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TRANSPORT PROCESSES IN A PLASMA

S. I. Braginskii

§1, Transport Equations

The state of an ionized gas (plasma) can be specified by the distri-
burion functions f 4(t, 1, ¥) that characterize each particle component. These
functions describe the dengity of particles of species a at time t at the point
I, Vv in phase space; the quantity f alt: I, ¥) drdy then represents the number
of particles in the six-dimensional volume element drdy. In the simplest
case the plasma consists of electrons (2 = ¢) and a single fon species (2 = i);
in more complicated cases the plasma may contain several ion species in
addition to neutral particles (a = n) such as atoms, molecules, excited
atoms, and so on, The behavior of the ionized gas is described by a system
of kinetic equations (Boltzmann equations) which carry the distribution func-
tions forward in time (cf, for example [1, 2, 3, 39]):

of a & [F

6_;+_6x—ﬁ(vﬁfa)+_6¥( n.:f fa) = Cg a5
Here, F, is the force exerted at poim r on a particle of speciesa and velocity
v; m, is the particle mass. For particles that camry a charge e and are
located in an electric field E and a magnetic field B

F,= €E + =2 [VB]. (1.2)

The kinetic equation does not take account of thermal fluctuations.
The function f4(t, £, v) that appears in Eq. (1.1} represents a smoothed den-
sity averaged over a volume contzining a large number of particles.

The force F, on the left side of the kinetic equation is also 2
nsmoothed™ macroscopic force and represents an average over a volume
containing many particles and over times long compared with the appro-
priate time of flight; the same is true of the fields E and B, The force Fy
does not take account of rapidly fluctuating microfields and microforces
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that arise when particles come very close to each other, These effects
(which we will simply call collisions) are taken into account by the col-
iision term Cj on the right side of the equation, The problem of separat-
ing the self-consistent field from the microfields is an extremely compli-
cated one and has been weated by many authors, for example, Kadomtsey
[371.

Particles of species a can collide with ezch other and with other par-
ticle species. Thus, one must actually write

Ca = ; Cab (fm .fb)a (1-3)

where C,p, gives the change per unit time in the distribution function for
Particles of species a due to collisions with particles of species b. The
C,p terms can describe either elastic or inelastic collisions,* The so-
called Boitzmann collision term, which describes elastic collisions, is
given in the Appendix, In the case of elastic collisions between charged
particles we shall use the collision term in the relatively simple form
first given by Landau [11]. The collision term for inelastic collisions is
exiremely complicated and cannot always be written in explicit form.
Inelastic collisions will be neglected in this review.

Certain properties of the collision term can be deduced even when
its explicit form is not known. If processes that convert particles of cne
species into another, (ionization, dissociation, etc.) are neglected the
collision terms satisfy the conditions

[ Copdv = 04 (1.4)
§mvCopdv = 0; (1.5)
[ m“T”z CoadV = 0. (1.6)

“For examnple, excited atoms are treated as a different "species” from the
unexcited atoms and are assigned a different subscript, We also note that
Eq. (1.1) does not make explicit reference to the rotational degrees of
freedom, which can be important, for example, in dealing with molecules.
In order to take these rotational effects into account it would be necessary
to introduce a distribution function that would depend on the total rotational
monment of the particle M (in addition to 7 and v), Formally it can be as-
sumed that M and the internal degrees of freedom are taken into account
by the subseript 2; acmally, however, taking account of rotation is ex-
tremely complicated and will not done here. We shall simply assume that
appropriate averages have been taken over the rotational variable,
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When multiplied by dr the integral in (1.4) represents the change in the
total number of particles of species a in a volume element dr due to col-
lisions with particles of species b; in elastic collisions, however, no such
change occurs and the integral vanishes, The integrals in (1.5) and (1.6)
denote the change in momentumn and energy, respectively,for particles of
species a resulting from collisions between like particles; since momen-
mum and energy are copserved in such collisions these integrals must also
vanish, Similarly, the following relations hold for elastic collisions be-
tween different particle species, a and b, in which the total momentum
and energy are conserved:

