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Turbulence and confinement

•  What determines particle, momentum, and energy 
transport in magnetically confined plasmas? 
(spoiler: it’s microturbulence) 

•  How big is turbulent transport and can we reduce 
it? (practical MCF question) 

•  What are the properties of microturbulence in 
(nearly) collisionless, magnetized plasma?
(fundamental physics question, interesting in 
laboratory/space/astro plasmas) 



Turbulence and transport in hot, 
magnetized plasmas
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How good must the confinement be?
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Confinement time without magnetic field

without 
magnetic 

field 

Distance from center of toroidal volume to wall = a ~ 1 m  

Average speed of particles is thermal speed, vth ~ 105 m/s  

=> Energy confinement time =      ~ a/vth~ 10-5 s τ E



Collisional transport in magnetized plasma
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Random walks and diffusion

p(x, t) =
p(x+ `, t� ⌧) + p(x� `, t� ⌧)
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Think of the process as a random walk.  Particles and 
energy at given space-time point determined by particles 
and energy at neighboring space-time points: 



Random walks and diffusion
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Taylor expand about the space-time point (x,t), i.e.         small, 
and use definition of derivative to get:  
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Think of the process as a random walk.  Particles and 
energy at given space-time point determined by particles 
and energy at neighboring space-time points: 

This is a diffusion equation, with diffusion coefficient D: 
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Estimate for (classical) collisional transport
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Combine with diffusion equation to get estimate for energy 
confinement time: 

Random walk step size ~ gyration radius 

Average time between steps ~ collision time  
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Much better confinement than observed
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Combine with diffusion equation to get estimate for energy 
confinement time: 

Random walk step size ~ gyration radius 

Average time between steps ~ collision time  
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Tamm’s Theorem revisited

If confining field axisymmetric, canonical angular 
momentum conserved: 

ψ* =ψp −
mcRvζ
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(Neoclassical) collisional transport
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Trapped orbits close on themselves 
while precessing toroidally 



(Neoclassical) collisional transport



Still better confinement than observed
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Combine with diffusion equation to get estimate for energy 
confinement time: 

Random walk step size ~ poloidal gyroradius 

Average time between steps ~ collision time  
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Toroidal drift instability (ITG/ETG)
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Toroidal drift instability (ITG/ETG)
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Good curvature vs. bad curvature
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Good curvature vs. bad curvature
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Turbulence stable on inside
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Instability has a critical gradient

Growth rate of instability in bad curvature region increases with 
magnitude of temperature gradient: 

� = �(T 0)

Plasma in bad curvature region is swept along field lines into 
good curvature region, making a competition between 
stabilization and destabilization.  Expect net instability when: 

This implies a critical temperature gradient necessary to sustain 
instability: 
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c

�(T 0) & vth
qR



Growth rate of instability 
related to rate at which 
charge separation occurs: 

What wavelengths are unstable?

Instability depends on charge separation via magnetic drifts 
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to perturbation scale, 
reduces instability drive 
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What wavelengths are unstable?
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Turbulent fluctuation amplitude small
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Estimate for turbulent transport
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Combine with diffusion equation to get estimate for energy 
confinement time: 

Random walk step size ~ eddy size ~ gyration radius 

Average time between steps ~ eddy turnover time 

` ⇠ ⇢

105 10-5 s 

⌧ ⇠ ⌧t ⇠
⇢

vE
⇠ a

vth
vE ⇠ vth

⇢

a
(                      ) 

⌧E ⇠
✓
a

⇢

◆2 ✓ a

vth

◆
p

⌧E
⇠ vth

⇢2

a

p

a2



Confinement time just right!
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Combine with diffusion equation to get estimate for energy 
confinement time: 

Random walk step size ~ eddy size ~ gyration radius 

Average time between steps ~ eddy turnover time 
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Resultant turbulence



Kinetic corrections

•  So far, picture has been essentially fluid, even 
though collisional mean free path is long; what 
about kinetic effects? 

•  Not all particles travel at sound speed along field 
•  Significant number of particles travel slower 
•  Some particles are trapped in bad curvature 

region due to magnetic mirroring 

(T 0
c)kinetic < (T 0

c)fluid



Turbulence determines plasma profiles

Turbulence diffusion coefficient depends strongly on temperature: 
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Edge temperature is very 
important! 



Range of scales
Time scale (seconds) 

10-12 10-10 10-8 1 10-6 10-4 10-2 
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Space scale (meters) 
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Formation of small scales in v-space

f = f(r,v, t)



Formation of small scales in v-space

f = f(r,v, t)



Formation of small scales in v-space 

Schekochihin et al., PPCF 2008 

F [h�i]•  Drift velocity = 
•  Particles with Larmor 

orbits separated by 
turbulence wavelength 
‘see’ different averaged 
potential 

•  Drift velocities 
decorrelated, thus phase 
mixing 
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Kinetic description of dynamics
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Numerical expense (brute force)
Time scale (seconds) 

10-12 10-10 10-8 1 10-6 10-4 10-2 

Space scale (meters) 

