
Quantized transport, Berry curvature, and 
topological invariants in topological phases 

(including Hall viscosity) 

Nicholas Read 

 
Yale University 

Princeton Univ/Institute for Advanced Study, July 2015  NSF-DMR 

      
          



Hall conductivity as Berry curvature  
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Hall conductivity as Chern number or Berry curvature 
 
Consider system of particles in a ground state with an energy gap  
for bulk excitations --- a topological phase of matter 
 
Assume particles are charged (e.g. electrons), apply vector potential       . 
Time derivative is electric field; weak electric field is slowly -varying       (uniform 
in space):  
 
 
 
 
 
 
 
                                                                                      periodic bcs/torus (no edges) 
              
                                                                                       Square, side = L 
 
 
Spatially-uniform         can also be viewed as twist in boundary condition.  
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Low frequency current response can be found from quantum adiabatic theorem  
and is due to Hall conductivity only 
 
It can be expressed as Berry “curvature” (field strength) (assume non-deg ground  
state): 
 
Berry connection                                         ,   curvature                                      . 
 
Or, Berry phase                     for a closed path in space of uniform  
 
Then  
 
 
which is also equivalent to the usual Kubo formula. 
 
[However usual Kubo formula involves a sum over all excited energy  
eigenstates---can be difficult to evaluate in practice.] 
 
 
This is a general relation: get response functions to external fields (Kubo); 
antisymmetric (i.e. Hall-like) part is a Berry curvature; response function gives  
transport coeff 
 

Niu and Thouless (1985);  
Avron and Seiler (1985) 
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Adiabatic response and Berry phase 
 
Suppose Hamiltonian           depends on parameters                                                
 
and that                                  is some “current” operator. 
 
Also                                 for each value of      (ignore “persistent currents”)  
and             is gapped.   
 
Then as              , using quantum adiabatic theorem, 
 
 
 
 
 
where                               and                                      are Berry or adiabatic  
 
“connection” and “curvature”.  Or             is a Berry phase. 
 
For us,                    and               as matrices, then   
 
 
(Analog of “Chern number” approach to quantized Hall conductivity.) 

Avron and Seiler (1985) 

Avron, Seiler, and Zograf (1995) 
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Quantization from topological invariants: 
 
      
 
 
 
i.e. average of Hall conductivity over the torus T of distinct twisted boundary conditions,  
 
 
is equal to the Chern number             of torus, which is necessarily integer. 
 
 
 
But can expect/hope (without disorder?) that Berry curvature itself gives  
the quantized Hall conductivity---averaging is not needed in those cases 
(as in TKNN in fact). 

Laughlin (1981)  
Thouless et al (1982)  
Niu and Thouless (1985)  
Avron and Seiler (1985) 
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Viscosity 
 
---transport of momentum---total momentum must be conserved  
    i.e. need translation inv. Momentum density is 
 
---“current” of momentum is the stress tensor                 (inc momentum flux),  
obeys 
                                                                                (Lorentz force) 
 
---spatial metric couples to stress, in place of vector potential---“geometric”. 
E.g. non-interacting particles: 
 
 
 
 
Stress tensor is functional derivative wrt spatial metric: 
 
 
 
 
Response of stress to further change in metric is analog of response of current 
to vector potential (giving conductivity)---here, giving viscosity:  Kubo formula. 
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Viscosity is a fourth rank tensor 
 
 
Now consider expectation of stress        in a state of matter. 
 
In a solid, we have for expectation of stress 
 
 
 
where the local strain is                                         ,  
      is displacement field,             are elastic coefficients (moduli),  
and             is the viscosity tensor.          
 
If rotational invariance holds,        and        are both symmetric tensors. 
In a (rot. inv.) fluid with local velocity    , elastic part becomes          (pressure), we 
replace 
 
 
 
and also add                 (momentum flux) to stress tensor.   
 
In Kubo point of view, replace                  with                 to calculate             
---stress-stress response function.  

Chapman and Cowling 
Landau and Lifshitz, “Elasticity” 
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Rate of loss of mechanical energy, or rate of entropy production, is                          
 
 
 
 
 
 
Symmetric and antisymmetric parts: 
 
 
 
 
 
---at zero frequency, only symmetric part gives dissipation; if rotation invariant,  
it reduces to usual bulk and shear viscosities,     and  
 
---antisymmetric part vanishes if time reversal is a symmetry; if rotation invariant, 
it reduces to one number         in two dimensions (odd under reflections), i.e.  
                                                 ; none in higher dimensions 

Avron, Seiler, and Zograf (1995) 

Hall viscosity          is analog of Hall conductivity 
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Thus Berry curvature for gapped ground state under adiabatic variation of the metric 
should give a Hall-like viscosity response --- the Hall viscosity            . 
 
Avron, Seiler, and Zograf  (1995) used this to calculate it for a non-interacting filled  
lowest Landau level (LLL) (see also Levay (1995)). 
 
Recent results for Hall viscosity: 
   ----two classes of trial states: ---paired superfluids of fermions, e.g. p+ip 
                                                  ---trial quantum Hall states given by conformal 
                                                      blocks from a CFT (Moore-Read 1991) 
                                                      ---e.g. Laughlin, Moore-Read, Read-Rezayi states 
  
 
 
Spin per particle appeared from 1) minus ang momentum of Cooper pair/2;  
2) spin (conformal weight) of particle fields in conformal block trial wavefunctions. 
E.g.                   for Laughlin states. Avron et al result is equivalent to                  
for filled LLL. 
 
