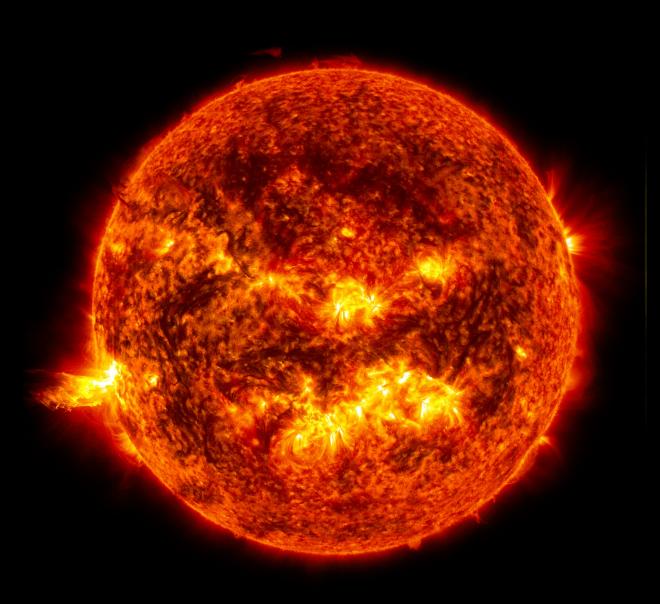
#MCF: The physics of magnetic confinement in 180 minutes

Michael Barnes Rudolf Peierls Centre for Theoretical Physics University of Oxford

How do MCF and astro plasmas differ?



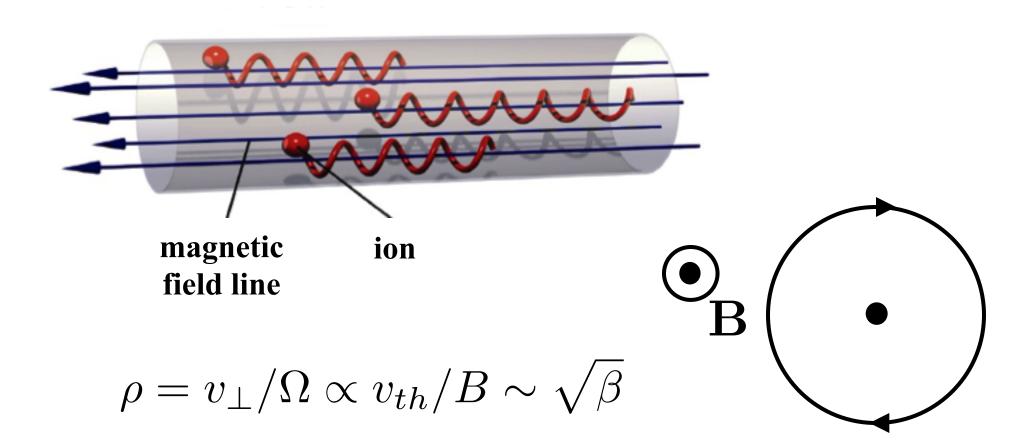
#MCF: The physics of magnetic confinement in 180 minutes

An overview of the overview

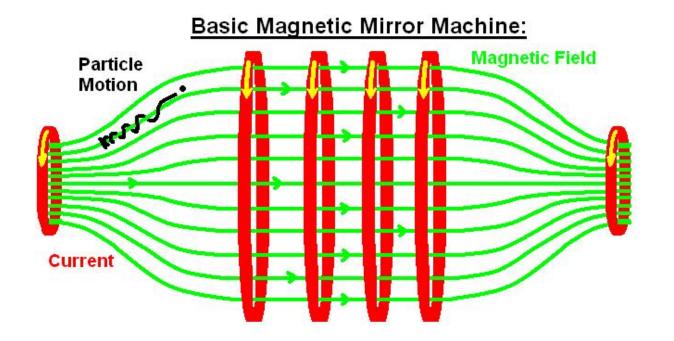
- Disclaimer
- Single particle confinement
- Magnetic topology
- Plasma equilibrium
- Macroscopic (MHD) stability
- Turbulence and transport

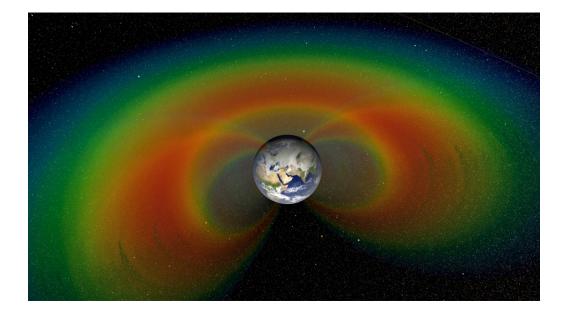
Basic concept of magnetic confinement

without magnetic field



Solution I: Magnetic mirror





Van Allen radiation belts (NASA)

Solution I: Magnetic mirror

 $\mu = \frac{m v_{\perp}^2}{2R}$ Force on magnetic moment in inhomogeneous B-field:

$$F = -\mu \nabla B$$

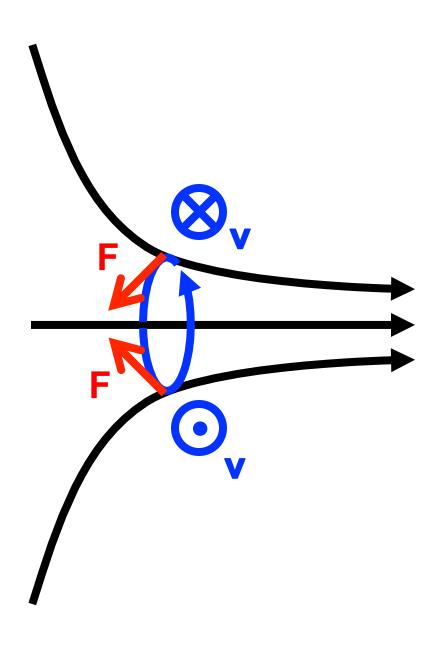
Magnetic moment is an adiabatic invariant:

$$J = \oint p dq$$

$$p = mv_x, \ q = x$$

 $J = \oint_0^{2\pi/\Omega} m v_\perp^2 \sin^2(\Omega t) dt \propto \mu$

Solution I: Magnetic mirror

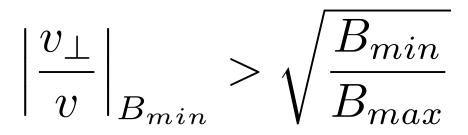


Magnetic moment and energy conserved:

$$\frac{mv_{\parallel}^2}{2} = E - \mu B$$

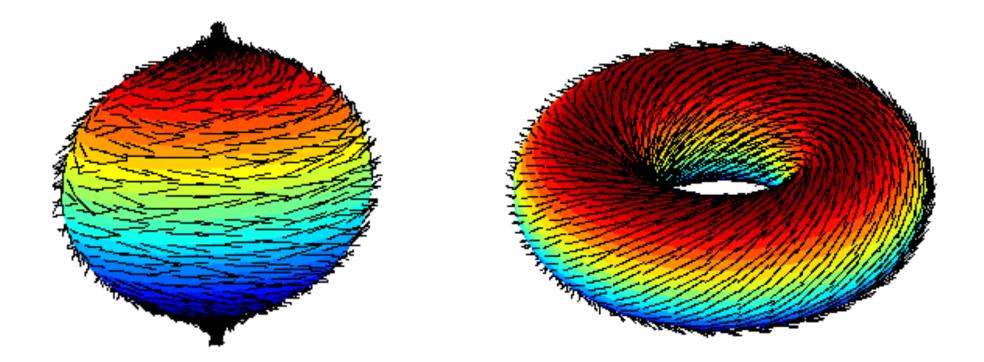
At bounce point $E = \mu B_{max}$

Particles bounce if



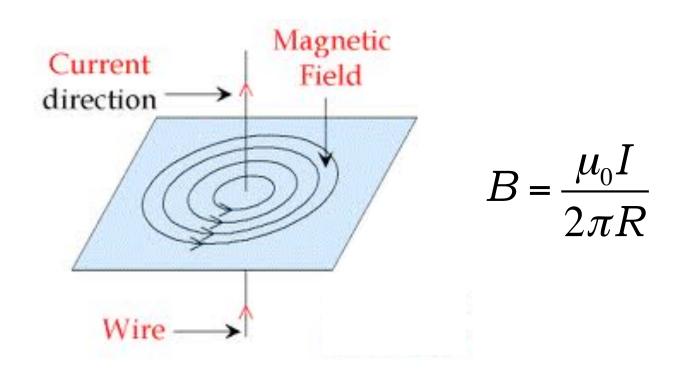
Solution 2: confined field line trajectory

