
Topological phases of matter 
and 

fractional quantum Hall effect 

N. Read  
 

Yale University  
 

Princeton Univ/Institute for Advanced Study, July 2015  

      
          



Overview: 
 
1) Symmetry-breaking paradigm for phases of matter 
 
2) Topological phases and properties 
 
3) Basic notions: ground state degeneracy, quasiparticles, fusion, statistics 
 
4) Fractional quantum Hall effect 
 
5) Conformal field theory constructions 
 
6) Statistics calculation 
 
7) Topological Quantum Computation 
 
8) Conclusion  
 
 
For a short introduction, see also N. Read, Physics Today, July 2012, p. 38 



What is an (equilibrium) phase of matter? 
 
Given some matter, we would like to 
 
--- characterize the state of the matter independent of microscopic details of  
     the Hamiltonian, or of thermodynamic parameters . . . or even of constituents 
 
--- be able to decide when phases count as the same, and when they differ 
     . . . difference should be sharp  
 
So phases remain invariant under continuous change of Hamiltonian/parameters, 
until some boundary is crossed, when a distinct phase is entered 
 

E.g. liquid versus gas --- surely distinct phases as there is a transition (boiling)? 
 
But can continuously connect them without a transition, at high pressure & temp 
--- same phase: “fluid” 



Symmetry paradigm (Landau) 
 
 
Suppose there is a symmetry of the Hamiltonian. Note: always assume we have microscopic  
degrees of freedom local in space, and Hamiltonians involve only short-range hopping, interactions, whatever 

 
There may be parameter regions (phases) in which the symmetry is  
spontaneously broken in the infinite-size (“thermodynamic”) limit, or broken  
in different ways.  
 
“Thm”:  These cannot be continuously connected without encountering  
a boundary at which the symmetry changes. 

Example: liquid—solid transition. Hamiltonian for particles in continuous space 
is translation and rotation invariant. 
 
This symmetry is preserved in the liquid, broken in the solid (crystal).  
 
There may be distinct solid phases in which trans/rot symmetry is broken  
in different ways 
 
--- e.g. ice, about 20 solid phases under pressure 



Challenges to the symmetry paradigm (70s—80s) 
 
Kosterlitz-Thouless transition and low T phase of XY model in two dimensions 
--- no symmetry breaking 
 
Spin glasses, metal-insulator transition, . . .  
 
But the biggest challenge to the paradigm came from: 

Integer and fractional quantum Hall effect 1980, 1982 
 
--- Quantum phases of matter: phases at zero temp,  
     dominated by quantum mechanics (no phase transition at nonzero temp) 
 
--- no symmetry breaking; phases distinguished by quantized Hall conductivity 
 

Widespread belief in converse Thm(?): if phases cannot be continuously  
connected without crossing a boundary, there must be a difference involving  
symmetry breaking.  
 
We now understand that this “symmetry paradigm” is wrong.  



In response to quantum Hall systems and other examples of exotic states 
e.g. from models in high T_c/quantum antiferromagnets, theorists developed 
concept of  
 
Topological phases 
 
Definition: a quantum system at zero temperature is in a topological phase 
if there is an energy gap above the ground state(s) for bulk excitations 
in the thermodynamic (i.e. infinite-size) limit.  Hereafter, simply called a “gap”. 

  
(There could be gapless excitations on an edge.) 
 
Folklore (?): an energy gap does not close under perturbation of Hamiltonian by  
sufficiently small perturbation by local (short-range) terms --- view as same phase. 
But at a transition between phases, the bulk gap must collapse --- 1st or 2nd order. 
 
 
Note: the definition allows a topological phase to be trivial, for example  
an ordinary insulator. That is not an oversight! We will distinguish  
trivial/nontrivial phases separately (next slide). 



