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My lectures will be mostly on phases of matter that can be
understood in terms of noninteracting electrons and topological
band theory. Thus I will be covering topics similar to what you
have heard about from Charlie Kane. I hope there will be some
value added in my explanations but I cannot promise anything. I
will also say a little on the fractional quantum Hall effect.



We will start by asking under what conditions we should expect to
find a relativistic dispersion relation for electrons in a crystal. In
one dimension the answer is familiar. Writing ε(p) for the
single-particle energy ε as a function of momentum p, generically
ε(p) crosses the fermi energy εF with a nonzero slope at some
p = p0



Then linearizing the dispersion relation around p = p0, we get

ε = ε(p0) + v(p − p0) +O((p − p0)2), v =
∂ε

∂p

∣∣∣∣
p=p0

.

Apart from the additive constant ε(p0) and the shift p → p − p0,
this is a relativistic dispersion relation, analogous to ε = cp, with
the speed of light c replaced by v . For v > 0 (v < 0), the gapless
mode that lives near p = p0 travels to the right (left).



The corresponding continuum model describing the modes near
p = p0 is

H = v

∫ ∞
−∞

dx ψ∗
(
−i ∂
∂x

)
ψ.

This is a relativistic action for a 1d chiral fermion, except that v
appears instead of c and −i∂/∂x represents p − p0 instead of p.
Also we have omitted from H the “constant” ε(p0) per particle:

ε(p0)

∫ ∞
−∞

dx ψ∗ψ.



This 1d example also gives an easy first example of how global
conditions in topology constrain the possible low energy field
theory that we can get – and how these constraints often mirror
familiar facts about relativistic field theory and “anomalies.” We
have to remember that in the context of a crystal, the momentum
p is a periodic variable.



Because ε(p) is periodic, It follows that for every time ε(p) crosses
the fermi energy εF from below, there is another time that it
crosses εF from above

So actually there are equally many gapless left-moving and
right-moving fermion modes.



In relativistic terminology, the right-moving and left-moving modes
are said to have positive and negative chirality. The motivation for
this terminology is that the massless 2d Dirac equation is(

γ0
∂

∂t
+ γ1

∂

∂x

)
ψ = 0

where
{γµ, γν} = 2ηµν

are Dirac matrices. In Hamiltonian form, the Dirac equation is

i
∂ψ

∂t
= −i γ̄ ∂ψ

∂x
,

where
γ̄ = γ0γ1

(whose analog in 3 + 1 dimensions is usually called γ5) is the
“chirality operator.” So a fermion state of positive or negative
chirality is right-moving or left-moving.



Thus a more realistic Hamiltonian for the gapless charged modes
will be something like

H = −v−
∫ ∞
−∞

dx ψ∗−

(
−i ∂
∂x

)
ψ− + v+

∫ ∞
−∞

dx ψ∗+

(
−i ∂
∂x

)
ψ+.

If one is familiar with quantum gauge theories and anomalies, one
will recognize that this topological fact – which is a 1d analog of
the 3d Nielson-Ninomiya theorem that we get to presently – has
saved us from trouble. A purely 2d theory with, say, n+
right-moving gapless electron modes and n− left-moving ones is
“anomalous,” meaning that it is not gauge-invariant and does not
conserve electric charge – unless n+ = n−.



We can actually see the potential anomaly if we re-examine this
picture,

but now imagine turning on an electric field. When we turn on an
electric field with a sign such that dp/dt > 0 for each electron, the
electrons will all “flow” to the right in the picture. This creates
electrons at p = p+ and holes at p = p−, so the charge carried by
the p = p+ mode or by the p = p− mode is not conserved,
although the total charge is conserved, of course. Thus charge
conservation depends on having both types of mode equally.



There is more one could say in 1 dimension, but instead we are
going to go on to 3 dimensions. As a preliminary, recall that
quantum mechanical energy levels repel, which means that if H(λ)
is a generic 1-parameter family of Hamiltonians, parametrized by
λ, and with no particular symmetry, then generically its energy
levels do not cross as a function of λ:

But how much do
levels repel each other? Generically, how many parameters do we
have to adjust to make 2 energy levels coincide?



