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Last time we talked about Weyl fermions in condensed matter and
the boundary-localized modes that they produce. It is also possible
to get boundary-localized modes from Dirac fermions, and since
this is important in understanding topological insulators, I will say
a little about it.



In the absence of discrete symmetries, and without tuning any
parameters, it is not natural in condensed matter physics to get a
massless Dirac (as opposed to Weyl) fermion. That is simply
because for a four-component fermion field ψ with both chiralities,
mass terms are possible, in fact there are two such terms:(

i
∑
µ

γµ∂µ −m −m′γ5

)
ψ = 0.

To get a massless Dirac fermion, we need a reason for
m = m′ = 0. It turns out that it is actually possible to achieve this
in the context of a crystal with suitable discrete symmetries, but
unfortunately there will not be time to explain this.



The only symmetry that we will assume is time-reversal symmetry,
and this is enough to set one of the two parameters to 0 but not
both. The Dirac equation becomes(

i
∑
µ

γµ∂µ −m

)
ψ = 0.

Generically m is not 0 but of course if we adjust one parameter (for
example the chemical composition of an alloy) we can hope to pass
through a point with m = 0. It turns out that this is the phase
transition between an ordinary insulator and a topological one. For
now, we consider a sample with boundary and look for a mode
localized near the boundary.



We take the boundary at x1 = 0 and the natural Dirac boundary
condition iγ1ψ| = ψ|. (The sign does not really matter and there
is no reason for the boundary condition to jump when m passes
through 0.) Let x‖ be the coordinates along the boundary and

iγ · ∂‖ = i
∑
µ6=1

γµ∂µ

the 2 + 1-dimensional Dirac operator along the boundary. We can
obey the 3 + 1-dimensional Dirac equation with

ψ = exp(mx1)ψ‖(x‖)

where
iγ1ψ‖ = ψ‖, γ · ∂‖ψ‖(x‖) = 0.

For m > 0, this solution is highly unnormalizable. But for m < 0,
it is plane-wave normalizable and localized along the boundary. We
have found one of the main characteristics of the topological
insulator phase: the boundary supports a gapless fermion mode.



To be more precise, since ψ‖ was constrained to obey the massless
2 + 1 dimensional Dirac equation

γ · ∂‖ψ‖(x‖) = 0,

we get a 2 + 1 dimensional massless Dirac fermion. (Because of
the additional constraint iγ1ψ‖ = ψ‖ which removes half the
modes, the original 4-component fermion in 3+1 dimensions gives
a single 2-component massless Dirac fermion in 2 + 1 dimensions.)



Generically in the context of condensed matter physics the fermi
energy εF does not pass through the Dirac point in the boundary
theory

so the boundary of a topological insulator is more like an ordinary
metal than some of the Weyl semimetals that we talked about
yesterday.



To summarize the last point, we have learned that in a generic
1-parameter family of T -conserving band theories, there can be a
phase transition between a phase with no localized boundary
modes and a phase with a massless 2d fermion on the boundary.
At the phase transition point, there is a massless 3d Dirac fermion.

As I have already remarked, the other way to get massless 3d Dirac
fermions in condensed matter is to take advantage of certain
discrete crystal symmetries. This has actually been part of the
background for some of the experimental talks that we have heard.



However, I want to go in a different direction involving an
introduction to some aspects of the integer quantum Hall effect.
First I just want to explain from the point of view of effective field
theory why there is an integer quantum Hall effect in the first
place. We consider a material that not only is an insulator, but
more than that has no relevant degrees of freedom – not even
topological ones – in the sense that its interaction with an
electromagnetic field can be described by an effective action for
the U(1) gauge field A only, without any additional degrees of
freedom. (This would certainly not be true in a conductor, whose
interaction with an electromagnetic field cannot be described
without including the charge carriers in the description, along with
A. But more subtly, as we will discuss, it is not true in a fractional
quantum Hall system, whose effective field theory requires
topological degrees of freedom coupled to A.)



In a 3 + 1-dimensional material with no relevant degrees of
freedom, the effective action for the electromagnetic field can have
all sorts of terms associated to various familiar effects. For
example, ferromagnetism and ferroelectricity correspond to terms
in the effective action that are linear in ~E or ~B

I ′ =

∫
W3×R

(
~a · ~E + ~b · ~B

)
.