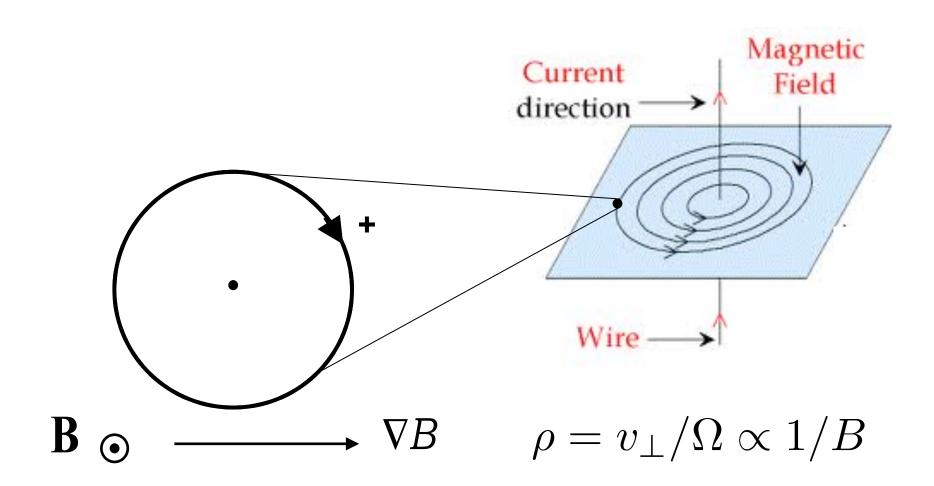
 'Hairy ball theorem' → confined trajectories of vector field possible only for torii

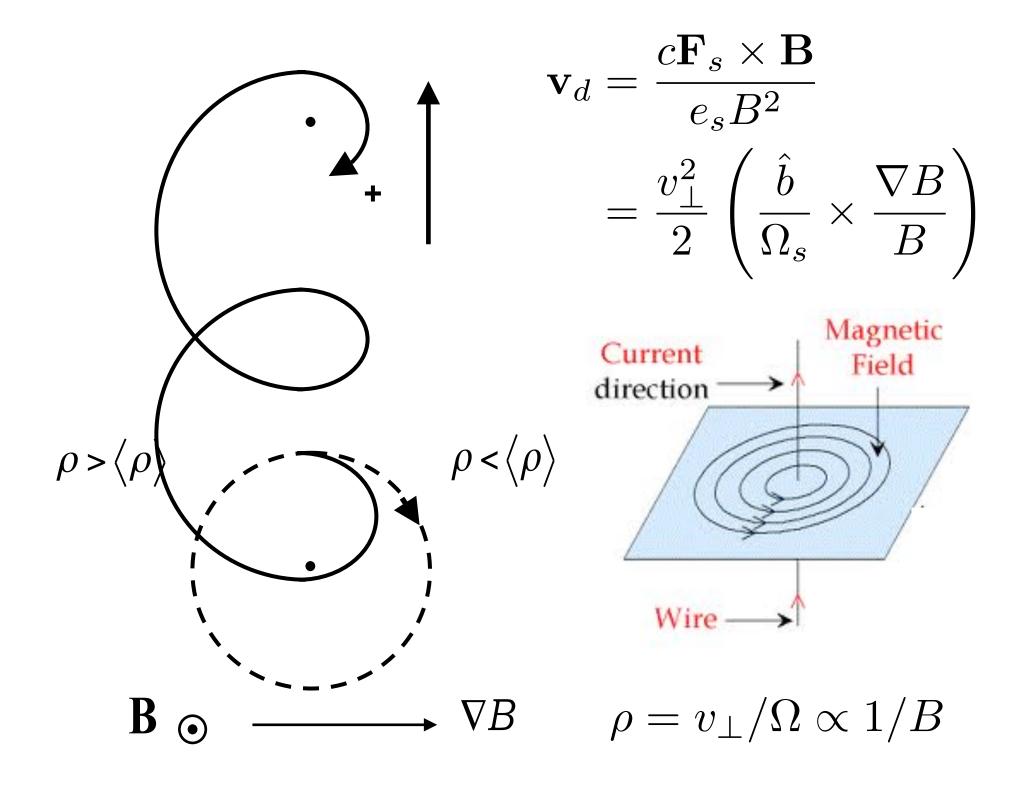


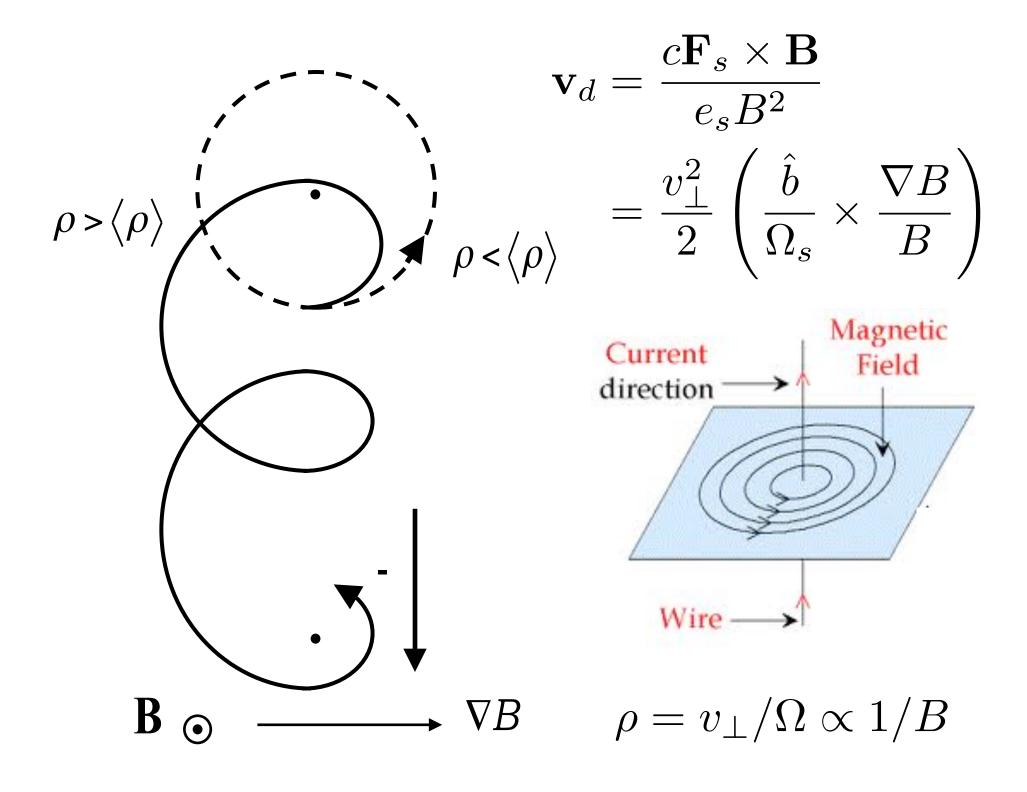
Solution 2: confined field line trajectory