jmvCopdv 4 [ myvCydv = 0; (1.57
[ {mu®2) Cppdv + | (myv¥2) Cppdv = 0, (1.6M

It is a general result of statistical mechanics that the particles of
any gas in thermal equilibrium are characterized by a Maxwellian velo-
city distribution %

n
0 n — 57 (V=V}
= (@nT/m)?2 ’ ‘ (.7

The subscript a has been omitted; n is the density, i. e., the number
of particles of a given species per unit volume; T is the temperature of
the gas;: V is the velocity of the gas as a whole. The temperature will
always be expressed in energy units so that the Boltzmann constant will
not appear in the formulas, When the Maxwellian distribution is used the
left side of the kinetic equation vanishes, Thus, regardless of the actual
form of the ccllision term, when a Maxwellian distribution is used the col-
lision term must vanish, Furthermore, if the distribution function changes
only by virtue of collisions, it can be shown that no matter what the inirial
conditions are the distribution function must approach 2 Maxwellian in the
course of time; this is a statement of the well-known H-theorem of
Boltzmann, a proof of which can be found in [1, 2, 3], The approach of the
distribution function to a2 Maxwellian by means of collisions is called re-
laxation, Relaxation generally occurs in a time of the order of the mean
time between collisions,

The description of a plasma by means of distriburion functions is a
rather detailed one and may not always be necessary, It is frequently suf-
ficient to describe a plasma more simply in terms of certain average guan-
tities, for example, the number of particles of a givenspecies per unit volume
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ne(f, 1) = ffa (¢, V) dv, (1.8)

the mean velocity of these particles
V(1) = nl—aj Vi, T, V) AV = <V >, (1.9)

and the mean energy or temperature, In thermal equilibrium, i.e., when
the distribution function is 2 Maxwellian, the mean kinetic energy per par-
ticle m<v®> /2 can be related simply to the temperature; furthermore, in
the coordinate system in which V = 0 the simple relation m <v*> /2= (3/2)T
holds. If the gas is not in thermal equilibrium, it is possible to define a
temperature’ by introducing the quantity m <v*> /3 in the coordinate sys-
tem in which V = 0, The temperature defined in this way is'a function of

t and r and other local macrescopic characteristies of the gas

My

1
Tolt,) = 7= [ S V= Vol falt, v, v)av =
(1.10)

=5 (v — Vo>,

In general, the macroscopic parameters 1, Va, 2nd T, in a nonequilibrium
state are different for different particle species, In some cases, these para-
meters, which have simple physical meanings, are suppiemented by other
more complicated parameters. '

The equations that describe the behavior of the macroscopic para-
meters, which are called the transport equations, can be obtained from
the kinetic equation, Equation (1,1) is multiplied by 1, m,V, and m,+*/2,
respectively,and integrated over velocity, Carrying out this procedure and
using Eq. (1.4) we find

i—? + div (nV) =0, (1.11)

i)
% {maVy) + '5% (mn <lv,ug>>) —en (E(1 + —i—[VB]u)ﬁ § mu,Cdv,

(1.12)
% (%”u<vz>\) - div (mQ—ﬂ<vzv>) —enE.-V = "%ECdv.
(1,13)
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The subscript 2 will be omitted for reasons of simplicity hereinafter,
The angle brackets denote averages over the velocity distribution function,

The order of integration over velocity and differentiation over time
and coordinates are interchanged in the first two terms in Eq, (1.1} the
third term is integrated by parts and it is assumed that the disuibution
function vanishes rapidly as v —e, Equation (1.11) expresses the conser-
vation of particles and is called the particle transport equation or the equ-
tion of continuity. If parricles are produced or annihilated Eq. (1.4) no
longer applies and the zero on the right side of Eq. (1.11) must be replaced
by an appropriate intensity for the particle source.