The answer to this question is that we have to adjust 3 real
parameters, because a generic 2× 2 Hermitian matrix depends on
4 real parameters

H =

(
a b
b̄ c

)
,

but a 2× 2 Hermitian matrix whose energy levels are equal
depends on only 1 real parameter

H =

(
a 0
0 a

)
.

To put this differently, any 2× 2 Hermitian matrix is

H = a + ~b · ~σ

where ~σ are the Pauli matrices. The condition for H to have equal
eigenvalues is ~b = 0, and this is three real conditions.



In three dimensions, a band Hamiltonian H(p1, p2, p3) depends on
three real parameters, so it is natural for two bands to cross at
some isolated value p = p∗. Near p = p∗, and looking only at the
two bands in question, the Hamiltonian looks something like

H = a(p) + ~b(p) · ~σ,

where ~b(p) = 0 at p = p∗. Expanding near p = p∗,

bi (p) =
∑
j

aij(p − p∗)j +O((p − p∗)
2), aij =

∂bi
∂pj

∣∣∣∣
p=p∗

.

Thus ignoring higher order terms, the band splitting is described
near p = p∗ by

H ′ =
∑
i ,j

σiaij(p − p∗)j .



Apart from a shift p → p − p∗, this is essentially a chiral Dirac
Hamiltonian in 3 + 1 dimensions. Let us review this fact. The
massless Dirac equation in 3 + 1 dimensions is

3∑
µ=0

γµ∂µψ = 0, {γµ, γν} = 2ηµν .

In Hamiltonian form, this equation is

i
∂ψ

∂t
= −i

∑
k

γ0γk
∂ψ

∂xk
.

To represent the four gamma matrices, we need 4× 4 matrices.
However, the matrix

γ5 = iγ0γ1γ2γ3

is Lorentz-invariant. It obeys γ25 = 1, so its eigenvalues are ±1.
We can place on ψ a “chirality condition” γ5ψ = ±ψ, reducing to
a 2× 2 Dirac Hamiltonian. (But then, because of the factor of i in
the definition of γ5, and in contrast to what happens in 1 + 1
dimensions, the adjoint of ψ obeys the opposite chirality
condition.)



Once we reduce to a 2× 2 Dirac Hamiltonian with γ5ψ = ±ψ, the
matrices γ0γ i that appear in the Dirac Hamiltonian are 2× 2
hermitian matrices and we can take them to be, up to sign, the
Pauli sigma matrices

σi = ±γ0γ i .

The point is that, if γ5ψ = ±ψ, then in acting on ψ,

σiσj = δij + iεijkσk .

(It is most simple to just prove this for i = 1, j = 2 from the
explicit identity γ0γ1γ0γ2 = iγ0γ3γ5.)



So the Dirac Hamiltonian

H = −i
∑
k

γ0γk
∂

∂xk

becomes for a chiral fermion

H = ∓ic
∑
k

σk
∂

∂xk
= ±c~σ · ~p.

(I have restored c, the speed of light.) As a matter of terminology,
a charged Dirac fermion of definite chirality with a definite value of
γ5 is called a Weyl fermion. The physical meaning of the
eigenvalue of γ5 is that it determines the fermion “helicity” (spin
around the direction of motion). Note that “fixed helicity” only
makes sense for a massless fermion (which is never at rest) and
indeed in the derivation we started with the massless Dirac
equation. The corresponding antiparticle (hole instead of electron)
has opposite helicity, somewhat as it has opposite charge.



This chiral Dirac Hamiltonian describes two bands with
ε(p) = ±|p|:



The chiral Dirac Hamiltonian basically coincides with the generic
Hamiltonian that we found for a 2× 2 band crossing

H =
∑
k,j

σkakjpj

with the replacement cpk →
∑

j akjpj . This means, of course, that
the fermion modes near p = p∗ do not propagate at velocity c but
much more slowly, and also that they do not necessarily propagate
isotropically in the standard Euclidean metric on R3, but in general
the natural metric governing these modes is

||p||2 =
∑
i

∑
j

aijpj

2

,

i.e. the effective metric is

G ij =
∑
k

ai ka
j
k .



Finally, and very importantly, the chirality of the gapless electron
mode is given by

sign det (aij) = sign det

(
∂bi
∂pj

)∣∣∣∣
p=p∗

.

A gap crossing in which this determinant is positive (or negative)
corresponds to a relativistic massless chiral fermion (or Weyl
fermion) with γ5 = +1 (or γ5 = −1).