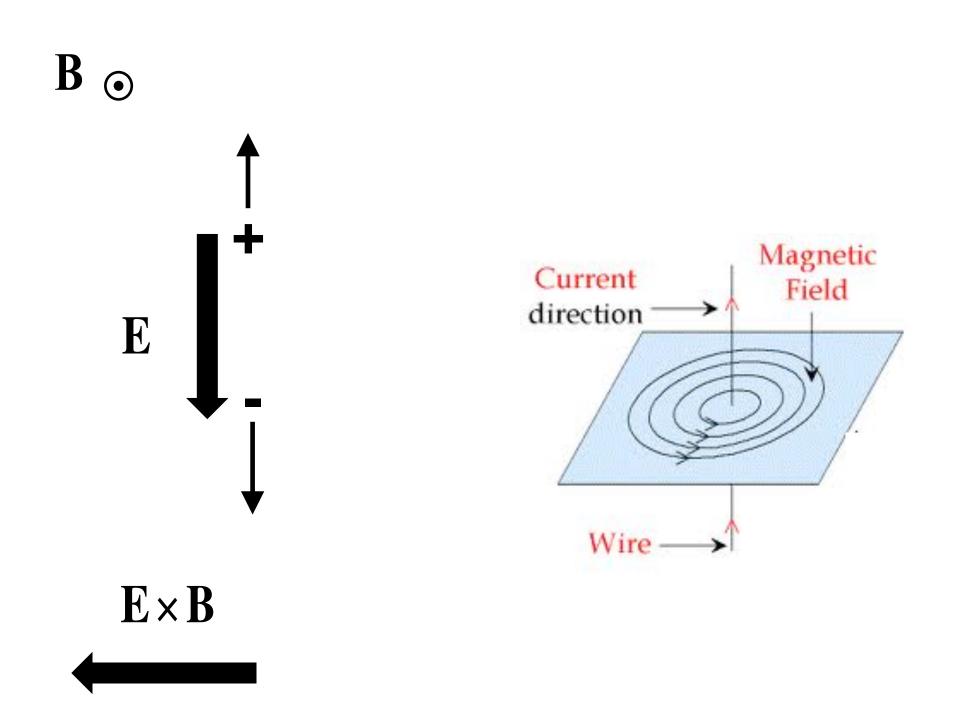
- Once we confine ourselves to torus, there are three possibilities: closed lines (1D), surfaces (2D), or toroidal annuli (3D)
- Simplest idea is circles:



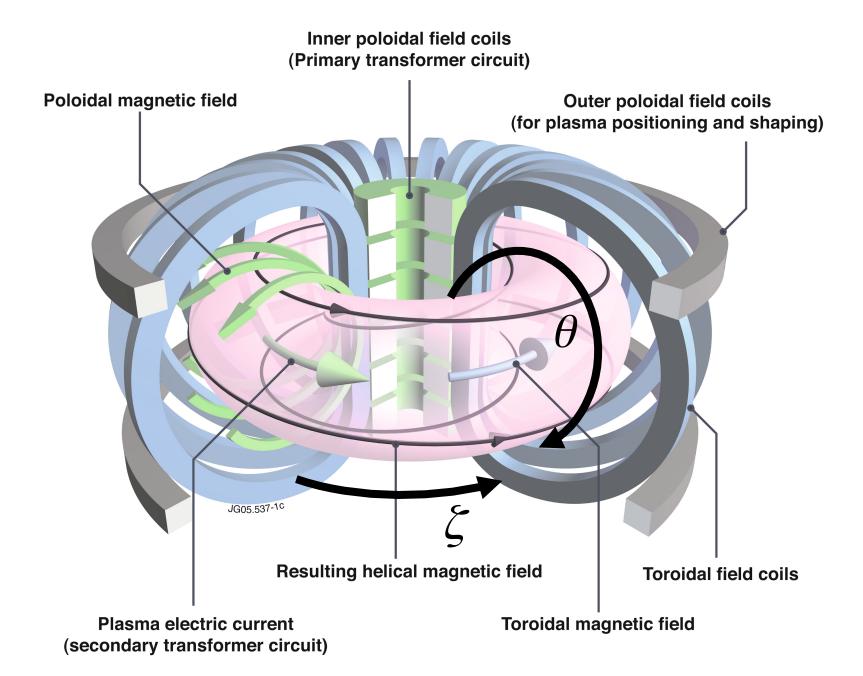




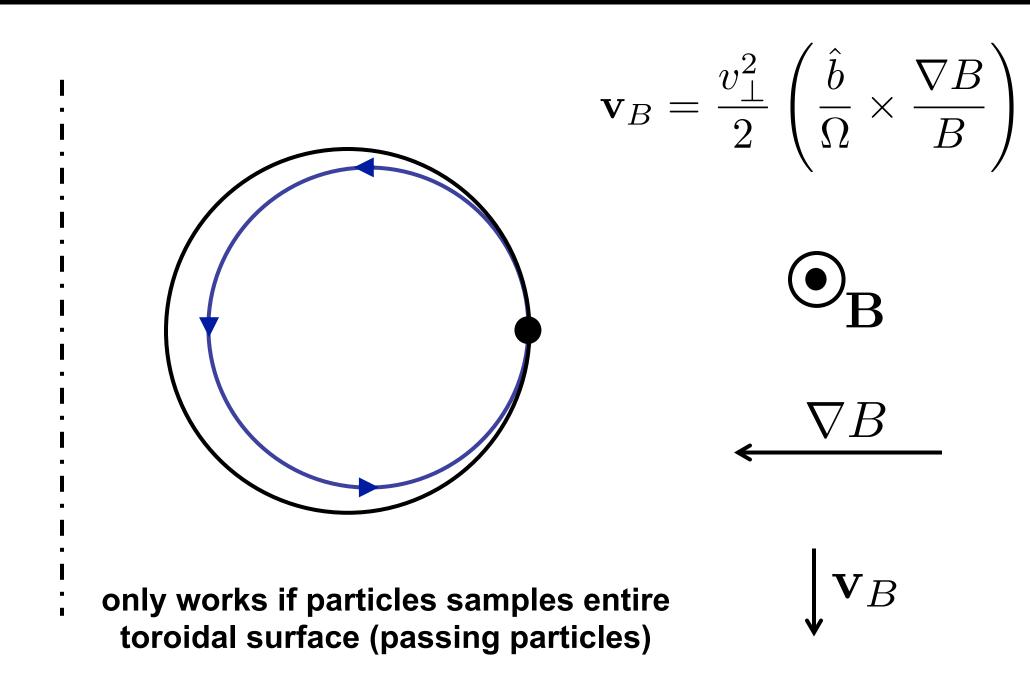




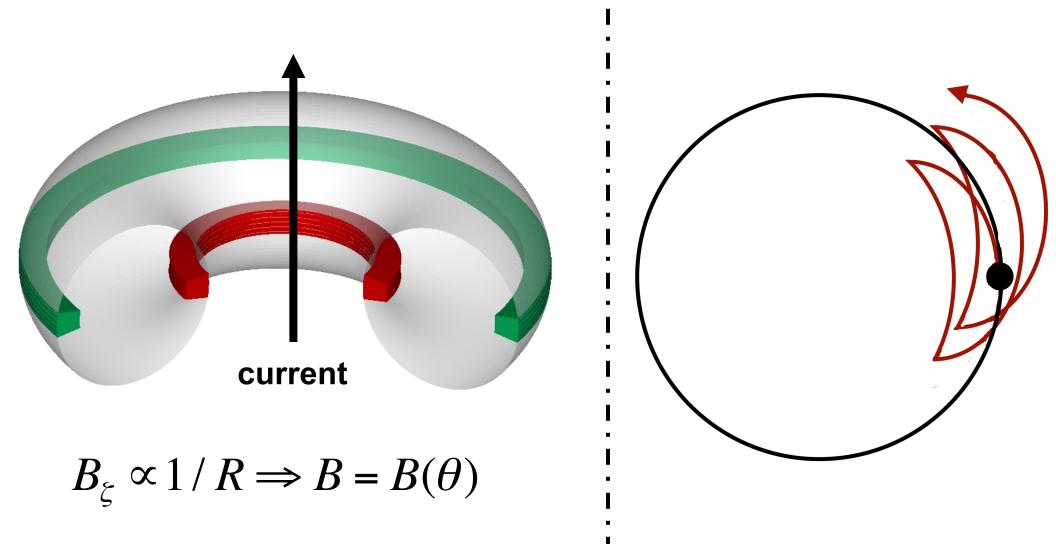
The solution for solution 2? Add a twist