It will be found convenient to transform Egs, (1.12) and (1.13) as
follows. The velocity is divided into two components — a mean velociry
V and a random velocity ¢' = v —V; it is evident that <v'> = 0, The se-
cond term in Eq. (1.12) is written

Lyt = <V, + o} (Vg T vg> =
=V Vs + <v,u;>, because LU > = <Ué> =0.

Expressing 9n/dt by means of the equation of continuity it is now
possible to write Eq. (1,12) in the form

dV a3 a 1
mn 2o — _—a;f; ___510;3 4 en (Eu +— IVB]E)+ Ry, (1.14)
where
d d a a
w=a TV = V) (1-15)

is the so-called substzntive derivative, and

p = nm<_v'*>/3 = nT, {1.16)
Ny = nm <U;Ué — {v'43) 6u3>, (1.17)
R = {mv'Cdv. (1.18)

The quantity p is the scalar pressure for particles of a given species, The
complete pressure tensor for a given species is
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Pog = [mog0s f (¢, 7, v} dv = nm <vaUp>> = pdag + Tap.
(1.19)
If the velocity distribution function (for the random velocity) is isowropic,
then <v 2y = <V}',z> <v'2> (1/3)<v'2> <v v Y> <vxvz> = <vyv'>-0
so that Pg = pdop. ‘I‘he tensor T aﬂ_represents the part of P,p that arises

as a result of the deviation of the distribution frorn sphe.ncal symmetry. The
quantlty T g Will be called thestress tensor, Like Pyp this tensor is sym-
metric Tl = THe

The quantity R represents the mean change in the momenturn of the
particles of a given species due to collisions with all other particles,

Equation {1,14) is called the momentum transport equation or simply
the equation of motion. It represents a generalization of the corresponding
equation in gas dynamics.

Carrying our similar transformations
2 i ,

<—U§—UB> T V2V +V,<u, UB> + 5 <v 2->VB -+

1

VAR UNTI AN R T,
+\—2—'U20ﬁ/=(-~§-vz+ mn)vﬁ+ uﬁuﬁ+\T.U2UB>u

we can reduce Eq. (1.13) 1o the form .
d fnrm 3 ¢ R 0 5
w7 (TF v+ 5aT) + W{(TV +5 1T ) Vg +

+ (t5-Vo) + gg} =enEV+ RV + Q. (1.20)

Here we have introduced the notation

v> , (1.21)

"’;'2 C dv. (1.22)

q= f%u'%f(t, r, vidv = nm< U;

The vector q is the flux density of heat carried by particles of a given
species and represents the transport of the energy associated with the ran-
dom motion in the coordinate system in which the particle gas as a whole
is at rest at a given point in space,

——— ———— —_—
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{ The quantity Q is the heat generated in a gas of particles of a given
species a5 a consequence of collisions with particles of other species, |

Equation (1.20} is called the energy transport equation, The first
term in Eq, (1.20) represents the change in the total energy of particles
of a given species: this consists of the kinetic energy nmv:/2 and the in-
ternal energy (3/2)nT (per unit volume), The term in the curly brackers
represents the total energy flux and consists of the macroscopic transport
of the total energy with velocity V, the microscopic energy flux, i.e., the

‘hear flux q, and the work done by the total pressure forces

VaPop 0 (PVp+ mapVa)

6xﬁ 5xB

The term on the right side takes account of the work done by any other
forces and the heat generation,

In some cases it is convenient to ellmmate. the kmenc e.nergy {rom
Eq. (1.20) by means of the equation of continnity and the equauon of mo-
tion. We then obtain an equation for the transport of internal energy, or
the hear-balance equation:

S 2T 4 div (%nTV) AT divV +

. av . 1.23
+ﬂus';3-,;-:+d1vq=Q- (1.23)
The equation of continnity (1,11) can now be used to obtain
3 énT 3 3 4T
oy af +dl ( 5 fITV) =-2—-n"a'r
Llntroducing the quantiry
s = I (T%2/n) = In {p¥2/n57),
and again using (1,11} we can also write Eq. (1.23) in the form
ds dns . av
TnE=T{ —1—d1v(nsV)}--—-d1vq—rsu5WZ—|—Q.