Now, however, we should remember something about relativistic
quantum field theory in 3 + 1 dimensions: A theory of a U(1)
gauge field (of electromagnetism) coupled to a massless chiral
charged fermion of one chirality, with no counterpart of the
opposite chirality, is anomalous (inconsistent). In 1 + 1 dimensions,
we avoided such a contradiction because of a simple topological
fact that ε(p) passes downward through the fermi energy as often
as it passes upwards:



There is an analogous topological theorem that saves the day in
3 + 1 dimensions. It is called the Nielsen-Ninomiya theorem (1981),
which originally was motivated to explain some difficulties that had
been found in constructing lattice gauge theories for fermions.



In formulating this theorem, we assume that the band Hamiltonian
H(p) is gapped except at finitely many isolated points in the
Brillouin zone.

We will attach an integer to each of these bad points, and show
that these integers add up to 0.



To get started, we assume there are only two bands. Also, by
simply subtracting a c-number function of p from H(p), we can
make H(p) traceless, without changing the band crossings. So

H(p) = ~b(p) · ~σ

for some vector-valued function ~b(p). Now away from the bad
points, ~b(p) 6= 0 and so we can define a unit vector

~n(p) =
~b

|~b|
.

The mapping p → ~n(p) is defined away from the bad points. We
want to understand its topological properties.



Let us consider just one of the bad points, say at p = p∗, and let S
be a small sphere around this bad point.

The map p → ~n(p) is defined everywhere on S . This is a mapping
from one two-sphere – namely S – to another two-sphere –
parametrized by the unit vector ~n. A continuous mapping from one
sphere Sn to another sphere of the same dimension always has a
“winding number” or “wrapping number,” the net number of times
the first sphere wraps around the second. This reflects the fact that

πn(Sn) ∼= Z.



Before developing any general theory, let us see what the winding
number is in the case of the relativistic Dirac Hamiltonian

H = ±~σ · ~p,

where the sign is the fermion chirality. For this Hamiltonian,
~b = ±~p, and hence ~n = ±~p/|~p|. The bad point is ~p = 0, and we
can take the sphere S that surrounds the bad point to be the unit
sphere |~p| = 1. Thus the map from S to the ~n-sphere is just

~n = ±~p.

This is the identity map, of winding number 1, in the case of +
chirality, and it is minus the identity map, which winds around in
reverse, with winding number −1, in the case of − chirality.



The Nielsen-Ninomiya theorem is the statement that the sum of
the winding numbers at the bad points is always 0. Generically (in
the absence of lattice symmetries that would lead to a more special
behavior) a bad point of winding number bigger than 1 in absolute
value will split into several bad points of winding number ±1. So
generically, the bad points all have winding numbers ±1,
corresponding to gapless Weyl fermions of one chirality or the
other. In this case, the vanishing of the sum of the winding
numbers means that there are equally many gapless modes of
positive or negative chirality, as a relativistic field theorist would
expect for anomaly cancellation.



How does one prove that the sum of the winding numbers is 0?
One rather down-to-earth explanation is as follows. The winding
number for a map from S to the two-sphere |~n| = 1 can be
expressed as an integral formula:

w(S) =
1

4π

∫
d2p εµν~n · ∂µ~n × ∂ν~n.

An equivalent way to write the same formula is

w(S) =
1

4π

∫
S
d2p εµν εabcna

∂nb
∂pµ

∂nc
∂pν

.

Now
0 = ∂λ

(
ελµν~n · ∂µ~n × ∂ν~n

)
,

since the right hand side is ελµν∂λ~n · ∂µ~n × ∂ν~n, which vanishes
because it is the triple cross product of three vectors ∂λ~n, ∂µ~n, and
∂ν~n that are all normal to the sphere |~n| = 1.



For each bad point pα, let Uα be a small open ball around pα
whose boundary is a sphere Sα. Let B be the full Brillouin zone,
and let B ′ be what we get by removing from B all of the Uα. Thus
the boundary of B ′ is ∂B ′ = ∪αUα.



Then from Stokes’s theorem,

0 =
1

4π

∫
B′

d3p ∂λ

(
ελµν(n · ∂µn × ∂νn)

)
=
∑
α

1

4π

∫
Sα

d2p εµν ~n · ∂µ~n × ∂ν~n

=
∑
α

w(Sα).