Definition: topological properties  
--- properties that are unchanged throughout the phase: “topological invariants”. 
(Analogous to “universal” properties at critical points) 

 
Examples: 
 
0) Existence of bulk energy gap 
 
1) multiplicity >1 of ground states when the Hamiltonian is constructed for the  
system on a space of non-trivial topology:  sphere, torus, . . . Wen, Niu 1990 

 
2) existence of quasiparticles with non-trivial statistics   Moore, NR 1991 

 
3) robust gapless edge excitations Wen 1990 

 
4) quantized transport properties, such as Hall conductance Laughlin 1980 
 
 

In practice, all known non-trivial top phases possess one or more of last four 
---they can be used to distinguish top phases from one another 

Additionally, non-trivial top phases all possess some non-trivial, and top invariant,   
entanglement behavior --- seems to be the most general characterization 



The most natural way to understand topological properties is by formulating  
an effective field theory description (a fixed point of RG) 

    
    --- i.e. a low-energy, long-wavelength description of response of the 
         ground state to external probes, and of quasiparticle properties 
 
    --- the bulk part of the effective field theory action will consist of local terms,  
         and “topological invariance” will hold, because of the (“mass”) gap  
         in the bulk energy spectrum and short-range Hamiltonian 

 
    --- this description will be closely connected with some topological 
         quantum field theory    Witten 1989, Dijkgraaf lectures 

In these lectures I will describe techniques for constructing non-trivial  
topological phases, and for finding the effective field theory in certain cases 
where perturbation theory cannot be used 



Basic notions                                                       Wen, Niu 1990 

 
Topologically degenerate (=equal energy) ground states --- if they occur for  
some boundary conditions (or e.g. on torus): 
 
    --- the matrix elements of any local operator between any of the states 
         must give identity matrix: 
 
 
 
        Otherwise a term like                          
 
 
        could be added to Hamiltonian, splitting the energies; we’ll assume any such  
        terms have already been added, any remaining degeneracy of ground states  
        is topological 
 
This means the degenerate ground states are indistinguishable by any local  
probes.    Note: usually such statements mean “up to corrections exponentially small in system size, separation, etc” 
Energy gap implies that correlations of local operators decay exponentially with separation, so there is a “correlation length” 
intrinsic to system. 
 
Local = acts only on particles within some bounded distance of some point x. Local operators in this strict 
sense commute at well-separated positions, so can be added to Hamiltonian. Fermion operators are not strictly local! 

h®jO(x)j¯i / ±®¯

¸

Z
ddxO(x)
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Quasiparticles 
 
--- I’ll generally assume space is two-dimensional 
 
--- Starting from ground state, it may be possible to “twist” it around a point 
     and make an (intrinsic) “defect”---a state in same Hilbert space,  
     thus some excited state (not necessarily an energy eigenstate) 
 
--- Far from that point, the state still looks like ground state locally, so justified 
     in calling it a quasiparticle. (But not near the location; quasiparticles can be distinguished locally from  
       ground state, detected, and can move around due to terms in the Hamiltonian.) 

     Hence excitation energy will be finite (i.e. not infinite). 
 
--- Interested in such objects that cannot be created or destroyed by a local  
     operator: creation of an isolated such defect changes state over arbitrarily  
     large distance. Cannot simply appear or disappear during time evolution by the Hamiltonian 

 
--- Identify as the same “type” quasiparticles that can be obtained from each  
     other by acting with a local operator near their location, or by transporting  
     its position. Type of a quasiparticle can be inferred from local measurements, in principle.  
       Usually (or always?) number of types is finite. 

 
--- Identity or “do nothing” operation on ground state is an honorary quasiparticle  
     type, the trivial or identity type. 



--- It is possible to create/destroy a quasiparticle and its anti-particle within 
    some disk with an operator localized inside the disk 
 
--- More generally, two quasiparticles of types           in a region can be viewed from 
    far away as a single object of some type, say    : fusion 
 
 
 

 
--- A state containing several well-separated quasiparticles may be degenerate; 
     the degeneracy is topological, like that for ground states.  
     I.e.: 
 
     --- the multiplicity (dimension of the degenerate subspace) is independent of the  
          positions 
     --- which of these states the system is in cannot be discerned or flipped  
          by a local operator --- “non-local” information storage 
 
--- This is why these systems are of interest for quantum information processing:  
     since errors/decoherence are due to local terms in the Hamiltonian, the 
     state in the subspace of states for given qptcles is topologically protected 
     against errors 

®; ¯
°



Fusion can be described by “fusion rules”: if        represents quasiparticle 
of type     , then fusion is described formally as an associative, commutative  
multiplication determined by the set of formulas 
 
 
 
where                       are non-negative integers. (I.e. we have a commutative algebra over Z  
generated by the elements        .) 