(Here W3 is the spatial volume of the material and R parametrizes
the time, so the “world-volume” of the material is M4 = W3 × R.)
Similarly, electric and magnetic susceptibilities correspond to terms
bilinear in ~E or ~B:

I ′′ =

∫
W3×R

(αijEiEj + βijBiBj) .

And so on.



All these terms are manifestly gauge-invariant in the sense that
they are integrals of gauge-invariant functions – the integrands are
constructed only from ~E and ~B (and possibly their derivatives). In
2 + 1 dimensions, there is a unique term that is gauge-invariant
but does not have this property. This is the Chern-Simons coupling

ICS =
1

4π

∫
M2×R

d3xεijkAi∂jAk .

The density εijkAi∂jAk that is being integrated is definitely not
gauge-invariant, but the integral is gauge-invariant up to a total
derivative. In fact, under

Ai → Ai + ∂iφ,

we have

εijkAi∂jAk → εijkAi∂jAk + ∂i

(
εijkφ∂jAk

)
.



Roughly speaking, this shows that ICS is gauge-invariant, but we
have to be more careful because electric charge quantization, with
a field of charge 1 transforming as

ψ → e iφψ

means that we should consider φ to be defined only modulo 2π:

φ ∼= φ+ 2π.

Given this fact, the previous proof of gauge-invariance of ICS is not
quite correct and we will be more careful in a moment.



Before I go on, though, I want to point out that logically, one could
consider a theory in which one is only allowed to make a gauge
transformation Ai → Ai + ∂iφ with a single-valued φ. But that
theory is not the real world. Dirac showed that the Schrodinger
equation of electrons, protons, and neutrons can be consistently
coupled with magnetic monopoles, and that this consistency is only
possible because the Schrodinger equation is invariant under gauge
transformations in which e iφ is single-valued although φ is not.
This is needed to make the Dirac string unobservable:



Anyway our microscopic knowledge that the Schrodinger equation
is invariant under any gauge transformation such that e iφ is
single-valued (even if φ is not single-valued) implies constraints on
the effective action that we would not have without that
knowledge. We want to understand those constraints.



To do this, we will consider the following situation: we take our
two-dimensional material to be a closed two-manifold, for instance
S2, and we will take “time” to be a circle S1 of circumference β.
(For example, we might be computing Tr e−βH .) Thus we consider
a material whose “worldvolume” is M3 = S2 × S1:



One might not be able to engineer this situation in the real world
but it is clear that the Schdrodinger equation makes sense in this
situation. So we can consider it in deducing constraints on the
effective action that can arise from the Schrodinger equation.



The gauge field that we want to consider on M3 = S2 × S1 is
characterized by the following: We place a unit of Dirac magnetic
flux on S2 ∫

S2

dx1dx2
F

2π
= 1.

(This is the right quantum of flux if the covariant derivative of the
electron is Diψ = (∂i − iAi )ψ, meaning that I am writing A for
what is often called eA. This lets us avoid factors of e in many
formulas.) And we take a constant gauge field in the time
direction:

A0 =
s

β

with constant s. (Remember the time direction is a circle of
circumference β.) For this gauge field, one can calculate

ICS =
1

4π

∫
M3=S2×S1

d3xεijkAi∂jAk = s.

(This is actually a slightly tricky calculation.)



Note that the holonomy of A around the “time” circle is

exp

(
i

∫ β

0
A0dt

)
= exp

(
i

∫ β

0
(s/β)dt

)
= exp(is).

The gauge transformation

φ =
2πt

β
,

which was chosen to make e iφ periodic, acts by

s → s + 2π

and so leaves the holonomy invariant. (This must be true, because
with my normalization of A, this holonomy is the phase factor
when an electron is parallel-transported around the circle and so is
physically meaningful.)



So we have in this example ICS = s, and a gauge transformation
can act by s → s + 2π. So ICS is not quite gauge-invariant. Here
we must remember what is essentially the same fact that was
exploited by Dirac in his theory of the magnetic monopole. The
classical action I enters quantum mechanics only via a factor
exp(iI ) in the Feynman path integral (or exp(iI/~) if one restores
~), so it is enough if I is well-defined and gauge-invariant mod
2πZ. Since ICS is actually gauge-invariant mod 2πZ (we showed
this in an example but it is actually true in general), it can appear
in the effective action with an integer coefficient:

Ieff = kICS + . . . .