Thus the sum of the winding numbers at bad points is 0, as
promised.



If one is familiar with differential forms, one can express this
argument more briefly as follows. Let us write S~n for the
two-sphere ~n = 1 and let η be its volume form. It is a closed form
whose integral is 1:

0 = dη,

∫
S~n

η = 1.

Given a map ϕ : S → S~n, the corresponding winding number is

w(S) =

∫
S
ϕ∗(η).

So

0 =

∫
B′
ϕ∗(dη) =

∫
B′

dϕ∗(η) =
∑
α

∫
Sα

ϕ∗(η) =
∑
α

w(Sα).



There is another way to describe this, which involves the Berry
connection, and more fundamentally the line bundle on which the
Berry connection is a connection. For each value of p away from
the bad points, the Hamiltonian H(p) has one negative eigenvalue,
so the space of filled fermion states of momentum p is a
1-dimensional complex vector space that I will call Lp. A vector in
Lp is a wave function ψp that obeys H(p)ψp = −ψp. We can ask
for ψp to be normalized, 〈ψp, ψp〉 = 1, but there is no natural way
to fix the phase of ψp.



However, suppose that we vary p continuously by a path p = p(s)
from, say, p1 to p2:

(You can think of this as a path that lies in a sphere |p − p∗| = ε
around a bad point p∗.) If we make any arbitrary choice of the
phase of ψp at p = p1, then we can parallel transport the phase of
ψp along the given path by requiring that at all p along the path

〈ψp,
d

ds
ψp〉 = 0.

(The real part of this equation ensures that 〈ψp, ψp〉 is constant
along the path, and the imaginary part of the equation determines
how the phase of ψp depends on the parameter s.)



Having a rule of parallel transport of the phase of ψp along any
path amounts to defining a connection on B ′ (more exactly on the
line bundle L → B ′ whose sections we are parallel transporting). A
connection on a complex line bundle L is the same as an abelian
gauge field, which we will call A. Parallel transport around a
closed loop γ

using the Berry connection does not bring us back to the starting
point. That is, the Berry connection is not flat; it has a curvature
F = dA. This curvature, divided by 2π represents (modulo
torsion) the first Chern class of the line bundle L → B ′:

c1(L)←→ F
2π
.



If pα is one of the bad points at which two bands cross and Sα is a
small sphere around pα then the flux of F/2π over the sphere Sα
is the winding number, as defined earlier:

wα(S) =

∫
Sα

F
2π
.

The Bianchi identity for any abelian gauge field A tells us that

dF = 0.

So once again we get the Nielsen-Ninomiya theorem

0 =

∫
B′

dF
2π

=
∑
α

∫
Sα

F
2π

=
∑
α

w(Sα).



So a more precise picture of the bad points in the Brillouin zone
for a generic two-band system looks like this:

A bad point labeled by + or − supports a gapless Weyl fermion of
positive or negative chirality; the Nielsen-Ninomiya theorem says
that there are equally many + and − points.



This is all very well, but if we want this to lead to striking effects in
condensed matter physics, it won’t do to have the band crossing at
a random energy; we are really only interested in a band crossing
that is at, or very near, the fermi energy εF . Thus we want the
picture to look like the one on the right and not the one on the left:



Ideally, we want all band crossings to be at or very near εF . If
instead we have one of each type, we will get a “normal metal”
(because of the band crossing that is below or above εF ) and its
effects will probably swamp the more subtle “semi-metal” effects
due to the band crossing which is at εF . (Also I am not certain
that band theory is a good enough theory so that the details of
what happens far away from εF are meaningful.)



How can we arrange that all band crossings occur at εF ? Well,
first of all, how can we arrange so that they are all at the same
energy? In the context of condensed matter physics, the way to do
this is to find a material that has discrete spatial symmetries (or
spatial symmetries combined with time-reversal symmetry) that
permute all of the bad points. Some of these symmetries have to
be orientation-reversing, since they have to exchange + and −
points. The picture will then look more like this:



But how can we arrange so that the energy at which the band
crossings occur is precisely εF ? Here we run into one of the
beautiful things in this subject. We can get that for free, because
the number of electrons per unit cell is an integer. For example, if
there is precisely one electron per unit cell that is supposed to be
filling the two bands in our model, the fermi energy will be where
we want it:



There are a lot of famous examples, the oldest being graphene (in
two dimensions) and some contemporary ones that we are hearing
about this week. To be more exact, it is natural to have the band
crossings at εF in the sense that, given a band Hamiltonian like the
one we have assumed, any nearby band Hamiltonian with the same
symmetries leads to the same picture. But this result is not forced
by the universality class; a large enough deformation preserving the
discrete symmetries will give an ordinary metal.