 
Let              be the identity qptcle type              , the identity in the ring. Then 
for any  
 
 
and we further assume there is a unique anti-particle type denoted        
such that  
 
 
 If for some  
 
 
then there are degenerate states for corresponding types of quasiparticles.  
The multiplicities can be calculated from the         s --- return to this.  
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Dragging quasiparticles 
 
To define statistics, we want to drag quasiparticles around some paths  
adiabatically (i.e. slowly), so that at the final time their positions are the 
same as at the start, up to a permutation among the qptcles of each type. 
 
This produces a Berry phase or unitary matrix times the original state.  
 
Should do this with the qptcles well-separated throughout. 

The result can depend on the path(s) taken by the quasiparticles. But the change  
under a small change of path can only be by a phase factor, even in the degenerate 
case, and the phase does not depend on which other qptcles are present: 
Hence this part has form 
 
 
 
where path (link) has connected components       and type       runs around      ;  
                 is a real one-form function of position in spacetime, independent of the  
qptcles present; it is due to local coupling to background. 
 
The point is such a change in path is a local operation, cannot detect other qptcles 
or change the degenerate state, hence this is only possibility 
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X

j

I

Cj

dx¹ ¸¹;®j (x(s); t(s))

®jCj Cj
¸¹;®(x; t)



Remaining effect of exchange depends only on the “isotopy class” of the exchange, 
and there are distinct isotopy classes of exchanges, which cannot be deformed 
into each other: 
 
 
  
 
                                                                                               isotopic 
 
 
 
 
                                                                                               not isotopic 
 
 
 
 
                                                                                              schematic version 
 
 
 
Basic case is when all quasiparticles are same type. 



Exchanges of pair give operations            which (with their inverses) generate  
a group: 
 
 
generators, e.g. 
 
 
 
obey relations, 
e.g. 
 
 
 
and 
 
 
 
This group is Emil Artin’s braid group 
 
The remaining effect of such an exchange on the degenerate states is a unitary  
representation matrix          , and these matrices must obey these relations 
 
E.g. for Laughlin quasiparticles, matrices become scalars                       --- anyons 

¿34
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¿23¿12¿23 = ¿12¿23¿12
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(colors only to ease visualization) 

¿j;j+1 = eiµ
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In case with degenerate states, we arrive at notion of nonabelian statistics 
 
Consistency of the whole set-up was explored in mathematical works 
Doplicher, Roberts; Frohlich; … ~ 1987--90 

 
In addition to braid group relations, there are similar relations for “mutual  
statistics”, effect of qptcle of one type encircling one of another. 
Further, fusion and braiding must be consistent: braiding one of type  
around           before fusing them must agree with fusing first, then braiding. 
(Some additional structures also . . .)  
 

±

The same structure was found in rational conformal field theory  Moore,Seiberg 1989 

and in quantum groups 
 
These developments culminated in definition of a mathematical structure known as  
a modular tensor category   Reshitikhin, Turaev 1990 
 

and connected with (quantum) Chern-Simons gauge theories   Witten 1989 
 

All this is also connected with topological (isotopy) invariants of knots, links, Jones 1984, . .  

and 3-manifolds.  









Trial wavefunctions in FQHE 
 
General wavefunction for many particles in the LLL has the form 
 
 
 
where     is holomorphic in each     , and symmetric (bosons),  
antisymmetric (fermions). Use such functions, assuming interactions are weak. 
 
Laughlin proposed a trial wavefunction to explain observed 1/3 FQHE state:  
 
 
 
 
where      is a positive integer;     is odd for fermions, even for bosons. 
 
Highest power of any      is  
 
 
so if density particle density is uniform inside radius                  , 
then the filling factor as                 is  
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To study density etc, Laughlin used plasma mapping: 
 
 
 
 
is the Boltzmann weight for a 2D plasma of particles of charge 1, with uniform 
background charge density                    , and temperature 1/Q.  
 
This plasma is in a screening phase if              . In that case, the density of  
particles must locally cancel the background density, so it is uniform inside 
the edge of the drop. 
 
For Q=1, this can also be seen directly, as the wavefunction is a Slater 
determinant (the Vandermonde determinant, times the Gaussian), representing  
fermions filling the LLL out to                    .    
 