(1.23%
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To within an unimportant constant the quantity s represents the enmepy
per particle, J

Let Ry}, be the change of momentum and Q) the heat generated
in a gas of particles of species a as a consequence of collisions with parti-
cles of species b. Then R, = ¥ Ry, and Q, = 3 Q,,. Usingthe factthat
b b

particles, momentum, and energy are conserved in eoliision (1,4)-(1.6)
we find

Rha == Rab,

Qab + Qba = Rczi; Vo— Rbavb= - Rab (va - vb)'- (1.24)

If Egs. (1.11), (1.14), and (1.23) are to be actually used to find the
parameters n, V, and T it is first pecessary to establish the relation be-
LWeen T g, G R, and @ and the parameters n, V, and T, This relation
can be stated phenomenclogically or by kinetic methods, If the second
approach is used an approximate solution for the kinetic equations must
be obtained in order to express the distribution funcrion at a given point
in terms of n, V, and T; this relation is then used in Bgs, (1.17), (1.18),
(1.21), and (1.22) to obtain an expression for T g b R, and Q at the
same point. In principle this approximate local solution of the kinetic
equation is valid in the case of practical importance in which certain re-
quirernents pertinent to the macroscopic analysis of a plasma are satisfied,
Essentially these requirements state that all quantities must vary slowly in
space (small gradients) and time. The possibility of using a local solution
derives from the existence of the relaxation process, which causes any ar-
birrary distribution to become a Maxwellian as a consequence of collisions.
The Maxwellian distribution represents the solution of the kinetic equation
for the case in which the gradients and time derivatives vanish identically.
If these quantities are nonvanishing, but small, the distribution function
will still be close ro a Maxwellian and the difference (proportional to the
small gradient) will also be small. Thus, if one is interested in changes
occurring in time intervals much greater than the collision time and if all
quantities vary slowly over distances traversed by the particles between col-
lisions, the solution of the kinetic equation will approximate a Maxwellian;
specifically, the solution will be of the form

_ e ~V (¢, O]
falt,r,v) = 2 = —fele 0 Torgamy [V 1
(2RT ofmg)/? e
(1.25)
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where ]fil] <« fg. The first-order term f} can be treated as a small cor-
rection or perturbation on the zero-order distribution function Jwa. This
correction will be proportional to effects that disturb the Maxwellian dis-
tribution, i. e., gradients, electric fields, etc. The Maxwellian funcrion. and
its derivatives are determined uniquely by the parameters n, V, and T and
by the derivarives of these parameters; hence, these same quantities can
be used to express the correction f* and, in the final analysis, Toa, 4, R,
and Q, These latter quantities are then proportional to the effects that
produce the deviations from equilibrinm. The corresponding coefficients
of propertionality (for example, the coefficient of friction between parti-
cles of different species, the thermal conductivity, viscosity etc.) are called
the transport coefficients, and determination of these coefficients is the
basic goal of kinetic theory,

The program we have mapped cut can only be carried to a successful
conclusion in a fully ionized gas with one ion species,

Such a system will be called a simple plasma and will be the primary
subject of discussion in the present review.

The transport coefficients for a simple plasma are given in§§2 and 4.
These coefficients are given qualitative physical interpretations and eval-
nated in order-of-magnitude terms in §3,and computed mimerically from
the kinetic equation in §4. The use of the wansport equations to describe
a plasma in 2 swong magaetic field frequently leads to paradoxes which
have been the source of various errors and ambiguities in the literature.
Some of these paradoxes are considered in §5. The application of the trans-
port equations for particles of different species in analyses which assume a
plasma model based on a single complex gas is described in §6 (fully ion-
ized plasma) and 7 (partially ionized plasma). This magnerohydredynamic
medel of a plasma is frequently used in practice and can, in some cases, be
justified by means of the kinetic equations and the wansport equations; in
some cases the model is used purely in the interests of simplicity, The in-
dividual sections of this review are more or less independent of each other so

that §§ 4 and 5 can be omitted without loss of understanding of the remain-
ing text,