To show this, here I have tried to draw a picture with the same
left-right symmetry, but with a crucial wiggle in ε(p):

With this band
structure, εF will be above the energy of the band crossings,
leading to a fairly normal metal.



When I said, “the band crossings will be at the fermi level if 1
electron state per unit cell is occupying these bands,” you may
have wondered about the following question: Is spin being included
in this counting? Actually, our discussion has been so general that
it makes sense with or without spin. But there are two somewhat
different cases.



In one case, spin-orbit couplings are important. It is not a good
approximation to consider spin to be decoupled from orbital
motion. The bands we have been drawing are the exact bands,
taking spin and spin-dependent forces into account.



In the second case, spin-dependent forces are small and in the first
approximation one ignores them and considers orbital motion only.
In such a case, our two bands

are orbital bands. When
we include spin, in first approximation we simply double the
picture, so that now there are four bands – two copies of what has
been drawn. In this approximation, we get 2 chiral Weyl fermions,
and they have the same chirality because (if the spin is decoupled
from orbital motion) the spin up and spin down electrons have the
same band Hamiltonian and so the same chirality.



However, there always are spin-orbit forces in nature and
generically the two pairs of bands will be split. The exact problem
is a four-band problem. Assuming the density of electrons is such
that 2 of the 4 bands are supposed to be filled, the crossings we
care about (as they may be at or very near the Fermi energy) are
those between the second and third bands, in order of increasing
energy.



We have not yet analyzed problems with more than 2 bands, so the
following statement involves jumping ahead slightly. A more
general form of the Nielsen-Ninomiya theorem that we come to in
a moment ensures that there will still be two Weyl crossings
between the second and third bands (with the same chirality as
before) but generically (for weak spin-orbit couplings) at slightly
different energies and momenta. The fermi energy cannot equal
the energy of each of these crossings, and generically it does not
equal either of them, but it will be close.



A very crude picture of two Weyl crossings neither of which is
quite at the fermi energy is here:

Naively this
leads to a normal metal with a very small density of charge
carriers, but I believe that condensed matter physicists know that
in such a case the fermi liquid is subject to various instabilities.



Now let us discuss the generalization of the Nielsen-Ninomiya
theorem for an N band system. We assume that the density of
electrons is such that k bands should be filled, for some integer
k < N. We let Hp be the full N-dimensional space of states at
momentum p. At any value of p such that the kth band (in order
of increasing energy) does not meet the k + 1th, Hp has a
well-defined subspace H′p spanned by the k lowest states. The

definition of H′p does not make sense at points at which the kth

band meets the k + 1th. Just as before, to make this happen we
have to adjust three parameters, so there will be finitely many bad
points in the Brillouin zone at which H′p is not defined:



Wherever H′p is well-defined, it defines a k-dimensional subspace

of Hp
∼= CN . The space of all k-dimensional subspaces of CN is

called the Grassmannian Gr(k ,N). If pα is an isolated point on
which H′p is not defined, then H′p is defined on a small sphere Sα
around pα

Because
π2(Gr(k ,N)) ∼= Z,

we can attach an integer-valued winding number w(Sα) to each
pα.



Any of the explanations that we gave before for the case of two
bands can be adapted to prove the Nielsen-Ninomiya theorem∑

α

wα = 0.

For example, let us consider the explanation based on the Berry
connection. Letting B ′ be as before the “good part” of the
Brillouin zone with small neighborhoods of bad points removed, we
have a rank k complex vector bundle H′ → B ′ whose fiber at
p ∈ B ′ is H′p. This is just the bundle spanned by the k lowest
bands. On this bundle, there is a Berry connection, which is now a
U(k) gauge field.



It is defined as follows. To parallel transport ψ(p) ∈ H′p along a
path γ ⊂ B ′,

we require that

〈ψ′| d
ds
|ψ〉 = 0, for all ψ′ ∈ H′p.