Magnetic drifts close, so no net drift

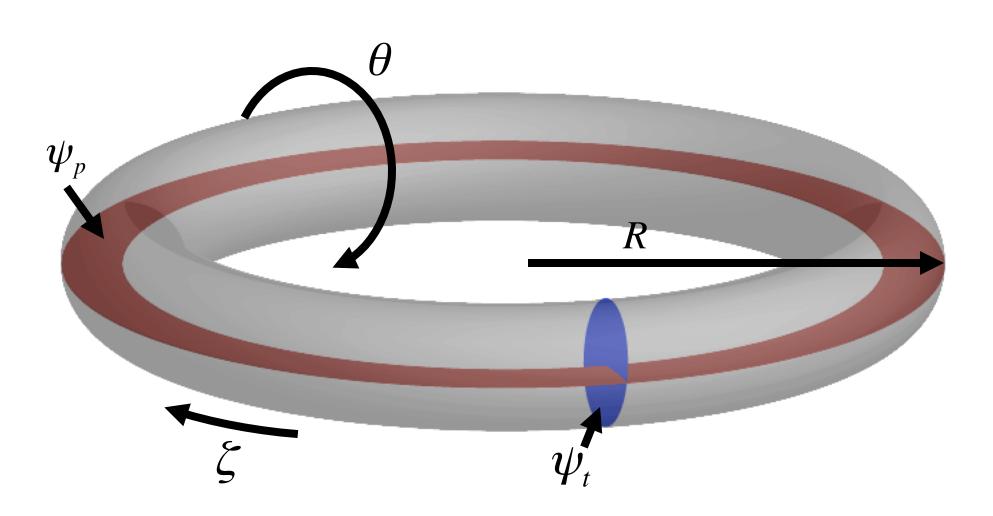


Complication: trapped particles



Magnetic coordinates

$$\psi_p = \oint \mathbf{B} \cdot d\mathbf{a}^{\theta} \qquad \qquad \psi_t = \oint \mathbf{B} \cdot d\mathbf{a}^{\zeta}$$



Tamm's Theorem: no average radial drift in axisymmetric torus

If confining field axisymmetric, canonical angular momentum conserved:

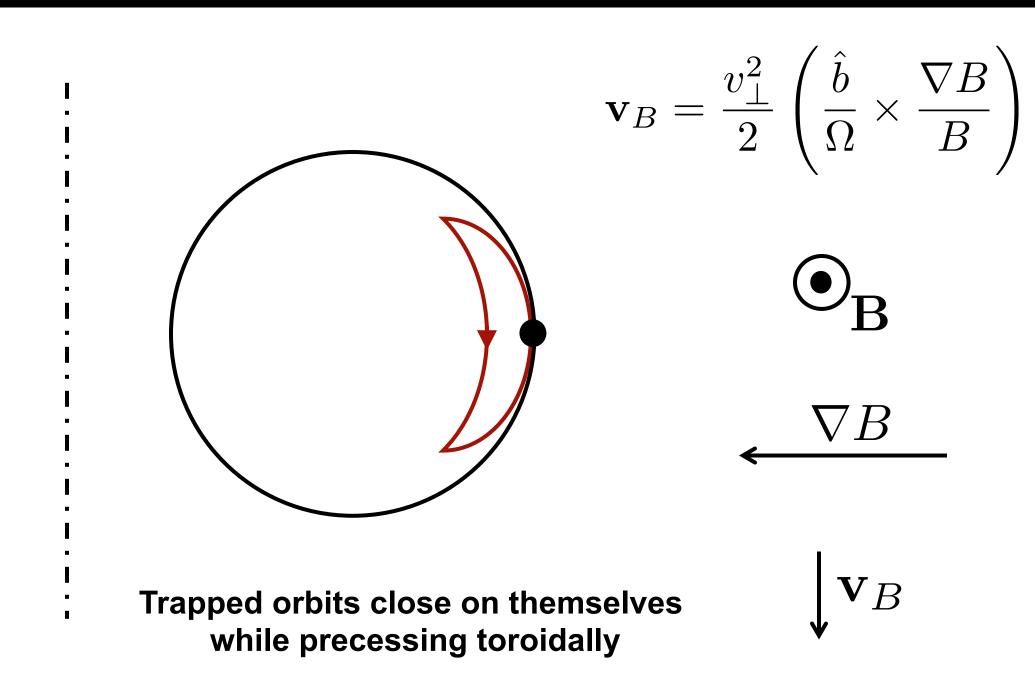
$$p_{\zeta} = Rmv_{\zeta} + \frac{ZeRA_{\zeta}}{c} = const$$

$$\psi_p = -RA_{\xi} \sim R^2 B_p$$

$$\psi_* = \psi_p - \frac{mcRv_{\xi}}{Ze} = const$$

$$\psi_p = const \times (1 + O[\rho / R])$$

Trapped particles in axisymmetric torus



Other (helical) symmetries also eliminate average radial drift. Consider

$$\psi_* = \psi_p - \frac{I(\psi_p)v_{\parallel}}{\Omega}$$

Small for I ~ B/R

Other (helical) symmetries also eliminate average radial drift. Consider

$$\psi_{*} = \psi_{p} - \frac{I(\psi_{p})v_{\parallel}}{\Omega}$$
$$\frac{d\psi_{*}}{dt} = \frac{\partial\psi_{*}}{\partial t} + (\mathbf{v}_{\parallel} + \mathbf{v}_{d}) \cdot \nabla\psi_{*}$$

Other (helical) symmetries also eliminate average radial drift. Consider I(a/a)w

$$\begin{split} \psi_* &= \psi_p - \frac{I(\psi_p)v_{\parallel}}{\Omega} \\ \frac{d\psi_*}{dt} &= \frac{\partial\psi_*}{\partial t} + (\mathbf{v}_{\parallel} + \mathbf{v}_d) \cdot \nabla\psi_* \\ &= \mathbf{v}_{\parallel} \cdot \nabla\psi_p + \mathbf{v}_d \cdot \nabla\psi_p - I\mathbf{v}_{\parallel} \cdot \nabla\left(\frac{v_{\parallel}}{\Omega}\right) - \mathbf{v}_d \cdot \nabla\left(\frac{Iv_{\parallel}}{\Omega}\right) \end{split}$$

Other (helical) symmetries also eliminate average radial drift. Consider $I(\psi_{\mu})v_{\mu}$

$$\psi_{*} = \psi_{p} - \frac{\nabla P^{2} - \Pi}{\Omega}$$

$$\frac{d\psi_{*}}{dt} = \frac{\partial\psi_{*}}{\partial t} + (\mathbf{v}_{\parallel} + \mathbf{v}_{d}) \cdot \nabla\psi_{*}$$

$$= \mathbf{v}_{\parallel} \nabla \psi_{p} + \mathbf{v}_{d} \cdot \nabla \psi_{p} - I\mathbf{v}_{\parallel} \cdot \nabla \left(\frac{v_{\parallel}}{\Omega}\right) - \mathbf{v}_{d} \cdot \nabla \left(\frac{v_{\parallel}}{\Omega}\right)$$

$$\lim_{\substack{n \in \Omega \\ n \in \Omega}} \frac{1}{\Omega}$$
Small in ρ / R