The point of this explanation has been to explain why k has to be
an integer – sometimes called the “level.” The fact that k is an
integer gives a macroscopic explanation of the quantization of the
Hall current. Indeed for any material whose interaction with an
electromagnetic potential A is governed by an effective action Ieff ,
the induced current in the material is

Ji = −δIeff

δAi
.

We are interested in the case that

Ieff = kICS =
k

4π

∫
M3

d3xεijkAi∂jAk .



Let us consider a material sitting at rest at x3 = 0 and thus
parametrized by x1, x2.

The current in the x2 direction is

J2 = −δIeff

δA1
=

kF01
2π

=
kE1

2π
.

This is called a Hall current: an electric field in the x1 direction has
produced a current in the x2 direction. The Hall current has a
quantized coefficient k/2π (usually called ke2/2π, recall that my A
is usually called eA; also I set ~ = 1 so h = 2π), where the
quantization follows from the fact that ICS is not quite
gauge-invariant.



One may wonder “How then can one have a fractional quantum
Hall effect?” I will give a short answer for now, postponing for later
a deeper study of the fractional quantum Hall effect. One cannot
get an integer quantum Hall effect in a description in which A is
the only relevant degree of freedom. However, from a macroscopic
point of view, this can happen in a material that generates an
additional “emergent” U(1) gauge field a that only propagates in
the material. We will write fij = ∂iaj − ∂jai for the field strength of
a. An example (Wen, Wilczek, Zee, ...) of a gauge-invariant
effective action that leads to a fractional quantum Hall effect is

Ieff =
1

2π

∫
M3

d3x εijkAi∂jak −
r

4π

∫
M3

d3x εijkai∂jak .



An oversimplified explanation of why this gives a fractional
quantum Hall effect is the following. One argues that as a appears
only quadratically in the effective action, one can integrate it out
using its equation of motion. This equation is

f =
1

r
F ,

implying that up to a gauge transformation a = A/r . Substituting
this in Ieff , we get an effective action for A only that describes a
fractional quantum Hall effect:

I ′eff =
1

r
ICS(A) =

1

r

1

4π

∫
M3

d3x εijkAi∂jAk .



Here 1/r appears where k usually does, and this suggests that the
Hall conductivity in this model is 1/r . That is correct. But there
clearly is something wrong with the derivation because the claimed
answer for the effective action I ′eff = (1/r)ICS(A) does not make
sense as it violates gauge invariance. The mistake is that in
general, as F may have a flux quantum of 2π, and f has the same
allowed flux quantum (otherwise the action we assumed would not
be gauge-invariant), for a given A it is not possible to solve the
equation

f =
1

r
F

for a. Thus, it is not possible to eliminate a from this system and
give a description in terms of A only. The reason that “integrating
out a” gives the right answer for the Hall current is that this
procedure is valid locally and this is enough to determine the Hall
current. The system has more subtle properties (fractionally
charged quasiparticles and topological degeneracies) that can only
be properly understood in the description with a as well as A.



Going back to a theory that can be described in terms of A only,
we have then an integer k in the macroscopic description. But
there is also an integer in the microscopic description of a band
insulator (Thouless-Kohmoto-Nightingale-den Nijs 1982). It arises
as follows. We consider a crystal with N bands, of which n are
filled. We assume the system is completely gapped.

say with n filled bands fand N − n empty bands. As we learned
yesterday, in a 2d system it is generic to have no band crossings.



We are in the same situation as in our discussion yesterday of Weyl
semimetals, except that there are no bad points, so we work over
the whole Brillouin zone B, without removing anything. As we are
in two-dimensions, B is a two-torus. At momentum p, let
Hp
∼= CN be the full space of all states, and H′p the subspace of

filled levels. We can regard Hp as a rank (or dimension) N “trivial
bundle” over B and H′p as a “subbundle” of rank n. The integer
we want, which we will call k ′, is the first Chern class c1(H′p),
integrated over B. In terms of the Berry connection A on the filled
bands that we discussed yesterday, whose curvature we call F , this
integer is

k ′ = c1(H′p) =

∫
B

TrF
2π

.