In other words, dψ/ds is required to be orthogonal to H′p, for all s.
This gives a connection or U(k) gauge field A on H′ → B ′. It has
a curvature F = dA+A ∧A. The winding number w(Sα) is

w(Sα) =

∫
Sα

c1(H′) =

∫
Sα

TrF
2π

.



Using the Bianchi identity dTrF = 0, we get, with the help of
Stokes’s theorem

0 =

∫
B′

d
TrF
2π

=
∑
α

∫
Sα

TrF
2π

=
∑
α

w(Sα).

As you can see, the proof using the Berry connection is the same
as it was for two bands, except that we have to put a trace
everywhere.



Generically, the winding number at a bad point is ±1, just as in
the two band case. The generic behavior at a crossing of winding
number ±1 is the familiar Weyl crossing between the kth and
k + 1th bands.

So the points with winding number ±1 give chiral Weyl fermions,
and the Nielsen-Ninomiya theorem says that there are equally
many of these of positive or negative chirality.



None of this relied on discrete symmetries, though much of it
becomes richer if one does consider materials with discrete
symmetries. But what if we want to get massless Dirac fermions in
2 space dimensions rather than 3? This will not work without
discrete symmetries because generically there would be no band
crossings as we vary the 2 parameters of a 2-dimensional Brillouin
zone.



In 2 + 1 dimensions, there are only three γ matrices γ0, γ1, γ2, and
they can be given a 2-dimensional representation. So a Dirac
fermion in 2 + 1 dimensions has only 2 components and the
massless Dirac Hamiltonian is

H = σ1p1 + σ2p2.

(To derive this from the relativistic Dirac equation γµ∂µψ = 0 is
similar to what we did in 3 space dimensions.) The energy levels
are ±|p|, and there is a level crossing at p = 0. We know that
such a level crossing is nongeneric in 2 space dimensions, and
concretely it is possible to perturb the Dirac Hamiltonian by
adding a mass term:

H = σ1p1 + σ2p2 + σ3m.

The massive Dirac Hamiltonian has nondegenerate energy levels
±
√
p2 + m2.



However, the mass term violates some symmetries. The reflection
symmetry of

H = σ1p1 + σ2p2

is
ψ(x1, x2)→ σ2ψ(−x1, x2)

and the mass term
H ′ = mσ3

is odd under this. The mass term is similarly odd under
time-reversal.



The physical reason that a mass term violates reflection symmetry
R and time-reversal symmetry T is as follows. If ψ is a
two-component electron field in two dimensions, then one
component of ψ is a creation operator and one is an annihilation
operator. Hence ψ describes for each value of ~p only a single state
of charge 1 (along with a corresponding hole or antiparticle of
charge −1). If the ψ particle is massive, we can study it in its rest
frame and its one spin state will transform with spin 1/2 or −1/2
under the rotation group. (In 2 space dimensions, the rotation
group is just the abelian group SO(2) and has 1-dimensional
representations.) Either choice of sign is odd under R or T , so the
mass term must violate R and T .

By contrast, if m = 0, the fermion cannot be brought to rest and
in 2 space dimensions, we cannot define its spin. So the m = 0
theory can be R and T conserving.



This tells us that in a 2d crystal, it should be possible to find
gapless Dirac-like modes as long as the crystal has a suitable R or
T symmetry, and the gapless modes occur at an R- or T -invariant
value of the momentum. It is not hard to give examples but we
don’t quite have time right now unfortunately. I will just remark
that rather as we discussed for Weyl points in 3 space dimensions,
there are two versions, either a material that with spin included has
an R or T symmetry that leads to a gapless mode, or a material
with small spin-orbit forces that has the appropriate property if
spin and spin-orbit forces are ignored – in which case, in the real
world, one will get modes with a very small gap but not quite zero.
The most famous example of the second type is graphene (often
discussed with spin ignored; the spin-dependent effects were
analyzed by Kane and Mele as we heard yesterday).



Instead I want to begin our discussion of edge modes. We will do
this in 3 space dimensions and we will start by considering a
non-chiral massless Dirac fermion ψ. (For now, never mind how to
realize this in condensed matter physics.) We suppose that ψ is
confined to a half-space (possibly the interior of a crystal) and we
ask what kind of boundary condition it should obey when it is
reflected from a boundary. For reflection at right angles, as I’ve
tried to sketch here

a simple boundary condition would conserve angular momentum.