Other (helical) symmetries also eliminate average radial drift. Consider $I(\psi_n)v_{\parallel}$

$$\begin{split} \psi_* &= \psi_p - \frac{1}{\Omega} \\ \frac{d\psi_*}{dt} &= \frac{\partial\psi_*}{\partial t} + (\mathbf{v}_{\parallel} + \mathbf{v}_d) \cdot \nabla\psi_* \\ &= \mathbf{v}_{\parallel} \nabla \psi_p + \mathbf{v}_d \cdot \nabla \psi_p - I\mathbf{v}_{\parallel} \cdot \nabla \left(\frac{v_{\parallel}}{\Omega}\right) - \mathbf{v}_d \cdot \nabla \left(\frac{Iv_{\parallel}}{\Omega}\right) \\ &= \frac{2v_{\parallel}^2 + v_{\perp}^2}{\Omega B^2} \left(\mathbf{B} \times \nabla \psi_p \cdot \nabla B - I\mathbf{B} \cdot \nabla B\right) \end{split}$$

Other (helical) symmetries also eliminate average radial drift. Consider $I(\psi_n)v_{\parallel}$

$$\begin{split} \psi_* &= \psi_p - \frac{-1}{\Omega} \\ \frac{d\psi_*}{dt} &= \frac{\partial\psi_*}{\partial t} + (\mathbf{v}_{\parallel} + \mathbf{v}_d) \cdot \nabla\psi_* \\ &= \mathbf{v}_{\parallel} \nabla \psi_p + \mathbf{v}_d \cdot \nabla \psi_p - I \mathbf{v}_{\parallel} \cdot \nabla \left(\frac{v_{\parallel}}{\Omega}\right) - \mathbf{v}_d \cdot \nabla \left(\frac{b_{\parallel}}{\Omega}\right) \\ &= \frac{2v_{\parallel}^2 + v_{\perp}^2}{\Omega B^2} \left(\mathbf{B} \times \nabla \psi_p \cdot \nabla B - I \mathbf{B} \cdot \nabla B\right) \\ \psi_p &\approx const \text{ if } \frac{\mathbf{B} \times \nabla \psi_p \cdot \nabla B}{\mathbf{D} \cdot \nabla D} = I(\psi_p) \end{split}$$

 $\mathbf{B} \cdot \nabla B$

Magnetic field topology

• Choose coordinates $(\psi_t, artheta, \zeta)$

$$2\pi \mathbf{B} = \nabla \psi_t \times \nabla \vartheta + \nabla \zeta \times \nabla \psi_p(\psi_t, \vartheta, \zeta)$$

Trajectory of magnetic field line given by

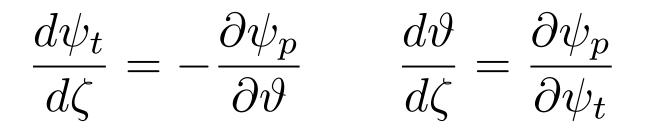
$$\frac{dx^i}{d\tau} = \mathbf{B} \cdot \nabla x^i = B^i$$

1/q

• Choose zeta as time-like coordinate:

$$\frac{d\psi_t}{d\zeta} = \frac{\mathbf{B} \cdot \nabla \psi_t}{\mathbf{B} \cdot \nabla \zeta} = -\frac{\partial \psi_p}{\partial \vartheta}, \ \frac{d\vartheta}{d\zeta} = \frac{\mathbf{B} \cdot \nabla \vartheta}{\mathbf{B} \cdot \nabla \zeta} = \frac{\partial \psi_p}{\partial \psi_t}$$

Relation to Hamiltonian systems



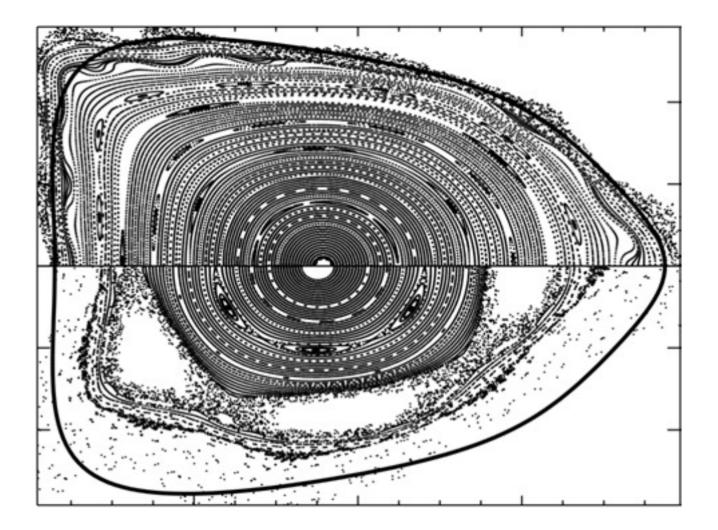
- Identify $\psi_p \leftrightarrow H, \ \zeta \leftrightarrow t, \ \theta \leftrightarrow x, \ \psi_t \leftrightarrow p$ $\frac{dx}{dt} = \frac{\partial H}{\partial p}, \ \frac{dp}{dt} = -\frac{\partial H}{\partial x}$
- 1.5 degree Hamiltonian system, allows:
 - 1D trajectories (closed lines)
 - 2D trajectories (ergodically map toroidal surfaces)
 - 3D trajectories (volume-filling)

With symmetry direction

$$\frac{d\psi_t}{d\zeta} = 0 = -\frac{\partial\psi_p}{\partial\vartheta} \qquad \frac{d\vartheta}{d\zeta} = \frac{\partial\psi_p}{\partial\psi_t}$$

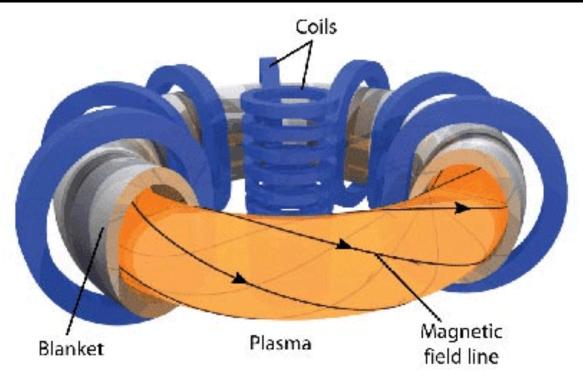
- Identify $\psi_p \leftrightarrow H, \ \zeta \leftrightarrow t, \ \theta \leftrightarrow x, \ \psi_t \leftrightarrow p$ $\frac{dx}{dt} = \frac{\partial H}{\partial p}, \ \frac{dp}{dt} = -\frac{\partial H}{\partial x}$
- 1 degree Hamiltonian system, allows:
 - 1D trajectories (closed lines)
 - 2D trajectories (ergodically map toroidal surfaces)
 - 3D trajectories (volume-filling)

Field line examples



Hudson et al, PRL 2002

Tokamaks and stellarators



- Confined drift orbits
- Existence of flux surfaces
- Simpler design/ construction

- Confining poloidal field generated externally
- More flexibility in shaping

Magnetized plasma equilibrium

$$\frac{\partial (m_s n_s \mathbf{u}_s)}{\partial t} + \nabla \cdot \mathbf{P}_s - e_s n_s \left(\mathbf{E} + \frac{\mathbf{u}_s \times \mathbf{B}}{c} \right) = \mathbf{F}_s$$

Magnetized plasma equilibrium

$$\frac{\partial(\mathbf{m}_{s} n_{s} \mathbf{u}_{s})}{\partial t} + \nabla \cdot \mathbf{P}_{s} - e_{s} n_{s} \left(\mathbf{E} + \frac{\mathbf{u}_{s} \times \mathbf{B}}{c} \right) = \mathbf{F}_{s}$$
equilibrium
$$\mathbf{M}_{s} \mathbf{M}_{s} \mathbf{H}_{s} \mathbf{H}_{s}$$

over species)

