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How do MCF and astro plasmas differ?



#MCF: The physics of magnetic 
confinement in 180 minutes



An overview of the overview

•  Disclaimer 
•  Single particle confinement 
•  Magnetic topology 
•  Plasma equilibrium 
•  Macroscopic (MHD) stability 
•  Turbulence and transport 
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Solution 1: Magnetic mirror

Van Allen 
radiation 

belts 
(NASA) 



Solution 1: Magnetic mirror
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Solution 1: Magnetic mirror
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Solution 2: confined field line trajectory

•  ‘Hairy ball theorem’ à confined trajectories 
of vector field possible only for torii 



Solution 2: confined field line trajectory

•  Once we confine ourselves to torus, there 
are three possibilities: closed lines (1D), 
surfaces (2D), or toroidal annuli (3D)  

•  Simplest idea is circles: 

B =
µ0I
2πR



B ⇢ = v?/⌦ / 1/B∇B

+ 



∇B

ρ < ρρ > ρ

B

+ 

⇢ = v?/⌦ / 1/B

vd =
cFs ⇥B

esB2

=
v2?
2

 
b̂

⌦s
⇥ rB

B

!



∇B

ρ < ρ
ρ > ρ

B

- 

⇢ = v?/⌦ / 1/B

vd =
cFs ⇥B

esB2

=
v2?
2

 
b̂

⌦s
⇥ rB

B

!



B

- 

+ 
E

E×B



The solution for solution 2? Add a twist

θ
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Magnetic drifts close, so no net drift
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only works if particles samples entire 
toroidal surface (passing particles)  



Complication: trapped particles

current 

Bζ ∝1/ R⇒ B = B(θ )



Magnetic coordinates

ψp
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Tamm’s Theorem: no average radial drift in 
axisymmetric torus

If confining field axisymmetric, canonical angular 
momentum conserved: 

ψ* =ψp −
mcRvζ
Ze

= const

pζ = Rmvζ +
ZeRAζ
c

= const

ψp = −RAζ ~ R
2Bp

ψp = const × (1+O[ρ / R])



Trapped particles in axisymmetric torus
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Trapped orbits close on themselves 
while precessing toroidally 



No average radial drift in quasisymmetric 
torus

Other (helical) symmetries also eliminate average 
radial drift.  Consider 

ψ* =ψp −
I(ψp )v||
Ω

Small for I ~ B/R 
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No average radial drift in quasisymmetric 
torus
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No average radial drift in quasisymmetric 
torus
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Magnetic field topology

•  Choose coordinates  

•  Trajectory of magnetic field line given by  

 
•  Choose zeta as time-like coordinate: 
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Relation to Hamiltonian systems

•  Identify  

 
•  1.5 degree Hamiltonian system, allows: 

•  1D trajectories (closed lines) 
•  2D trajectories (ergodically map toroidal 

surfaces) 
•  3D trajectories (volume-filling) 
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With symmetry direction

•  Identify  

 
•  1 degree Hamiltonian system, allows: 

•  1D trajectories (closed lines) 
•  2D trajectories (ergodically map toroidal 

surfaces) 
•  3D trajectories (volume-filling) 
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Field line examples

Hudson et al, PRL 2002 



Tokamaks and stellarators

•  Confined drift orbits 
•  Existence of flux 

surfaces 
•  Simpler design/

construction 

•  Confining poloidal field 
generated externally 

•  More flexibility in 
shaping 



Magnetized plasma equilibrium
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Magnetized plasma equilibrium
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Momentum 

conservation 
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Magnetized plasma equilibrium
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I.e., parallel equilibration time short compared to confinement time 
(parallel streaming for collisionless or sound wave propagation for 
collisional) 
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Quasineutrality and return currents

Quasineutrality: 

Another consequence of quasineutrality is  r · J = 0

Charge conservation:  
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Alternative physical interpretation
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Axisymmetric equilibrium

Radial component of Ampere’s Law: 
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Axisymmetric equilibrium

Radial component of Ampere’s Law: 
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Axisymmetric equilibrium

Radial component of Ampere’s Law: 
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Grad-Shafranov equation

R2r ·
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Use cylindrical (R,Z) coordinates and define                    :  ψp ≡ u R
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Poisson’s equation – given p(u), I(u), and boundary condition on 
u, can solve iteratively for u(x,y).  
 
Let’s look at an example of clever way to do this numerically. 



Conformal map onto unit circle
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Conformal map onto unit circle

Patakis et al., JCP 2013 



Parallel current
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Stability: flute perturbations

•  Field-line ‘tension’ opposes bending of 
magnetic field lines 

•  Most dangerous instabilities: k|| << k  

•  NB: only possible to have perfect flute on 
‘rational’ flux surfaces  

⊥



Interchange modes

•  Flute perturbations unstable when field line 
curvature is towards plasma (‘bad’ curvature) 

•  Interchange plasma and magnetic flux 

field line 
compression 

rarefication 

∇B2



Interchange modes

•  Flute perturbations stable when field line 
curvature is away from plasma (‘good’ 
curvature) 

field line 
compression 

rarefication 

∇B2



Curvature and ballooning

•  Tokamak has good and bad curvature 
regions: instabilities ‘balloon’ in bad 
curvature region 

•  Requires field-line bending, which is 
stabilizing 
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Magnetic shear stabilization

•  Field-aligned perturbations at given radius not 
field-aligned at neighboring radius à stabilizing 



Kinks

•  Kink comes from helical perturbation and is 
(usually) current-driven 

compression 

rarefication 



MHD linear stability
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Variational principle formulation
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MHD Energy Principle
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MHD Energy Principle solution
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Mission accomplished?

•  Even tokamaks not exactly axisymmetric: 
islands and stochasticity 

•  Very hard to obtain MHD equilibria for 
stellarators; needed for optimization 

•  What about corrections to ideal MHD? 
•  Occasional large MHD instabilities (ELMs, 

disruptions) 
•  Even with ‘good’ magnetic surfaces and 

MHD-quiescent plasma, still have transport 
(subject of Friday lecture) 