The basic claim of TKNN is that k ′, the flux of the Berry
connection, is the same as k , the coefficient of the quantum Hall
current. The original proof was based on literally just calculating
the current from first principles in terms of a matrix element in the
fermion ground state – which is written as an integral of single
particle matrix elements over the Brillouin zone. I want to explain
a different viewpoint that will emphasize that k ′ is not just a band
concept but can be defined in the full many-body theory. (I hope
to describe tomorrow another approach essentially due to Haldane
to the relation k = k ′.)



We consider a finite sample, say on an L1 × L2 lattice

for very large L1, L2, where I will take lattice constants a1, a2 in the
two directions. We assume periodic boundary conditions,
maintaining the lattice translation symmetries. However, for the
finite system, the momenta take discrete values

p1 =
2πs1
a1L1

, 0 ≤ s1 ≤ L1 − 1

p2 =
2πs2
a2L2

, 0 ≤ s2 ≤ L2 − 1.

The ground state of the finite system is of course obtained by
filling all of the states in the first n bands with these values of the
momenta.



Now, however, we turn on a background electromagnetic vector
potential that is chosen such that the magnetic field vanishes, but
an electron going all the way around the x1 direction or the x2
direction picks up a phase:

A1 =
α1

a1L1
, A2 =

α2

a2L2
.

The phase picked up by an electron going around the x1 (or x2)
direction is exp(iα1) (or exp(iα2)) and up to a gauge
transformation the range of these parameters is

0 ≤ α1, α2 ≤ 2π.



From the point of view of band theory, the effect of turning on the
parameters α1, α2 is just to shift the momenta of the electrons,
which become

p1 =
2πs1 + α1

a1L1
, 0 ≤ s1 ≤ L1 − 1

p2 =
2πs2 + α2

a2L2
, 0 ≤ s2 ≤ L2 − 1.

This actually shows that the spectrum is invariant under a 2π shift
of α1 or of α2 (up to an integer shift of s1 or s2). For any α1, α2,
from the point of view of band theory, the ground state is found by
filling all states in the first n bands with these shifted values of the
momenta.



Now we think of the parameters α1, α2 as parameters that are
going to vary adiabatically. Since they are each defined mod 2π,
they parametrize a torus that I will call B̂. (B̂ can be viewed as a
sort of rescaled version of the Brillouin zone B.) Since Berry’s
construction is universal for adiabatic variation of parameters, we
can construct a Berry connection Â over B̂, with curvature F̂ . Â
is a connection that can be used to transport the ground state as
the parameters α1, α2 are varied. All we need to know to define it
is that the ground state is always nondegenerate as α1, α2 are
varied. We do not need to assume a single-particle picture (i.e.
band theory). But I should say that for the conclusions we draw to
be useful, at least in the form I will state, we need the gap from
the ground state to be independent of L1, L2 as they become large.
(Otherwise in practice our measurements in the lab may not be
adiabatic. The stated assumption is not true for a fractional
quantum Hall system, as I hope to explain tomorrow.)



Using the Berry connection over B̂, we can define an integer:

k̂ ′ =

∫
B̂
dα1 dα2

F̂
2π
.

But I claim that this is the same as the integer k ′ defined in band
theory:

k ′ = k̂ ′.

The reason that this is useful is that the definition of k̂ ′ is more
general. To define k ′, we assume band theory – that is, a
single-particle description based on free electrons. The definition of
k̂ ′ assumes much less.



To understand why k ′ = k̂ ′, I have drawn

the discrete points in the Brillouin zone that obey the finite volume
condition

p1 =
2πs1
a1L1

, 0 ≤ s1 ≤ L1 − 1

p2 =
2πs2
a2L2

, 0 ≤ s2 ≤ L2 − 1.

at α1 = α2 = 0. The parameters α1, α2 parametrize one of the
little rectangles in the picture, say the one at the lower left.



Turning on α1, α2 shifts the allowed momenta as shown.