Magnetized plasma equilibrium

$$\frac{\partial (m_s n_s \mathbf{u}_s)}{\partial t} + \nabla \cdot \mathbf{P}_s - e_s n_s \left(\mathbf{E} + \frac{\mathbf{u}_s \times \mathbf{B}}{c} \right) = \mathbf{F}_s$$

Quasineutrality:

$$\nabla^2 \Phi = -4\pi \sum_s e_s n_s \qquad \sum_s e_s n_s \sim e n_e \left(\frac{\lambda_D}{L}\right)^2$$

Near thermodynamic equilibrium: $abla \cdot \mathbf{P}_s =
abla p_s$

$$c\nabla p = \mathbf{J} \times \mathbf{B}$$
$$\mathbf{B} \cdot \nabla p = \mathbf{J} \cdot \nabla p = 0$$

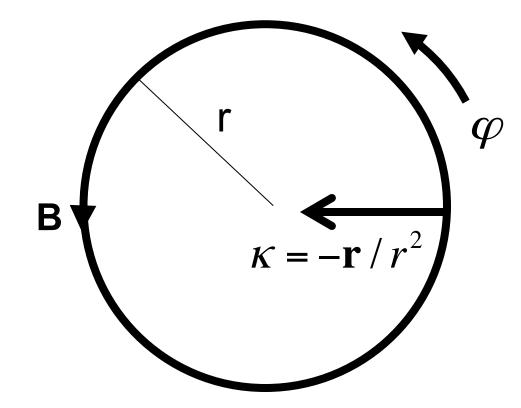
I.e., parallel equilibration time short compared to confinement time (parallel streaming for collisionless or sound wave propagation for collisional)

Quasineutrality and return currents

Another consequence of quasineutrality is $abla \cdot {f J}=0$ Charge conservation: $\frac{\partial \rho}{\partial t} + \nabla \cdot \mathbf{J} = 0$ Quasineutrality: $\sum e_s n_s \sim e n_e \left(\frac{\lambda_D}{L}\right)^2$ $\longrightarrow \nabla \cdot \mathbf{J} \sim \frac{\rho}{\tau} \sim \left(\frac{\lambda_D}{L}\right)^2 \frac{en_e}{\tau}$ $\sim \frac{J}{L} \left(\frac{v_{th,e}}{c}\right)^2 \frac{1}{\Omega \tau} \ll \frac{J}{L}$ $c\nabla p = \mathbf{J}_{\perp} \times \mathbf{B} \implies \nabla \cdot J_{\parallel} \neq 0$

Alternative physical interpretation

$$\boldsymbol{\kappa} \equiv \mathbf{b} \cdot \nabla \mathbf{b} = \frac{4\pi}{c} \frac{\mathbf{J} \times \mathbf{B}}{B^2} + \frac{\nabla_{\perp} B}{B}$$



Alternative physical interpretation

$$\boldsymbol{\kappa} \equiv \mathbf{b} \cdot \nabla \mathbf{b} = \frac{4\pi}{c} \frac{\mathbf{J} \times \mathbf{B}}{B^2} + \frac{\nabla_{\perp} B}{B}$$
$$c\nabla p = \mathbf{J} \times \mathbf{B}$$
$$\frac{B^2}{4\pi} \boldsymbol{\kappa} = \nabla_{\perp} \left(p + \frac{B^2}{4\pi} \right)$$

Total pressure gradient (plasma + magnetic) balanced by field line tension in equilibrium

Low plasma beta

$$\kappa \equiv \mathbf{b} \cdot \nabla \mathbf{b} = \frac{4\pi}{c} \frac{\mathbf{J} \times \mathbf{B}}{B^2} + \frac{\nabla_{\perp} B}{B}$$
$$c \nabla p = \mathbf{J} \times \mathbf{B}$$
$$\beta = \frac{4\pi p}{B^2} \ll 1 \Rightarrow \frac{B^2}{4\pi} \kappa \approx \nabla_{\perp} \frac{B^2}{4\pi}$$

Magnetic pressure gradient balanced by tension in equilibrium

Axisymmetric equilibrium

Radial component of Ampere's Law:

$$\frac{4\pi}{c}J^r = \mathcal{J}\left(\frac{\partial B_{\zeta}}{\partial \theta} - \frac{\partial B_{\theta}}{\partial \zeta}\right) \quad \mathcal{J}^{-1} = \nabla r \cdot (\nabla \theta \times \nabla \zeta)$$
$$\mathbf{J} \cdot \nabla p = 0 \Rightarrow J^r p' = 0$$

Axisymmetric equilibrium

Radial component of Ampere's Law:

$$\overset{4}{} \overset{\mathbf{T}}{} \overset{r}{} = \mathcal{J} \left(\frac{\partial B_{\zeta}}{\partial \theta} - \frac{\partial B_{\theta}}{\partial \zeta} \right) \quad \mathcal{J}^{-1} = \nabla r \cdot (\nabla \theta \times \nabla \zeta)$$

$$\Rightarrow B_{\zeta} = B_{\zeta}(r) \Rightarrow \mathbf{B} = \underbrace{I(r)}_{\mathbf{B}_{t}} \overset{\mathbf{T}}{} \overset{\mathbf{T}}{} \overset{\mathbf{T}}{\mathbf{B}_{p}} \overset{\mathbf{T}}{\mathbf{B}_{p}}$$

Axisymmetric equilibrium

Radial component of Ampere's Law:

$$\mathbf{J}^{\mathbf{T}} = \mathcal{J} \left(\frac{\partial B_{\zeta}}{\partial \theta} - \mathbf{J}^{\mathbf{D}}_{\mathbf{Q}\zeta} \right) \quad \mathcal{J}^{-1} = \nabla r \cdot (\nabla \theta \times \nabla \zeta)$$

$$\mathbf{\Rightarrow} \quad B_{\zeta} = B_{\zeta}(r) \quad \mathbf{\Rightarrow} \quad \mathbf{B} = I(r) \nabla \zeta + \nabla \zeta \times \nabla \psi_{p}$$
Radial force balance: $cp' = \mathcal{J}^{-1} B^{\theta} \left(q J^{\theta} - J^{\zeta} \right)$

$$J^{\zeta} = \frac{c}{4\pi} \nabla \zeta \cdot \nabla \times \mathbf{B} = \frac{c}{4\pi} \nabla \cdot \left(R^{-2} \nabla \psi_{p} \right)$$

$$J^{\theta} = -\frac{c}{4\pi} \frac{II'}{q \psi'_{p} R^{2}}$$

Grad-Shafranov equation

$$R^{2}\nabla\cdot\left(R^{-2}\nabla\psi_{p}\right) = -I\frac{dI}{d\psi_{p}} - 4\pi R^{2}\frac{dp}{d\psi_{p}}$$

