIT PiTP, IAS, July., 2014 A theory for symmetry protected topological order

A 2+1D $Z_{N_1} \times Z_{N_2} \times Z_{N_3}$ SPT state

 $H^{3}[\prod_{i=1}^{3} Z_{N_{i}}, U(1)] = \mathbb{Z}_{N_{1}} \oplus \mathbb{Z}_{N_{2}} \oplus \mathbb{Z}_{N_{3}} \oplus \mathbb{Z}_{N_{12}} \oplus \mathbb{Z}_{N_{23}} \oplus \mathbb{Z}_{N_{13}} \oplus \mathbb{Z}_{N_{123}}$

where $N_{123} = \text{gcd}(N_1, N_2, N_3)$.

- We consider a SPT state labeled by $k \in \mathbb{Z}_{N_{123}}$ and assume $N_1 = N_2 = N_3 = N$.
- The SPT invariant:

Wang-Gu-Wen arXiv:1405.7689

(ロ) (同) (E) (E) (E)

$$\frac{Z[a_1, a_2, a_3]}{Z[0, 0, 0]} = e^{i k \frac{2\pi}{N_{123}} \int a_1 a_2 a_3}$$

- SPT inv. \rightarrow physical measurement: The intersection of the symmetry twists in Z_{N_1} and Z_{N_2} carries Z_{N_3} -charge k.
- A mechanism for such a SPT state: Bind $k Z_{N_3}$ -charge to the intersection of the domain walls of Z_{N_1} and Z_{N_2} .

• Dimension reduction: $T^3 = T^2_{x,t} \times S^1_y$ and $\oint_{S^1_y} a_3 = 1$:

$$\frac{Z[a_1, a_2, T^2]}{Z[0, 0, T^2]} = e^{i\frac{kN_{12}}{N_{123}}\frac{2\pi}{N_{12}}\int a_1 a_2}$$

→ A 1+1D SPT state with $\frac{kN_{12}}{N_{123}} \in H^2[Z_{N_1} \times Z_{N_2}, U(1)] = \mathbb{Z}_{N_{12}}$. → degenerated states at the end of 1D chain that form a projective representation of $Z_{N_1} \times Z_{N_2}$.

- A Z_{N_3} "vortex" (end of Z_{N_3} symmetry twist) carries degenerated states that form a projective representation of $Z_{N_1} \times Z_{N_2}$.
- How to make Z₃-vortex:
 - 1) Consider U(1) symm. break down to Z_3 symm.
 - 2) A vortex of the order parameter = Z_3 -vortex.
- Another mechanism for the 2+1D $Z_{N_1} \times Z_{N_2} \times Z_{N_3}$ SPT state: bind the 1+1D $Z_{N_1} \times Z_{N_2}$ SPT state to the domain wall of Z_{N_3} .Chen-Lu-Vishwanath 12

60

30

Degerate states

90

$\mathcal{H}^d(G, \mathbb{R}/\mathbb{Z})$ does not produce all the SPT phases with symm. *G*: Topological states and anomalies

Pure SPT order within $\mathcal{H}^d(G, \mathbb{R}/\mathbb{Z})$: $W^d_{A-top} = \frac{AF}{(2\pi)^2}, \frac{1}{2}a^3$

$\mathcal{H}^d(G, \mathbb{R}/\mathbb{Z})$ does not produce all the SPT phases with symm. *G*: Topological states and anomalies

Pure SPT order within $\mathcal{H}^{d}(G, \mathbb{R}/\mathbb{Z})$: $W^{d}_{A-top} = \frac{AF}{(2\pi)^{2}}, \frac{1}{2}a^{3}$ mixed SPT order beyond $\mathcal{H}^{d}(G, \mathbb{R}/\mathbb{Z})$: $W^{d}_{A-top} = \frac{F}{2\pi}\omega_{3}, \frac{1}{2}ap_{1}$ Invertible topological order: $W^{d}_{A-top} = \omega_{3}, \frac{1}{2}w_{2}w_{3}$ p_{1} is the first Pontryagin class, $d\omega_{3} = p_{1}$, and w_{i} is the Stiefel-Whitney classes.

Xiao-Gang Wen, MIT PiTP, IAS, July., 2014 A theory for symmetry protected topological order

A B > A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A B >
 A

A general theory for bosonic pure STP orders, mixed SPT orders, and invertible topological orders

Wen arXiv:1410.8477

- NLσM (group cohomology) approach to pure SPT phases:
 (1) NLσM+topo. term: ¹/_{2λ}|∂g|² + 2πiW(g⁻¹∂g), g ∈ G
 (2) Add symm. twist: ¹/_{2λ}|(∂ iA)g|² + 2πiW[(∂ iA)g]
 (3) Integrate out matter field: Z_{fixed} = e^{2πi∫W_{A-top}(A)}
- $G \times SO_{\infty}$ NL σ M (group cohomology) approach: (1) NL σ M: $\frac{1}{2\lambda} |\partial g|^2 + 2\pi i W(g^{-1}\partial g), g \in G \times SO$ (2) Add twist: $\frac{1}{2\lambda} |(\partial - iA - i\Gamma)g|^2 + 2\pi i W[(\partial - iA - i\Gamma)g]$ (3) Integrate out matter field: $Z_{\text{fixed}} = e^{2\pi i \int W_{\text{A-top}}(A,\Gamma)}$

Pure STP orders, mixed SPT orders, and invertible topological orders are classified by $\mathcal{H}^{d}(G \times SO, \mathbb{R}/\mathbb{Z})$ $= \mathcal{H}^{d}(G, \mathbb{R}/\mathbb{Z}) \oplus_{k=1}^{d-1} \mathcal{H}^{k}[G, \mathcal{H}^{d-k}(SO, \mathbb{R}/\mathbb{Z})] \oplus \mathcal{H}^{d}(SO, \mathbb{R}/\mathbb{Z})$ after quotient out something $\Gamma^{d}(G)$.