To compute k ′, we integrate over B, the full Brillouin zone. To
compute k̂ ′, we integrate over the little rectangle, but for each
point in the little rectangle, we sum over the corresponding shifted
momenta

These are two different ways to organize the same calculation, so
k̂ ′ = k ′.



So instead of proving the original TKNN formula k = k ′, we can
prove k = k̂ ′. This has the following advantage: k̂ ′ is defined in
terms of the response of the system to a changing electromagnetic
vector potential A, so we can determine k̂ ′ just from a knowledge
of the effective action for A.



As practice, before determining the Berry connection for A, I am
going to determine the Berry connection for an arbitrary dynamical
system with dynamical variables x i (t). You can think of x i (t),
i = 1, . . . , 3 as representing the position coordinates of a particle,
but they really could be anything else (for example x i (t) could
have 3N components representing the positions of N particles).
Regardless, we assume an action

I =
1

2

∫
dt gij(x)

dx i

dt

dx j

dt
+

∫
dtAi (x)

dx i

dt
−
∫

dtV (x) + . . . .

(There might be higher order terms but it will be clear in a
moment that they are not important.) We shall compute the Berry
connection in the space of semiclassical states of zero energy, a
condition that we satisfy by imposing the condition V (x) = 0.
(This semiclassical approximation is valid in our problem because
we do not need to treat the electromagnetic vector potential A
quantum mechanically. We can view it as a given external field.)



Setting V = 0 means that we will evaluate the Berry phase not for
all values of x but only for values of x that ensure V (x) = 0.

So we drop the V (x) term from the action, and only carry out
transport in the subspace of the configuration space with V = 0.
In adiabatic transport, we can also ignore the term

Ikin =
1

2

∫
dt gij(x)

dx i

dt

dx j

dt

in the action, and any other term with two or more time
derivatives. That is because if we transport from a starting point p
to an ending point p′ in time T , the derivative dx i/dt is of order
1/T , and Ikin ∼ 1/T .



So the only term in the action that we need to keep is the term
with precisely one time derivative:

I ′ =

∫
dt Ai (x)

dx i

dt
=

∫ p′

p
Ai (x)dx i .

As I have indicated, this term depends only on the path followed
from p to p′, and not on how it is parametrized. Now remember
that the phase that a quantum particle acquires in propagating
from p to p′ along a given trajectory is e iI/~, where I is the action
for that trajectory.

For us this phase is just exp
(
i
∫
γ Aidx

i
)

.



But the connection which on parallel transport along a path γ

gives a phase exp
(
i
∫
γ Aidx

i
)

is just A. What we have learned, in

other words, is that for a system in which a quantum ground state
can be considered to be equivalent to a classical ground state, the
Berry connection is just the classical connection A that can be
read off from the classical action.



For the electromagnetic field in our problem, the action is

I =
1

2e2

∫
R3,1

d3xdt
(
~E 2 − ~B2

)
+

k

4π

∫
W3

d2xdt εijkAi∂jAk + . . .

We assume, for example, periodic boundary conditions with very
long periods L1, L2 in the two directions that are filled by our
quantum Hall sample. (It doesn’t matter if we assume periodic
boundary conditions in the third direction.) A classical state of
zero energy is labeled by the two angles α1, α2 that were
introduced before:

A1 =
α1

a1L1
, A2 =

α2

a2L2
.

To compute the Berry phase, we are supposed to substitute this
formula in the action and keep only the part of the action that has
precisely 1 time derivative. This comes only from the
Chern-Simons term.



After integration over x1 and x2, the relevant part of the action is
just

I ′ = − k

2π

∫
dt α1

dα2

dt
.

From this we read off the Berry connection

∇ ≡
(

D

Dα1
,

D

Dα2

)
=

(
∂

∂α1
,
∂

∂α2
+ i

kα1

2π

)
and hence the Berry curvature

F̂α1α2 = −i
[

D

Dα1
,

D

Dα2

]
=

k

2π
.

(If we add to I ′ a total derivative term
∫
dt ∂t f (α1, α2), this will

change the formula for ∇ but it will not change F̂ .)



We remember that the integer k̂ ′ is supposed to be the integral of
F̂/2π over the Brillouin zone. We can now compute

k̂ ′ =

∫ 2π

0
dα1dα2

F̂
2π

=

∫ 2π

0
dα1dα2

k

(2π)2
= k .