§ 2. Transport Equations for 2 Simple Plasma
(Summary of Results)

For purposes of reference, in this section we list the transport equa-
tions for a fully ionized plasma consisting of electzons and a single fon
species with charge Ze, The transport coefficients of a fully ionized plasma
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Réve been computed by many authors. A method for obtaining the trans-
port equations from the kinetic equations is given in detail in the mono-
graph by Chapman and Cowling [1]. This same work contains expressions
for the heat flux and the stress tensor for a single~component ionized gas
in a magnetic field; the electrical conductivity in a magnetic field is
alsoderived, The transport coefficients for a fully ionized gas have also
been compured in [12-22] and in other places. Although these coefficients
have been derived by various methods and in varions forms, in all cases
they apply only when the local distribution is very close to 2 Maxwellian,
The results listed here are derived in §4 following the method used in [17].

With the exception of the electrical conductiviry, at the.present time
no transport coefficient for a sirnple plasma has yet been measured exper-
imentally.

The transport equations for a simple plasma comprise the equations
of continuity, motion, and heat balance for the electrons and for the ions:

an

+ div (n,V,) =0, (2.1e)
6”‘ S div (V) =0, (2.11)
ERY 8 ds I
mn, S = — —;‘% —en, ( Ey+—-1V,Bl;) + Rq,
(2.2€)
- a i
i, G = — P "iﬁﬂ + Zen, { Eq+ -1 [VBl,) — R,
(2.21)
8 4 TE av,
_2' 2 + pedlvv = dIV q,— eaﬁ 6xu + Qe, (2.33)
%n- 2l + 2 divV, = —divq; — Tp %‘;‘“ + Q. (231

where

e = nETE’ P = niTh

de a d
E: 8F (V V)’ f "!'_ (VIV)' (2-4)

In the expressions for the transport coefficients used below we shall
make use of the fact that the plasma is neutral, writing n = ng = Znj. We
also exploit the faet that the ratio me/mi is small,
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The electron and ion collision times (in seconds) can be written
in the form:"

o= 3V m, Tg/z _ 35.10¢ 72/2 05
= — == , 2
¢ 4V on)esZin (/10) " Zn (2.5¢)

e AVmTE _ so0aw (o )1/25’?’2 (2.50)
i 4 Vigm AedZdn; TOAE0) \ 2my Z3n? )

where m,, is the mass of the proton and A is the Coulomb logarithm {6] (for
T < 50eV, A = 23.4—1.15 logn + 3,45 logT,; for T, > 50€V, A =25,3
—1,15 logn + 2,3 log T ).

The cyclotron frequencies (sec"‘) for the electrons and ions are
eB
Cﬂg=;§c—"—~ 1.76-1075, (2.6¢€)

o =28 _ 0.96.100

mic m‘/m

(2.61)

In a magnetic field the tansport coefficients depend on the guanriry
wr. In rthis section we shall only give the limiting expressions for large
values of were and witi, These can also be used to obtain expressions for
the case B = 0 by assuming that the transport coefficients in the direction
of the magnetic field are equal to the transport coefficients in the absence
of the field. Expressions for arbitrary values of wr are given in §4.

The symbols || and L on the vectors mean that we are to take the
component parallel or perpendicular to the magnetic field respectively;
for example my =h(gh), uw, =[h [wl]], whereh = B/B is a unit vector in
the direction of the magnetic field.

The transfer of momenitum from ifons to electrons by collisions
R =Ry + Ry is made up of two parts: the force of friction R, due to the
existence of a relative velocity u = Vg ~ V4, and a thermal force R,

*In all the practical formulas here and below the temperature is expressed
in electron volts, the magnetic field in gauss, and all other quantities in
cgs units,
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TABLE 1
Formula number

z

(2, 8) (2. 9} and (2, 10) | (2. 1) | (2. 12) (2. 13)
1 0,51 0.71 3/2 5/2 3.16 4.66
2 0.44 0.9 3/2 5/2 4.9 4.0
3 0.40 1.0 3/2 5/2 6.1 3.7
4 0.38 1.1 3/2 5/2 6.9 3.6
o'} 0.29 1.5 3/2 5/2 12.5 3.2

which arises by virtue of a gradient in the electron temperature, The elec-
tron heat flux is made up of two analogous parts; g = qg + q7. The rela-

tive velocity of the electrons and ions is related sitnply to the current den-
sity; specifically, j = —enu.