These are also related to the “shift”:                                  on sphere 
 
Wen-Zee idea:                    Find same mean orbital spin per particle enters       . 
(Spin couples to curvature like charge to magnetic field.) 
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N.R. (2009) 
N.R. and Rezayi (2011) 

Wen and Zee (1992) 
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Geometry of shear 
 
Two independent area-preserving shears (equiv to change in metric) in  
two dimensions: 
 
 
                                                                           
                                                                           or 
 
 
These moves don’t commute: if undo in reverse order, we get a net rotation: 
 
 
 
 
 
 
 
 
 
 
 

N.R. and Rezayi (2011) 



The transformations are described by                  transformations of coordinates, 
i.e. 
 
 
Pure shears are symmetric matrices, e.g.: 
 
 
 
 
 
 
 
 
and 
 
 
  
  
 
 
 
is a small rotation. If the state has angular momentum (“spin”), then it picks up a  
phase related to the spin. This is the Berry phase we calculate. 
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Quantization of orbital spin     ?  
 
Is      robust against pert of Ham? Not from “Chern number” argument 
 ---return to this  
 
Quantization as rational number: 
 
 
 
If                    and            have no common factors, then        is an integer. 
Assuming             , it follows that            
 
                                                     is integer,  
 
which was not obvious initially. Note shift is robust if rot inv holds. 
 
(            for BCS paired states, in which             ;                 is an integer.) 
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N.R. and Rezayi (2011) 



Effective or “induced” field theory approach 
 
Geometric definitions: background fields--- “frames” or “vielbeins” (Cartan): 
vector fields                                                at each point in 2+1 dim spacetime 
---define “time” and “space” directions 
 
Dual vector fields        . Spatial metric (used earlier) is  
 
 
 
Also                           , where      is Luttinger’s “thermal” potential (1965) 
 
Arbitrariness of spatial rotation on internal indices 
---also have “spin connection”             
 
 
 
vector potential for internal spatial rotation 
 
---allow background spacetime to have curvature and torsion 
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Integrate out matter and obtain effective or “induced” action. 
For a gapped system, the induced action is local in the background fields in the bulk, 
and invariant under coordinate transformations, internal rotations, and U(1) 
gauge transformations  
 
---corresponds to symmetries of translations in time and space, rotations, and U(1) 
gauge (no Lorentz or Galilean invariance), which . . .  
 
---correspond in turn to conservation of energy, momentum, angular momentum, 
and particle number. 
 
---induced action is a “generating function” that describes response of system  
to background fields, even in trivial flat spacetime 
 
Formalism can be used to study general thermoelectric and stress responses 

Bradlyn and NR (2014) 



For bulk induced action, distinguish “locally-invariant” and “Chern-Simons-like” terms. 
CS terms: 
 
 
 
 
 
 
 
Each term is gauge invariant only up to boundary term for at least one type of gauge 
transformation 
 
It follows that coefficients must be robust against perturbations of underlying Ham 
provided a phase boundary is not crossed 
 
Final term is “gravitational Chern-Simons” term, actually equal to second Wen-Zee 
term in the bulk (up to boundary term): 
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See also discussions in: 
Gromov and Abanov 
Can, Laskin, and Wiegmann 
Cho, You, and Fradkin 
---all 2014--2015 



The Chern-Simons induced action determines Berry curvature for various  
adiabatic processes 
 
E.g. Hall viscosity 
 
---assume no “reduced torsion”, then can express 
 
 
 
For          constant in space, space-space components varying in time  
(hence same for space metric) 
 
Second derivative gives viscosity response: Hall viscosity 
---implies both                 (Wen-Zee) and                        , 
 
 
 
also robustness against perturbations 
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Thermal Hall conductivity 
 
From an edge state argument, the thermal Hall conductivity of gapped phase 
in 2+1 should be 
 
 
where                        is difference of central charges in edge (related to specific  
heat capacities) ---“topological” central charge 
 
 
Top. central charge is same as coeff of grav Chern-Simons term because of  
anomaly inflow effect for energy and momentum---Callan and Harvey (1985) 
 
 
No thermal Hall cond from bulk in transport   
(pure edge effect, unlike Hall conductivity) 
 
 
but is there some Berry curvature 
or bulk response function that gives the top central charge?  
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Must use spatially-varying metric variation  
 
Berry curvature under condition that                  is held fixed 
 
Results for conformal-block trial states 
 
---we find Berry curvature with coeff c the same as in underlying CFT 
    (from gravitational anomaly in the underlying chiral CFT) 
 
---in conjunction with known central charge from edge, implies that  
 
 
 
For a number of states considered, slightly earlier  work by others 
had a mistake, corrected after our paper  
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Gromov, Cho, Fradkin et al (2015) 



Conclusion 
 
---Hall viscosity now somewhat well understood theoretically: 
 
---can get useful information from computation of Berry curvature to obtain 
 
 
 
 
---as coeff of grav CS should agree with edge theory, this will give 
 
 
 
    which is not a well-understood quantity.  
 
---can also be done numerically 
 
Collaborators:  E. Rezayi                          
                         B. Bradlyn 
                         M. Goldstein                        Papers on arXiv and in PRB 
 
See especially arXiv: 1502.04126, 1407.2911 with Bradlyn 
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