Thus we arrive at a version of the famous formula of TKNN: the
coefficient k of the quantum Hall current can be computed as a
flux integral of the Berry connection. (A similar explanation can be
given for the result about the polarization of a 1-dimensional
system that Charlie Kane described in his first lecture. Also, let me
say again that the original proof that k = k ′ was based on a direct
evaluation of the Kubo formula for the conductivity in the context
of band theory.)



Yesterday, we explained why a purely 1d quantum electron gas
cannot have an imbalance between left-moving and right-moving
electron excitations. As a reminder, the reason was that in a
periodic orbit, “what goes up must come down”

From a field theory point of view, this is needed because
right-moving gapless fermions without left-moving ones cannot be
quantized in a gauge-invariant fashion. There is an
“Adler-Bell-Jackiw anomaly.”



However, one of the hallmarks of a quantum Hall system is that on
its boundary it has precisely such an imbalance. The reason that
this must happen is that when we verified the invariance of the
Chern-Simons action

kICS =
k

4π

∫
M2×R

d3xεijkAi∂jAk

under a gauge transformation Ai → Ai + ∂iφ, we had to integrate
by parts. This integration by parts produces a surface term on the
surface of our material – that is on ∂M2 ×R. There is not any way
to cancel this failure of gauge invariance by adding to the action a
surface term supported on ∂M2 ×R. You can try to replace ICS by

ICS +

∫
∂M2×R

dtdx (?????)

where ????? is some polynomial in A and its derivatives, but
whatever you try will not work. (I recommend this exercise.).



To cancel the “anomaly,” that is the failure of gauge invariance of
ICS along the boundary, requires the existence on the boundary of
modes that are (1) gapless, so they cannot be integrated out to
produce a local effective action for A only, and (2) “anomalous,”
that is they are not possible in a purely 1-dimensional system.
What fills the bill is precisely what we found does not exist in a
purely 1-dimensional system: “chiral fermions,” that is
right-moving gapless modes not accompanied by left-moving ones.



Since the failure of kICS is proportional to k , the “chiral
asymmetry” that is needed to cancel it is also proportional to k . In
fact, the hallmark of an integer quantum Hall system with a Hall
conductivity of k is precisely that

n+ − n− = k

where n+ and n− are the numbers of “right-moving” and
“left-moving” gapless edge modes. Instead of giving a technical
analysis of field theory “anomalies” to explain how this works, I
will give a couple of possibly more physical explanations – one
today and hopefully one tomorrow.



Let us think of a quantum Hall system in the form of a long
cylinder:

In fact for starters, think of an infinite cylinder.



We introduce the same sort of “twist parameter” α as before. We
can imagine that there is a magnetic flux α through a solenoid
inside the cylinder such that the magnetic field is 0 (or at least
independent of α) in the cylinder itself but∮

γ
A · d` = α.

Just as before, the parameter α is only gauge-invariant mod 2π.



We adiabatically increase α from 0 to 2π, with the scalar potential
assumed to be 0. Since the electric field is then

~E =
∂ ~A

∂t
,

increasing α turns on an electric field that goes “around” the
cylinder. But in the case of a quantum Hall system, this drives a
current that is perpendicular to ~E , in other words the current flows
“along” the cylinder.

The electrons therefore are pushed to the left (or right, depending
on the sign of k).



An early explanation of the integer quantum Hall effect by
Laughlin was the following. We assume that when α = 2π, the
system returns to the same state that it was in at α = 0. (This
assumption is not valid for fractional quantum Hall systems, as
discussed later.) However, in the process, each electron may move
k steps to the left, for some integer k . Notice that since the
cylinder has a finite circumference S , the number of electrons per
unit length is finite and thus it makes sense to say that each one
moves k steps to the left, for some k . This was interpreted as the
basic integrality of the integer quantum Hall effect. It does lead to
the value k/2π for the Hall conductivity.



Now let us consider a cylinder that is only semi-infinite, with a
boundary at let us say the left end:

The same parameter α as before makes sense, and we can still
adiabatically increase it by 2π. Since a quantum Hall system is
gapped, if we make a measurement far from the boundary, we will
still see the same flux of valence electrons to the left as before,
assuming that only valence bands (states below the fermi energy)
are filled.