There is a “special” interaction Hamiltonian for which the Laughlin state 
is the exact ground state   Haldane 1983 
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Fractionally-charged quasiparticles in the Laughlin state 
 
A LLL state with one quasihole: 
 
 
 
    --- particles avoid    , hence there is a “hole” in the density 
 
    --- in the plasma, there is an “impurity” fixed at     , with charge 1/Q. 
        Hence by screening, the deficiency in particle number there is exactly 
        1/Q (located inside of about a screening length away). 
 
    --- more quasiholes similarly 
 
    --- can also construct states with “quasielectrons”, with fractional charge added,  
         but no unique nice way to write a function. 
 
These excitations are quasiparticles in our sense. Away from    , state 
resembles ground state. Note Q quasiholes is equivalent to removing a particle --- i.e. to a “real” hole, created 
by a local operator. Hence there are just Q types of quasiparticles. 

 
Nonzero (expectation of) repulsive interaction energy implies that these quasiparticles 
cost energy to create, so system has gap, we have a top phase, and get FQHE. 

ª1qhole =
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Conformal field theory construction  
 
Obtain trial QH wavefunctions from a 2D CFT, a single scalar U(1) theory  
times another one. 
 
Thus write 
 
 
where 
   
                                                                               represents background density 
 
and     has Abelian fusion rules (it is a simple current)---e.g. identity operator 
 
Example:               ,  drop second CFT. Expand exponentials and use 
 
 
with Wick’s Theorem, we obtain the Laughlin wavefunction 
 
 
 
(up to a singular gauge transformation)  where we should put                 to be in LLL. 
            is free chiral Dirac fermion, bosonized. 
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Moore, NR 1991 

Chiral correlator or ``conformal block’’ 
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To get quasihole states, introduce additional primary fields in correlator: 
 
 
where        is a constant (minus the charge of the qhole), and            is another  
primary field in the     CFT. (Really “chiral vertex operators”.) 

 
Thus in Laughlin example,                     for the basic quasihole. 

¿(w) = eiqqh'(w)=
p
º¾(w)

qqh ¾(w)
Ã

qqh = 1=Q

“Simple current” condition on    :  we require that     have Abelian fusion rules, 
and so do its operator products, that is if              , then in an operator product  
expansion (ope) 
 
 
and so on, so generally 
 
 
or as fusion rules in the CFT 
 
 
and further that                         (a single term), and so on. This ensures that 
the wavefunctions obtained, with suitable choices of      and        , are  
single-valued, in fact polynomial, functions of      , times the Gaussian. 
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Note     can still have non-Abelian fusion rules! 
 
 
In general, this construction yields the field                                          which 
generates a chiral algebra (including the U(1) current            and total stress  
tensor           ). 
 
Often, this chiral algebra has a finite set of primary fields, one of which is         ,  
which can have non-Abelian properties. Thus we have a CFT, possibly rational. 
 
We will see that the above construction of wavefunctions may give a top phase, 
which can have quasiparticles with non-Abelian statistics. 
 
(In many cases, there is a “special” or parent Hamiltonian for which the trial 
ground and quasihole states are zero-energy eigenstates, but in general we 
can’t prove there is a gap in bulk spectrum, and expect not in certain cases 
--- those in which CFT is not unitary or not rational.  I’ll mention that later.)  
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Example: Moore-Read quantum Hall phase           
                                                                                                     Moore, NR 1991 
 

 
A trial N-particle wavefunction: 
 
 
 
 
 
where Q = 0, 1, 2, . . .  is even for fermions, odd for bosons. 
 
                                                                                                
                                                                                           is a Pfaffian 
 
 
(p-ip BCS state of spinless fermions.) 
 
Filling factor (dimensionless density of particles)                             5/2 



CFT construction of MR state: take      to be a free chiral Majorana field, correlator 
 
 
 
Evaluating using Wick’s Theorem gives the Pfaffian wavefunction.  
 

Ã

hÃ(z)Ã(0)i =
1

z
:

Majorana CFT is the Ising critical theory. It admits a “spin field”             
with ope 
 
 
 
Then using the construction, wavefunction with two quasiholes is 
 
 
 
 
times Laughlin factor. Each quasihole is a kind of vortex or half flux-quantum 
 --- must have even number of qholes (with fixed bc’s), exactly as in view as paired 
state. 
 