Trying to classify bosonic pure STP orders, mixed SPT orders, and invertible topological orders

- Pure STP orders: $\mathcal{H}^d(G, \mathbb{R}/\mathbb{Z})$
- mixed SPT orders: $\bigoplus_{k=1}^{d-1} \mathcal{H}^k[G, \mathcal{H}^{d-k}(SO, \mathbb{R}/\mathbb{Z})]$
- **iTO's**: *H*^{*d*}(*SO*, ℝ/ℤ)

The above are one-to-one description of pure SPT orders, but only many-to-one description of mixed SPT orders and iTO's

- *G*-symmetry twists $A \to W^d_{A-top}(A)$ can fully detect/distinguish all elements of $\mathcal{H}^d(G, \mathbb{R}/\mathbb{Z})$.
- *SO*-symmetry twists $\Gamma_{SO} \to W^d_{A-top}(\Gamma_{SO})$ can fully detect/distinguish all elements of $\mathcal{H}^d(SO, \mathbb{R}/\mathbb{Z})$.
- SO-symmetry twists Γ from the tangent bundle of M^d are only special SO-symmetry twists (which are arbitrary SO-bundles on M^d) $\rightarrow W^d_{A-top}(\Gamma)$ cannot fully detect/distinguish all elements of $\mathcal{H}^d(SO, \mathbb{R}/\mathbb{Z})$. $\rightarrow iTO^d = \mathcal{H}^d(SO, \mathbb{R}/\mathbb{Z})/\Gamma^d$

イロト イポト イヨト イヨト

Trying to classify bosonic pure STP orders, mixed SPT orders, and invertible topological orders

- Pure STP orders: $\mathcal{H}^d(G, \mathbb{R}/\mathbb{Z})$
- mixed SPT order $\bigoplus_{k=1}^{d-1} \mathcal{H}^k(G, iTO^{d-k}) = \frac{\bigoplus \mathcal{H}^k[G, \mathcal{H}^{d-k}(SO, \mathbb{R}/\mathbb{Z})]}{\Gamma^d(G)}$
- **iTO's**: $iTO^d = \mathcal{H}^d(SO, \mathbb{R}/\mathbb{Z})/\Gamma^d$
- Probe mixed SPT order described by H^k[G, H^{d-k}(SO, ℝ/ℤ)]: put the state on M^d = M^k × M^{d-k} and add a G-symmetry twist on M^k → Induce a state on M^{d-k} described by H^{d-k}(SO, ℝ/ℤ) → a iTO state in iTO^{d-k}

$G \setminus d =$	0+1	1+1	2+1	3+1	4+1	5+1	6+1
iTO ^d	0	0	\mathbb{Z}	0	\mathbb{Z}_2	0	0
Z _n	\mathbb{Z}_n	0	\mathbb{Z}_n	0	$\mathbb{Z}_n \oplus \mathbb{Z}_n$	$\mathbb{Z}_{\langle n,2\rangle}$	$\mathbb{Z}_n \oplus \mathbb{Z}_n \oplus \mathbb{Z}_{\langle n,2 \rangle}$
Z_2^T	0	\mathbb{Z}_2	0	$\mathbb{Z}_2 \oplus \mathbb{Z}_2$	0	$\mathbb{Z}_2 \oplus 2\mathbb{Z}_2$	\mathbb{Z}_2
U(1)	\mathbb{Z}	0	\mathbb{Z}	0	$\mathbb{Z} \oplus \mathbb{Z}$	0	$\mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z}_2$
$U(1) \rtimes Z_2$	\mathbb{Z}_2	\mathbb{Z}_2	$\mathbb{Z}\oplus\mathbb{Z}_2$	\mathbb{Z}_2	$2\mathbb{Z}_2\oplus \mathbb{Z}_2$	$2\mathbb{Z}_2\oplus 2\mathbb{Z}_2$	$\mathbb{Z}\oplus 2\mathbb{Z}_2\oplus \mathbb{Z}\oplus 2\mathbb{Z}_2$
$U(1) imes Z_2^T$	0	$2\mathbb{Z}_2$	0	$3\mathbb{Z}_2\oplus \mathbb{Z}_2$	0	$4\mathbb{Z}_2\oplus 3\mathbb{Z}_2$	$2\mathbb{Z}_2 \oplus \mathbb{Z}_2$
$U(1) \rtimes Z_2^{\overline{T}}$	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2	$2\mathbb{Z}_2\oplus \mathbb{Z}_2$	$\mathbb{Z} \oplus \mathbb{Z}_2 \oplus \mathbb{Z}$	$2\mathbb{Z}_2\oplus 2\mathbb{Z}_2$	$2\mathbb{Z}_2\oplus 3\mathbb{Z}_2\oplus \mathbb{Z}_2$

Wen arXiv:1410.8477

Xiao-Gang Wen, MIT PiTP, IAS, July., 2014

A theory for symmetry protected topological order

(the black entries below)