But what happens to the electrons when they arrive at the left
boundary? A partial answer is that there are edge states, and
electrons go from the valence bands to the edge states. But this is
not enough: since the boundary has finite length, only finitely
many electrons can go into edge states (of reasonable energy).
The only interpretation is that as electrons flow in to the left from
the valence bands (the bands below the usual εF in the bulk) they
must eventually flow back out to the right in the conduction bands
(the bands above the usual εF ). Moreover, all this is happening
continuously in energy so it must be possible for an electron to
evolve continuously from the valence bands in the bulk, to the
conduction bands in the bulk, somehow passing through edge
states.



The spectrum must therefore look something like this (drawn for
k = 2):



Actually the edge states are a continuum, as drawn in the last
picture, only in the limit that the circumference S of the cylinder
goes to infinity. For a finite S , the spectrum of edge states is
discrete, as shown here:

The little beads indicate “allowed states” of the edge modes, for a
given S and a given value of the angle α. As we adiabatically
increase α, each little bead moves up along the curve and under
α→ α + 2π, each bead is shifted in position to the next one. So
under α→ α+ 2π, there is a net charge flow of 1 from the valence
bands to the conduction bands for each right-moving edge mode.



Recall that as we discussed yesterday, a 1d mode is rightmoving if
dε/dp > 0 at ε = εF . A left-moving mode has dε/dp < 0 at
ε = εF , and under α→ α + 2π produces a net charge flow of −1
from the valence band to the conduction band. Thus with n+ and
n− as the numbers of right- and left-moving modes, the net charge
flow under α→ α + 2π is

k = n+ − n−.



To tie up some loose ends: The 1d edge modes cannot be defined
on the whole 1d Brillouin zone (which is a circle) because then we
would be stuck with the fact that in a periodic orbit “what goes up
must come down,” leading to n+ = n−. The asymmetry comes
from branches of edge mode that exist in only a finite range of
momenta p− ≤ p ≤ p+. What happens at the endpoints? The
answer is the same as it was in a somewhat similar example that
we looked at yesterday. The way that a family of edge-localized
states can cease to exist at some momentum p− is by ceasing to
be normalizable. This happens when the edge state becomes
indistinguishable from a bulk state.



That is part of what makes it possible to have adiabatic transport
from the valence bands (the states normally filled) to the
conduction bands (the states normally empty), through the edge
states. At the endpoint of the edge state spectrum, an edge state
is indistinguishable from a bulk state:



Also, for all this to make sense

the total Hall conductivity of the empty (conduction) bands must
be minus the Hall conductivity of the filled (valence) bands. That
is actually a property of the Berry connection. Let A be the usual
Berry connection for the filled bands and F the corresponding
curvature; and similarly let A′ and F ′ be the Berry connection and
curvature of the empty bands. Then TrF + TrF ′ = 0, basically
because for all bands together there is no Berry curvature.



The Hall conductivities of filled and empty bands are respectively∫
B

TrF
2π

,

∫
B

TrF ′

2π
.

So the relation TrF + TrF ′ = 0 means that they have opposite
Hall conductivities, and in our thought experiment, the flow of
“filled” states (i.e. states that would be filled in the ground state
on an infinite cylinder) to the left equals the flow of “empty”
states to the right.



I would like to explain the assertion that a fractional quantum Hall
system does not return to its previous state under α→ α + 2π.
We will use the same macroscopic model of a fractional quantum
Hall system that we used before in terms of the electromagnetic
vector potential A and an emergent U(1) gauge field a that only
exists inside the material:

Ieff =
1

2π

∫
M3

d3x εijkAi∂jak −
r

4π

∫
M3

d3x εijkai∂jak .

First let us discuss how to characterize the state of the system for
a given α

We recall that α was defined as
∮
γ A.



The parameter α =
∮
γ A can be controlled, in principle, by varying

the magnetic flux threaded by the cylinder. But there is an
analogous parameter

α̂ =

∮
γ
a

that cannot be controlled in that way. Just like α, α̂ is
gauge-invariant mod 2π.