At large values of wore the relations derived in §4 give the fol-
lowing expressions for the momentum transfer via collisions and for the
electron heat flux (Z = 1):

The friction force:

i\
Rur:_ enf(051U|]+U_L)—Bf2( ‘I: —}—;—L), (2,6}
L
where the electrical conductivities are
)
o) = “’—;:TE = T, 2.7
oy = 1.960, = 1.960,T¥2, (2.8)
where
6. = 0.9-1018 o=l gy-¥2
17 A0 Z
The thermal force:
Ry = —0.71n,V | T, — — __(hVT,] (2.9
T = - e ” e 2 (l)e'fe el- .

p— n
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The electron heat flux:
qg = 0.7In,T 0, + 52T fhu), (2.10)
g =—nV, T,—uV T, —>Llemyr) (201
where the thermal conduectivities are;
% == 3.16 ”ﬁ:"’ , (2.12)
w, = 4.66 Ll (2.13)

m,w,7,

If Z # 1 the coefficients in these expressions are modified in accord-
ance with Table 1,

When w;r; » 1'the ion heat flux is

q£:~-—xl V T —% V T, + 2 ZPB LIVT], (2.14)

. n,T,T,
%) =39 “m =, (2.18)

nT,

K_J_ == 2 . (2-16)

CH

The heat acquired by the ions in collisions with electrons is
3

Qi=Qa =740 (T,—T)). (217

m['r.‘

The heat generated in the electrons as a consequence of collisions with
ions is

Qo= —Ru—Qs = ’“ 4 Lt Re— e e (7, 7)),
K (2.18)
The stress tensor in the absence of a magnetic field is
Top = ~MNoWop, (2.19
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where the rate-of-strain tensor

Ve

1% 2 ;
Wop = _5% + 6.\': -5 BypdivV. (2.20)

In a strong magnetic field (wr » 1) the components of the tensor
Top Dave the following form in the coordinate system with z axis parallel
to the magnetic field:

n,, = —1 o Wass

1 . 1
Ty = -—Tg a5 (W.\x + Wyy) - Ty o (Wxx - Wyy) - ﬂsny,

1 1
Ty = —"To g~ (W + Wyy) — M (Wyy_ Wat+ T]“W;*-‘f’

1
ﬂxy = I[’yx = Tthy + Tls 5 (Wxx - Wyy)l

Ty == Tgy = -y Wy — Thwyza
Tz = Ty = ""n2Wyz + 714sz-

(2.21)

The expressions in (2.21) apply for both ions and electrons but the
tensors Wp and the viscosity coefficients are obviously different for the
two species.

The ion viscosity coeificients are

1]"0 = O.QGnL.TL.'I.‘I., (2.22)
0= LT S (2.28)
! 10 i’ 2 ’ )
; 1 7, { "
L} —_ "n = 21[ - (2.24)
na 9 0): * 4 3
The electron viscosity coefficients are (Z = 1)
g = 0.73n,T 7, (2.25)
I3 neTe & ¢
ne =051 4=, M= 4v¢, (2.26)
me -3
' 1 nT
1’]3 - — —2—-——%&: T]i ) 27];. (2.27)
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The heat generated as a result of viscosity is
. Ve )
Qs =~ Tap 3z, = 5 TapWap

or, neglecting terms of order (wr)'z,

L Vg 3 o Mg (Ve | Vg dl/z)2
Quis =~ o gy =77 Wz = (G2

(2.28)

An expression for w5 in 2n arbitrary coordinate system is given
in 84,

§ 3. Kinetics of a Simple Plasma

(Qualitative Description)

Particle Motion and Collisions. The transport coeffi-
cients in §2 can be derived through the use of some simple ideas based
on the motion of individual particles and the propexties of Coutomb
collisions.