By “conserving angular momentum” I mean that if the normal
direction to the boundary is the x1 direction, then the
corresponding component J1 of angular momentum should be
conserved.

Since the direction of motion is reversed in the scattering, the
helicity has to be reversed. For a Dirac fermion, that is OK,
because it has both helicities.



For a Dirac fermion with or without a bare mass obeying the Dirac
equation i

3∑
µ=0

γµ∂µ −m

ψ = 0

the angular-momentum conserving and helicity-reversing boundary
condition (for a boundary at x1 = 0) is

iγ1ψ|x1=0 = ± ψ|x1=0 .

Either choice of sign will do. This boundary condition obviously is
invariant under rotation around the x1-axis; the assertion that it is
“helicity-reversing” is valid if m = 0 or the energy is much greater
than m.



But what sort of boundary condition can we have for a massless
Weyl fermion, with only one helicity? Obviously, the boundary
condition cannot reverse the helicity, and therefore it cannot
conserve angular momentum. Any boundary condition will have to
pick a preferred direction in the boundary plane. For a chiral Dirac
Hamiltonian

H = −i~σ · ∂
∂~x

a good boundary condition at x1 = 0 is

Mψ|x1=0 = ψ|x1=0

with
M = σ2 cosα + σ3 sinα

for some angle α.



What makes this a good boundary condition is that it makes
H = −i~σ · ~∇ hermitian. To prove that H = −i~σ · ~∇ is hermitian,

〈ψ1,Hψ2〉 = 〈Hψ1, ψ2〉

one has to integrate by parts. A potential boundary term in this
integration by parts vanishes because

{M, σ1} = 0

and our choice M = σ2 cosα + σ3 sinα was made to ensure this.
In particular, it won’t work if we pick M = σ1, and that again
shows that the boundary condition cannot be invariant under
rotation of the x2 − x3 plane.



The choice of angle α doesn’t really matter, since it can be
absorbed in a rotation of the x2 − x3 plane. So let us just take
α = 0, meaning that the boundary condition is σ2ψ| = ψ|.

Now something very interesting happens. Let us try to solve the
equation Hψ = 0 assuming that σ2ψ = ψ everywhere (not only on
the boundary) and also assuming that ∂ψ/∂x2 = 0. Then

Hψ = (σ1∂1 + σ2∂2 + σ3∂3)ψ = σ1(∂1 − i∂3)ψ.

(I used σ3 = −iσ1σ2 so σ3ψ = −iσ1ψ.) So we can solve Hψ = 0
with

ψ = exp(ikx3 − kx1)ψ0,

and this is plane-wave normalizable if

k > 0.

(ψ0 is a constant obeying σ2ψ0 = ψ0.) What is special about these
solutions is that they decay exponentially away from the boundary.



So we have found a half-line of states localized near the boundary,
and parametrized by p3 = k > 0. In the presence of a boundary at
x1 = 0, p1 is of course not conserved, so the components of the
momentum that are conserved are p2 and p3. In the p2 − p3 plane
the spectrum of localized states is a ray from the origin in the +p3
direction:



In a condensed matter application, the fact that these
boundary-localized states have exactly zero energy is not universal.
We could modify the Hamiltonian by all kinds of higher order
terms, leading to something more like this:

What is universal is that there is a curve – a “Fermi arc” – of
boundary-localized states that begins at “zero momentum,” i.e. at
the projection to the p2 − p3 plane of the value of ~p at which there
was a band crossing in bulk. Indeed, the calculation that we did
was universal near the band crossing point.



The way that the Fermi arc ends is that the boundary-localized
state

ψ = exp(ikx3 − kx1)ψ0

stops being localized near the boundary as k → 0. At k = 0, the
boundary localized state coincides with the ~p = 0 limit of a bulk
state. A somewhat helpful but also somewhat misleading picture of
the spectrum is this:



But what happens at the other end of the Fermi arc? It seems that
the only way for such an arc of boundary-localized states to end is
by ceasing to be normalizable, which happens precisely when they
meet continuum states. So the second end of the Fermi arc is
another Weyl cone, this one of opposite chirality:



In condensed matter, we know from the Nielsen-Ninomiya theorem
that there always are multiple Weyl points in the Brillouin zone,
say at momenta ~pα, α = 1, . . . , s:



In bulk, because momentum is conserved, gapless modes at
different values of ~p do not “mix” with each other and can be
treated separately. But when we consider the behavior near a
boundary, the “perpendicular” component p⊥ of the momentum is
not conserved and we should only use p‖. So we project the bad
points to 2 dimensions:

As long as the projections p
‖
α of the Weyl points are all distinct,

they will be connected pairwise by Fermi arcs, as I have described.