What can we say about α̂? Recalling that F = dA, f = da are the
ordinary electromagnetic field strength and its analog for a, the
classical field equation for this system is

rf = F .

In the limit of an infinite cylinder, a can be treated classically. (We
postpone the more interesting case of a finite cylinder until
tomorrow.) In the gauge A0 = a0 = 0, the equation rf0i = F0i
becomes

r
dai
dt

=
dAi

dt
,

and therefore

r
dα̂

dt
=

dα

dt
.



Hence when we adiabatically increase α by 2π, α̂ increases
adiabatically by 2π/r . Since α̂ is gauge-invariant mod 2π, the shift
α̂→ α̂ + 2π/r does not return the system to its original state. We
need to take α→ α + 2πr , and therefore the Hall conductivity can
be smaller than its usual “quantum” by a factor of r .



The picture

still has some sort of analog, but the edge states cannot be free
electron states: They have to be capable of transporting a
fractional current under α→ α + 2π, and returning to their
original state only under α→ α + 2πr .



There is actually one more topic that I would like to tidy up for
today. Yesterday, we studied Weyl semimetals and by explicitly
solving the Dirac equation, we learned that there must be surface
states – Fermi arcs. We considered the Hamiltonian

H = −i~σ · ∂
∂~x

on a half-space x1 ≥ 0 with the boundary condition

σ2ψ| = ψ.

We found surface localized states at zero energy

ψ = exp(ikx3 − kx1)ψ0, σ2ψ0 = ψ0, k > 0.

I should have pointed out that there are analogous
surface-localized states of energy ε, for any ε:

ψ = exp(iεx2) exp(ikx3 − kx1)ψ0, σ2ψ0 = ψ0, k > 0.

Pictures I drew that only showed surface-localized states of ε = 0
were a little misleading.



Actually, the original paper predicting these states (Wan, Turner,
Vishwanath, and Savrasov, 2011) did not proceed by explicitly
picking a boundary condition and solving the Dirac equation.
Rather, they deduced the result from some things that I have just
explained. I want to explain how this goes.



First we recall the basic setup. Weyl points arise at special points
in the Brillouin zone at which valence and conduction bands meet.



Near a boundary of a finite sample, only two of the three
components of momentum are conserved. So it is useful to project
the Brillouin zone and the bad points in it to two dimensions,
“forgetting” the component of momentum that is not conserved:

It is important to remember that in a crystal, the momentum
components, including the component that is being “forgotten”,
are periodic, and in particular the horizontal direction in the
picture represents a circle U ∼= S1, though it is hard to draw this.



Now draw a little circle U ′ around the projection of one of the bad
points:



The product U × U ′ is a two-torus

We define an integer k∗ as the Berry flux through U × U ′:

k∗ =

∫
U×U′

d2p
TrF
2π

.

It receives a contribution of 1 or −1 for each positive or negative
Weyl point enclosed by U × U ′. So in the example drawn, k∗ = 1,
but we would get k∗ = 0 or k∗ = −1 if we take U ′ to encircle one
of the other two special points in the projection.



We have arranged so that the two-torus U × U ′ does not intersect
any of the Weyl points. So the restriction to U × U ′ of the original
3d band Hamiltonian on the 3d Brillouin zone B is a gapped
Hamiltonian H∗ on a two-torus U × U ′. We can intepret H∗ as the
band Hamiltonian of some 2d lattice system that has a Hall
conductivity of k∗. So as we have learned, H∗ has edge modes,
equal in number to k∗, that “bridge the gap” in energy between
the filled and empty bands



So there have to be edge states that intersect U ′ (the edge states
are not labeled by U since U parametrizes the component of
momentum that is not relevant to edge states). Since we had a lot
of freedom in the choice of U ′, the spectrum of edge-localized
points has to consist of arcs that link the appropriate boundary
projections. In our example, this means edge states as shown



The auxiliary 2d quantum Hall system that was used in this
argument does not have any simple relation to the 3d Weyl
sem-metal that we were studying, as far as I know.



For tomorrow, there are three topics I hope to describe:

(1) More on the fractional quantum Hall effect.

(2) Another explanation of edge modes in the integral quantum
Hall effect.

(3) Haldane’s model of quantum Hall physics without an applied
magnetic field.