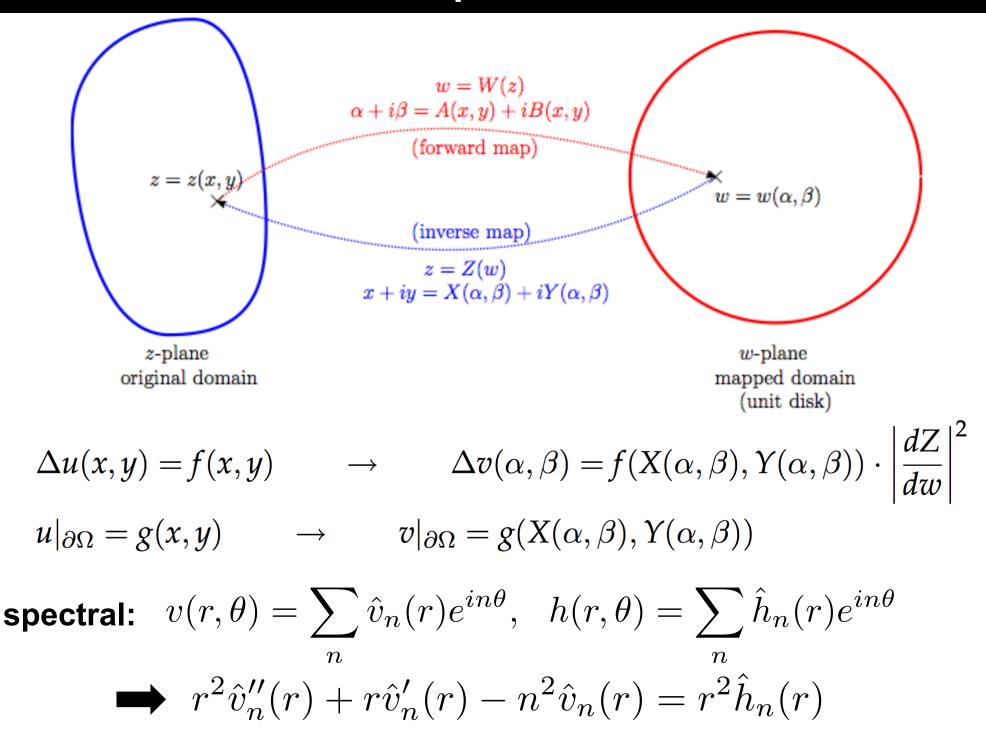
Use cylindrical (R,Z) coordinates and define $\psi_p \equiv u\sqrt{R}$:

$$\Delta u = -\frac{3}{4} \frac{u}{R^2} - 4\pi R \frac{dp}{du} - \frac{1}{2R} \frac{dI^2}{du}$$

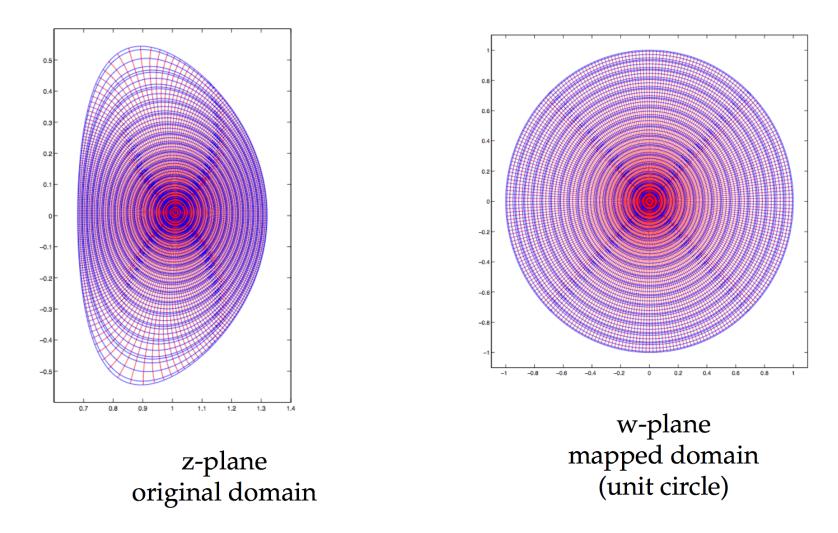
Poisson's equation – given p(u), I(u), and boundary condition on u, can solve iteratively for u(x,y).

Let's look at an example of clever way to do this numerically.

Conformal map onto unit circle



Conformal map onto unit circle



Patakis et al., JCP 2013

Parallel current

$$R^2 \nabla \cdot \left(R^{-2} \nabla \psi_p \right) = -I \frac{dI}{d\psi_p} - 4\pi R^2 \frac{dp}{d\psi_p}$$

Calculation of J_{\parallel} and p required to close the equilibrium problem

Similar analysis that gave Grad-Shafranov gives parallel current:

$$J_{\parallel} = -\frac{c}{4\pi} B \frac{dI}{d\psi_p} - \frac{cI}{B} \frac{dp}{d\psi_p} = \sum_s e_s \int d^3 v \ v_{\parallel} F_s$$

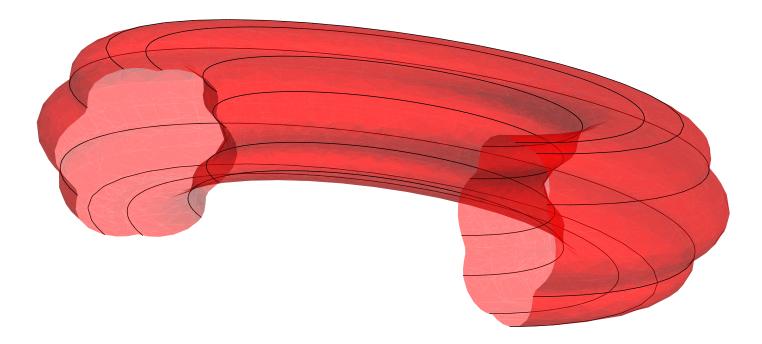
Energy moment of kinetic equation yields slow evolution of equilibrium pressure profile:

$$\frac{3}{2}\frac{\partial p_s}{\partial t} + \nabla \cdot \mathbf{Q}_s = \mathcal{S}_p$$

Calculation of F_s and Q_s require kinetic treatment

Stability: flute perturbations

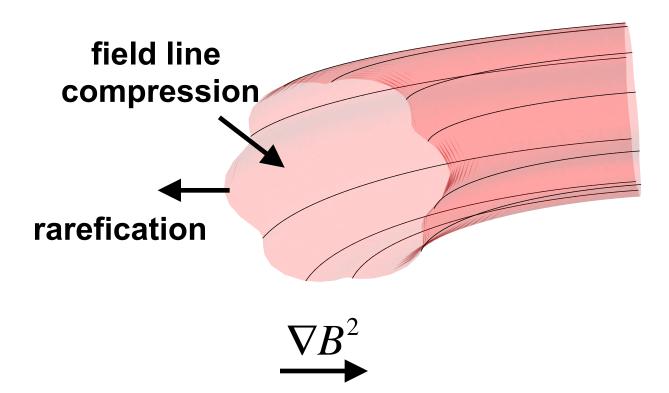
- Field-line 'tension' opposes bending of magnetic field lines
- Most dangerous instabilities: $k_{\parallel} << k_{\perp}$



• NB: only possible to have perfect flute on 'rational' flux surfaces

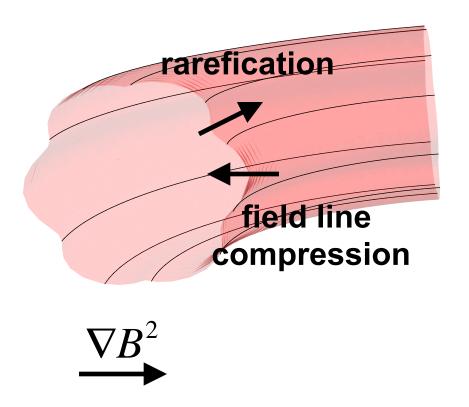
Interchange modes

- Flute perturbations unstable when field line curvature is towards plasma ('bad' curvature)
- Interchange plasma and magnetic flux



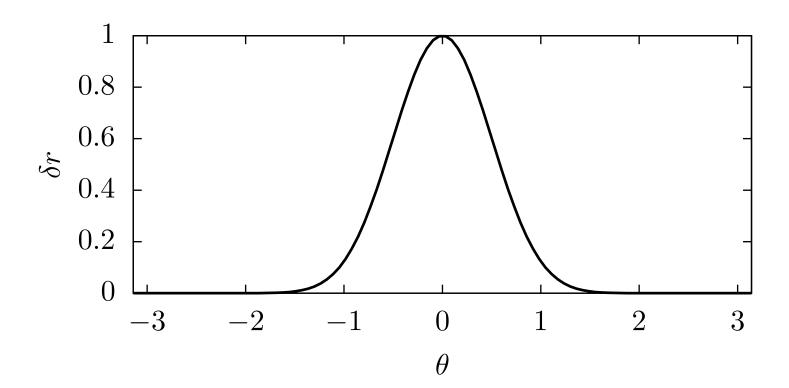
Interchange modes

 Flute perturbations stable when field line curvature is away from plasma ('good' curvature)