¾(w)

Ã(z)¾(0) » 1

z1=2
¾(0) + : : :



More than two qholes is more complicated, though z-dependence can be found.   
Multiplicity of qhole states (with fixed bc’s), of                 
                                                                            for n qholes at fixed positions,  
                                                                            sufficiently large N 
 
 
    --- fewer than 2 per qhole: non-local storage of information 
 
    --- these arise because the relevant conformal blocks form a space of 
         distinct functions of z’s.            is a chiral vertex operator, not ordinary operator    ¾(w)



Fusion rules 
 
For Q=1, three quasiparticle types:               ,       ,  or      , 

                        charges              0,     0,        ½  (mod 1) 
 
 

“Fusion rules” (same as in Ising RCFT): 
 
 
 
                                                                                 
 
 
 
 

Then repeated multiplication of    s gives, e.g. n = 4: 
 
 
 
For N even, we must finish up with     to satisfy bc’s, so (similar for general 
n) 
                                      multiplicity 
                                                                                                                                 
For general Q, have 3Q types, but same multiplicities for n qholes containing 

Can understand in terms of  
Majorana zero modes on  
vortices in p-ip paired state!   
NR, Green 2000 



Parafermion states                                                   NR, Rezayi 1999 

 
Extend to case       parafermions                         : CFT as above with 
 
                                                                     i.e. 
 
with conformal weights and central charge 
 
 
In MR construction, put              . Then for single-valued ground state 
 
 
or 
 
Special cases: Laughlin is              MR is              M is even (bosons), odd (fermions)  
 
For              , the CFT, and the topological phase obtained, is               . 
For              , the chiral algebra is N=2 superconformal algebra, CFTs 
are superconformal minimal models. 
 
                         may be relevant for observed                  !  
(“Fibonacci anyons”) 
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Statistics of Laughlin quasiholes   Arovas, Schrieffer, Wilczek, 1984 

 
Adiabatically exchange locations, calculate Berry phase: 
 
 
 
 
 
 
 
 
 

w1 w2

Start with one quasihole: 

ªLaugh;+w =
Y

j
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Berry (or adiabatic) connection (or vector potential) on parameter space: 
 
Suppose             is a normalized non-degenerate state for each                        
and 
 
 
Let                                                                              (Berry connection). 
 
 
Then Berry phase picked up by the state after transport from 0 to 1 is 
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For one qhole, 
 
 
 
 
 
 
 
where                                        is the particle number density . So 
 
 
 
 
 
and using rotational symmetry about w, 
 
 
 
 
 
 
(used Cauchy’s Theorem). Here                      inside the droplet.  
    --- like Aharonov-Bohm phase; shows path-dependent part mentioned earlier. 
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Now in the case where path encloses a second quasihole, there 
Is an additional Berry phase 
 
 
 
due to missing particle number 1/Q. 
 
Similarly, if the path is exchange of two quasiholes, isotopy-invariant part 
is half of above, so 
 
 
 
    --- fractional statistics if Q>1!    (Fermi statistics if Q=1, as should be.) 
 
    --- for two quasiholes of charges                                             , one gets  
 
 
 
         so for                        , we have bosons if Q is even, fermions if Q is odd 
         (as should be).  
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Different view of statistics in Laughlin case 
 
Halperin (1984) rewrote Laughlin functions as 
 
 
 
 
 
 
 
 
He argued these are normalized independently of the w’s.  
 
That is because the 2D Coulomb interaction between the impurities is included. 
The free energy of plasma becomes independent of the separation of the qholes. 
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We can also see that if we exchange (by analytic continuation or “monodromy”)  
two qholes along a path not enclosing others, the phase of the function changes by 
 
 
and he viewed this as fractional statistics. 
 
This phase agrees exactly with the adiabatic calculation. 
 

ei¼=Q

Note: if we do a Berry phase calculation using basis states that are not  
single-valued on going around the loop, we must make the gauge transformation 
back to original gauge at end, as well as calculating the exp of Berry connection: 
the (gauge-invariant) Berry phase or holonomy is  
 
 
 
       is the “monodromy” (change in function) or “transition function” to get back to 
original gauge choice after going around loop.       Is path-ordering, needed 
when connection is a matrix (non-Abelian). 