But if two Weyl points of opposite chirality project to the same
point in the boundary momentum space,

then there is no need for either one to connect to a Fermi arc.
From a low energy point of view, the two modes of opposite
chirality combine to a Dirac fermion with both chiralities, and it
can satisfy the Dirac boundary condition (namely iγ1ψ| = ±ψ|)
that we mentioned at the beginning. This does not lead to a Fermi
arc. Of course, whether two given Weyl points have the same
projection on the boundary depends on which boundary face we
consider. But the discrete symmetries that make Weyl points
interesting can also make it natural, for some crystal facets, that
two Weyl points have the same projection.



It is also possible to get boundary-localized modes from Dirac
fermions, and since this is important in understanding topological
insulators, it is the last topic I will describe today. In the absence
of discrete symmetries, and without tuning any parameters, it is
not natural in condensed matter physics to get a massless Dirac
(as opposed to Weyl) fermion. That is simply because for a
four-component fermion field ψ with both chiralities, mass terms
are possible, in fact there are two such terms:(

i
∑
µ

γµ∂µ −m −m′γ5

)
ψ = 0.

To get a massless Dirac fermion, we need a reason for
m = m′ = 0. It turns out that it is actually possible to achieve this
in the context of a crystal with suitable discrete symmetries, but
unfortunately there is not time to explain this today.



The only symmetry that we will assume is time-reversal symmetry,
and this is enough to set one of the two parameters to 0 but not
both. The Dirac equation becomes(

i
∑
µ

γµ∂µ −m

)
ψ = 0.

Generically m is not 0 but of course if we adjust one parameter (for
example the chemical composition of an alloy) we can hope to pass
through a point with m = 0. It turns out that this is the phase
transition between an ordinary insulator and a topological one. For
now, we consider a sample with boundary and look for a mode
localized near the boundary.



We take the boundary at x1 = 0 and the natural Dirac boundary
condition iγ1ψ| = ψ|. (The sign does not really matter and there
is no reason for the boundary condition to jump when m passes
through 0.) Let x‖ be the coordinates along the boundary and

iγ · ∂‖ = i
∑
µ6=1

γµ∂µ

the 2 + 1-dimensional Dirac operator along the boundary. We can
obey the 3 + 1-dimensional Dirac equation with

ψ = exp(mx1)ψ‖(x‖)

where
iγ1ψ‖ = ψ‖, γ · ∂‖ψ‖(x‖) = 0.

For m > 0, this solution is highly unnormalizable. But for m < 0,
it is plane-wave normalizable and localized along the boundary. We
have found one of the main characteristics of the topological
insulator phase: the boundary supports a gapless fermion mode.



To be more precise, since ψ‖ was constrained to obey the massless
2 + 1 dimensional Dirac equation

γ · ∂‖ψ‖(x‖) = 0,

we get a 2 + 1 dimensional massless Dirac fermion. (Because of
the additional constraint iγ1ψ‖ = ψ‖ which removes half the
modes, the original 4-component fermion in 3+1 dimensions gives
a single 2-component massless Dirac fermion in 2 + 1 dimensions.)



Generically in the context of condensed matter physics the fermi
energy εF does not pass through the Dirac point in the boundary
theory

so the boundary of a topological insulator is more like an ordinary
metal than the Weyl semimetals that we talked about before.



To summarize the last point, we have learned that in a generic
1-parameter family of T -conserving band theories, there can be a
phase transition between a phase with no localized boundary
modes and a phase with a massless 2d fermion on the boundary.
At the phase transition point, there is a massless 3d Dirac fermion.



For tomorrow, we will start with quantum Hall systems in 2
dimensions – and then eventually make contact with Weyl
semi-metals in 3 dimensions.