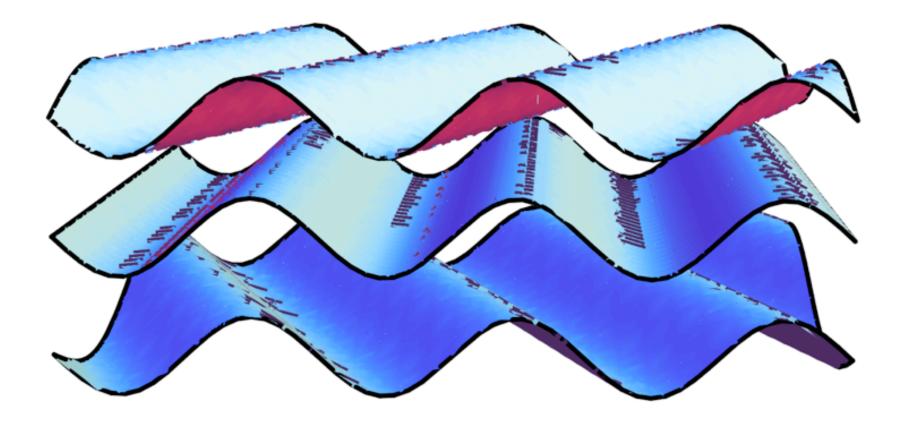
Curvature and ballooning

- Tokamak has good and bad curvature regions: instabilities 'balloon' in bad curvature region
- Requires field-line bending, which is stabilizing



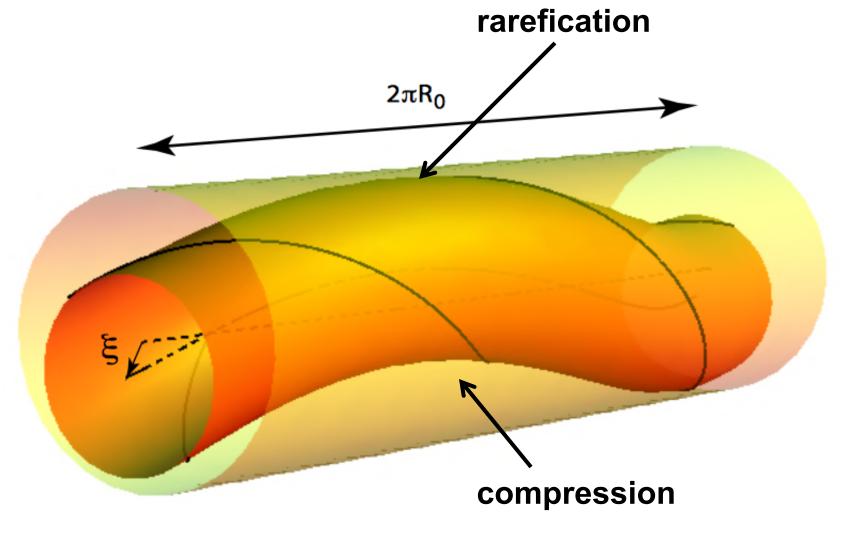
Magnetic shear stabilization

 Field-aligned perturbations at given radius not field-aligned at neighboring radius → stabilizing



Kinks

• Kink comes from helical perturbation and is (usually) current-driven



MHD linear stability

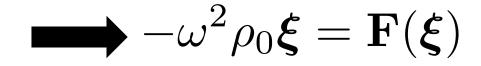
$$\rho_0 \frac{\partial \mathbf{U}_1}{\partial t} = \frac{\mathbf{J} \times \mathbf{B}}{c} - \nabla p \qquad \mathbf{U}_1 = \dot{\boldsymbol{\xi}}$$
$$-\omega^2 \rho_0 \boldsymbol{\xi} = \mathbf{F}(\boldsymbol{\xi}) = \frac{\mathbf{J}_1 \times \mathbf{B}_0}{c} + \frac{\mathbf{J}_0 \times \mathbf{B}_1}{c} - \nabla p_1$$
$$K(\boldsymbol{\xi}^*, \boldsymbol{\xi}) = \frac{1}{2} \int d^3 r \ \rho_0 \dot{\boldsymbol{\xi}}^* \cdot \dot{\boldsymbol{\xi}}$$
$$\delta W(\boldsymbol{\xi}^*, \boldsymbol{\xi}) = -\frac{1}{2} \int d^3 r \ \boldsymbol{\xi}^* \cdot \mathbf{F}(\boldsymbol{\xi})$$

Variational principle formulation

$$\delta W(\boldsymbol{\xi}^*, \boldsymbol{\xi}) = -\frac{1}{2} \int d^3 r \, \boldsymbol{\xi}^* \cdot \mathbf{F}(\boldsymbol{\xi})$$
$$K(\boldsymbol{\xi}^*, \boldsymbol{\xi}) = \frac{1}{2} \int d^3 r \, \rho_0 \dot{\boldsymbol{\xi}}^* \cdot \dot{\boldsymbol{\xi}}$$

$$\Omega^2(\boldsymbol{\xi}^*, \boldsymbol{\xi}) = \frac{\delta W(\boldsymbol{\xi}^*, \boldsymbol{\xi})}{K(\boldsymbol{\xi}^*, \boldsymbol{\xi})} \qquad \delta \Omega^2 = 0$$

$$\frac{\delta W(\delta \boldsymbol{\xi}^*, \boldsymbol{\xi}) + \delta W(\boldsymbol{\xi}^*, \delta \boldsymbol{\xi})}{K(\delta \boldsymbol{\xi}^*, \boldsymbol{\xi}) + K(\boldsymbol{\xi}^*, \delta \boldsymbol{\xi})} = \frac{\delta W(\boldsymbol{\xi}^*, \boldsymbol{\xi})}{K(\boldsymbol{\xi}^*, \boldsymbol{\xi})} \equiv \omega^2$$



MHD Energy Principle

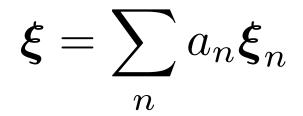
$$\delta W(\boldsymbol{\xi}^*, \boldsymbol{\xi}) = -\frac{1}{2} \int d^3 r \, \boldsymbol{\xi}^* \cdot \mathbf{F}(\boldsymbol{\xi})$$
$$-\omega^2 \rho_0 \boldsymbol{\xi} = \mathbf{F}(\boldsymbol{\xi}) \qquad \boldsymbol{\xi} = \sum_n a_n \boldsymbol{\xi}_n \exp(-i\omega_n t)$$

$$\delta W < 0 \Rightarrow \omega_m^2 < 0$$
 instability

 $\delta W \geq 0 \;\; {\rm for \; all} \;\; {\pmb \xi} \Rightarrow \omega_n^2 \geq 0 \;\; {\rm stability}$

MHD Energy Principle solution

$$\delta W(\boldsymbol{\xi}^*, \boldsymbol{\xi}) = -\frac{1}{2} \int d^3 r \, \boldsymbol{\xi}^* \cdot \mathbf{F}(\boldsymbol{\xi})$$



Numerical minimization of a_n determines stability

Mission accomplished?

- Even tokamaks not exactly axisymmetric: islands and stochasticity
- Very hard to obtain MHD equilibria for stellarators; needed for optimization
- What about corrections to ideal MHD?
- Occasional large MHD instabilities (ELMs, disruptions)
- Even with 'good' magnetic surfaces and MHD-quiescent plasma, still have transport (subject of Friday lecture)