B = MP exp i

Z

C

A
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Apart from normalization, the Halperin functions agree with the original ones  
up to a “singular gauge transformation”. Hence in this gauge it must be that  
statistics comes from monodromy only, and the statistics part of the Berry  
connection vanishes. 
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Using w as parameter, and in complex components, the Berry connection is 
 
 
 
 
 
 
 
Suppose                were holomorphic in w as well as normalized. Then 
 
 
 
 
The Halperin functions fail to be holomorphic only because of interaction 
with background.  Thus the part of the connection that contributes to statistics 
does indeed vanish! 
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The Halperin form is exactly what is obtained from the CFT construction. 
 
Thus we were led to the conjecture:             Moore, NR 1991 

 
Apart from the background field contribution, the statistics of the quasiparticles 
In the MR construction is exactly given by the monodromy of the functions: 
 
 
                                           holonomy = monodromy 
 
 
i.e. the statistics part of Berry connection vanishes.  That means the qholes 
In MR and RR states have non-Abelian statistics which can be read off from 
CFT.  



To show this is true, it will suffice if the qhole functions can be shown to 
be normalized independent of w. 
 
The norm-square of one of our functions is 
 
 
 
 
which is an integral of a correlator in a non-chiral CFT.   
 
Let’s write it “grand-canonically” as  
 
 
 
 
 
then the term of order         . Then we realize this is a correlator of       s  
in a non-chiral CFT perturbed by 
 
 
 
in the action. (Note equivalence of canonical and grand canonical ensembles.) 
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Now if the perturbation causes an RG flow to a massive 2D phase, 
then correlations of local operators such as        will become constant 
(or zero) at large separations.                                   Nayak, Wilczek 1996; NR 2009 

 
Apart from dealing with matrix structure in non-Abelian case, this is  
essentially what we want.  
 
This is a generalization of the screening in the plasma for the Laughlin state. 
 
In this case, we obtain essentially all of the properties of a MTC describing  
a topological phase. (Quasiparticle spin?) 

¹¿¿

Does the hypothesis of “generalized screening” actually hold in our wavefunctions? 
 
    --- numerical evidence suggests it does in e.g. simplest cases  Bonderson, Gurarie, Nayak 

 
    --- when CFT is non-unitary, the results are inconsistent with the consequences 
         of unitarity in the 2+1 TQFT --- we require a “unitary” MTC    Turaev 1991 

             Similarly when not rational  
 
         In such cases the screening should break down.                      NR 2009 

         This has been confirmed in some examples in recent numerical studies. 



Quantum Computation 
 
Desired: perform operations to make a system reach a desired quantum state  
starting from a simple initial state; read out using measurements.  
 
Issues:  
 
1) Must use only a simple set of operations, applied in a sequence; operations 
      chosen so that any desired state can be closely approximated (“universal” set); 
 
2)  Decoherence of the quantum state due to coupling to noisy environment 
      ---errors. 
 
 
Usual “circuit” model: 
 
---system is collection of 2-state systems or “qubits” 
 
---“gate” operations on one or two qubits at a time---can be universal 
 
---susceptible to errors; additional qubits can be used to provide error correction 



Topological model for QC                                  Kitaev 1997; Freedman et al 2002 

 
 
--- system is a topological phase of matter; relevant low-energy states are  
     degenerate states of some non-Abelian quasiparticles 
--- exchanges of quasiparticles provide unitary operations on these states 
 
Advantages: 
--- these states decouple from environmental noise 
 
Disadvantages: 
--- existence of non-Abelian quasiparticles & braiding properties have not yet  
     been shown; manipulation may be difficult; other approaches are further along 

Some top phases provide non-Abelian quasiparticles that can be used for 
“universal” QC, e.g. Read-Rezayi FQH states                    :   TQC model has same  
computational power as circuit QC model.                                 Freedman, Larsen, Wang 2002 

 
But the MR/Ising/Majorana-zero-mode example is not universal!  
Would have to be supplemented by non-topological methods 

k 6= 1; 2; 4


	Topological phases of matter�and�fractional quantum Hall effect
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42