10-5 10-3 10-1 103 10 

Temporal grid: ~1013 time steps 

Spatial grid: ~106 grid points x 3-D = 1018 grid points 

Velocity grid: ~10 grid points x 3-D = 103 grid points 

Total: ~1034 total grid points 

Collisions 



Gyrokinetic description of dynamics
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•  Average over fast gyro-
motion and follow ‘guiding 
center’ position 

•  Eliminates fast time scale 
and gyro-angle variable     
(6-D ! 5-D) 

f = f(r,v, t)



Numerical expense (gyrokinetics)
Time scale (seconds) 

10-12 10-10 10-8 1 10-6 10-4 10-2 

Space scale (meters) 

10-5 10-3 10-1 103 10 

Temporal grid: ~109 time steps 

Perpendicular spatial grid: ~106 grid points x 2-D = 1012 grid points 

Velocity grid: ~10 grid points x 2-D v-space = 102 grid points 

Total: ~1024 total grid points (1010 savings) 

Parallel spatial grid: ~10 grid points x 1-D = 10 grid points 

gyrofrequency 



Multi-scale gyrokinetics

Decompose f into mean and fluctuating components: 

=> Mean profile evolution slow compared to turbulence: 

f = F + �f
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Mean varies perpendicular to mean field on system size 
while fluctuations vary on scale of gyro-radius:  
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Gyrokinetic-Poisson system

Quasineutrality: 

Gyrokinetic equation: 
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Gyrokinetic-Poisson system

Quasineutrality: 

Gyrokinetic equation: 
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Multi-scale gyrokinetics

Turbulent fluctuations calculated in small regions of fine 
space-time grid embedded in coarse grid for mean quantities 

GS2 
Trinity 



Numerical expense (multi-scale GK)
Time scale (seconds) 

10-12 10-10 10-8 1 10-6 10-4 10-2 

Space scale (meters) 

10-5 10-3 10-1 103 10 

Temporal grid: ~105 time steps 

Perpendicular spatial grid: ~105 grid points x 2-D = 1010 grid points 

Velocity grid: ~10 grid points x 2-D v-space = 102 grid points 

Total: ~1018 total grid points (106 savings) 

Parallel spatial grid: ~10 grid points x 1-D = 10 grid points 

mean-fluctuation 
separation 



Simulating gyrokinetic turbulence



Simulating gyrokinetic turbulence

f = f(r,v, t)
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(Magnetically) sheared box
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kx = kx(z) 



(Flow) sheared box

t 

kx = kx(t) 



•  Gyro-average is non-
local in physical 
space 

•  Local in Fourier space 

Numerical gyroaveraging



•  Gyro-average is non-local in physical space 
•  Local in Fourier space: 
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Turbulence suppression

Fast camera image of MAST plasma JT-60U data, Y. Miura et al. 



Progress in magnetic confinement fusion



Challenges ahead

•  Technological: plasma-wall interaction, 
superconducting magnets, etc. 

•  Controlling macroscopic instabilities 
•  Reducing turbulent transport 
•  Steady state operation 



Moving forward

ITER 

Wendelstein 7-X 



And now for something completely 
different…



Turbulent heating

•  Assume turbulent plasma dominated by 
electrons and hydrogenic ions 

•  How much are passive minority ions 
heated by turbulence? 

•  Gyrokinetics restricts us to isotropic 
heating because magnetic moment is 
conserved 

•  Turbulent heating mechanism is Joule 
heating: 

Hs = �Jk,s · �Ek / esvth,s�ns / m1/2
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Cartoon of mass-dependent fluctuations
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Cartoon of mass-dependent fluctuations
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Simple picture consistent with GK 
simulations and solar wind observations

Schmidt et al., Geophys. Res. Lett. (1980). 

Minority ion temperatures in solar wind 
Heating from GK 

simulation 

Barnes et al. PRL (2012) 



Fundamental properties of GK turbulence

•  Isotropy in plane perpendicular to B-field 
•  Position and velocity space scales linked 
•  Parallel streaming time and nonlinear turnover 

time comparable at all scales (critical balance) 
•  Parallel length at outer scale set by system size 

(connection length) 

Take GK and make a few simple conjectures: 



Smooth, isotropic v-space (kρ < 1) 

Assume 
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Critical balance

•  Physical idea: two points along field correlated only 
if information propagates between them before 
turbulence decorrelated in perpendicular plane 

Critical 
balance: 
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Inertial range
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Inertial range (kρ < 1)

•  Flux of free energy (nonlinear invariant) scale-
independent in inertial range: 

Free energy: W = V �1
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Matching
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Inertial range (kρ << 1)

•  Flux of free energy (nonlinear invariant) scale-
independent in inertial range: 

Free energy: W = V �1
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Inertial range (kρ << 1)

•  Convert expression for       into 1D spectrum 
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Inertial range spectra

 

Barnes et al., PRL 2011 



Critical balance test
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Inertial range critical balance
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Turbulence properties

Barnes et al., PRL 2011 
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Dissipation scale
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Dissipation scale

•  At dissipation scale, dissipation rate comparable to 
nonlinear decorrelation rate 

 

•  Decorrelation in v-space due to finite Larmor radius 
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