In the absence of a magretic field a free particle moves in a straight
line with constant velocity, Collisions distort the particle wajectory and
cﬁange the magnitude of the velocity. The resulring motion can be repre-
sented roughly as taking place along a broken line consisting of randomly
directed segments with lengths of order I = vr where v ~ (2T Jm)¥ is the
cheracteristic thermal velocity and r is the characteristic time interval
between collisions which change the direction of motion.

In 2 magnetic field the charged particle moves without collisions
along a helix with radius of orderr = mve/eB that winds around the mag-
netic line of force. Collisions disturb this regular motion; one way of
looking at the situation is to say that after 2 time interval ~r the particle
starts to describe a new helix that is not an extension of the earlier one.
Two limiting cases must be distingnished, In a weak magnetic field r = 1
or, wr < 1 (w = eB/me s the cyclowon frequency). In a strong fieldr =1,
wr % 1. In a weak field the portions of the helix traversed by the particle
between collisions are not very different from segments of seraight lines.
T a strong field the particle can describe many tuzns between collisions.
When wr > 1 the magnetic field has a strong effect on transport properties
in the transverse direction; on the other hand, particles can still move
freely along the field, traveling a distance ~1 between collisions as if
B'= 0. Thus, the magnetic field does not affect the longitudinal flow;




220 S, 1. BRAGINSKII

the transport coefficients are the same for longitudinal flows and for flows
in an arbitrary direction with B = 0,

It should be noted that Coulomb collisions are not really true col-
lisions (in the sense of instantaneous collisions); because of the long range
of the Coulomb force the stochastic interaction berween charged particles
goes on continuously and causes a continuous randomization of particle
velocities, However, this feature only affects the actual form of the col-
lisior term and is not important as far as our qualitative description is
concerned. A qualirative description requires only that we know the char-
acteristic time intervals between collisions; these rimes may be conven-
leptly raken to be the time required for the total integrated change in the
direction of the velocity to add up to an angle of order unity.

A quantitative analysis of Coulomb collisions requires the use of an
appropriate expression for the collision term (ef. §4). Speaking roughly,
we may say that the effective scattering cross secrion for Coulomp col-
lisions is about one order of magnitude greater than (e e,/ &) where e,
and e, are the charges of the colliding particles, & is the distance of closest
approach. Thus, the mean free path for Coulomb collisions is proportional
to the square of the energy of the particles or the square of the temperature,

As in §2, we shall make use of two characteristic times: Te, the
e¢lectron-ion scatrering time and i, the ion-ion scattering time. The first
of these depends only on the electron temperature because the electrons
have much higher velocities and the relative velocity is determined by
the electrons in electron-ion collisions, The second characteristic time
depends on the ion temperature, All of the other charactezistic times can
be expressed conveniently in terms of Te and rg,

A characteristic feature of 4 fully ionized plasma is the very small
ratio of the masses of the plasma components, the electrons and jons, Be-
cause this ratio is so small, the electron gas and the ion gas reach equili-
bria separately in a time much shorter than that requized for the two gases
to come to equilibriurn with each other, Say that the electron equilibra-
tion time is ~1., and that the ion equilibration time is ~T3j while the
electron-ion equilibrazion time is "'Tgi' If the electron and ion tempera-
tures are of the same order we find

Tee ' Ty 2 Ty = 11 (my/m,)"s 1 (indm,).

On the other hand, the mean free path is determined by the particle en-
ergies and is thus of the same order for the electrons and ions even

— provrar—— e
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though the ion velocity is (me/my*/* times the electron velocity

so that 74; ~ (m;/mg) Tee- The relative velocity in electron-ion col-
lisions is of the same order as for electron-electron collisions so that both
processes have approximately the same probability, LLarge fractional en-
ergy exchanges occur between like particles in a single collision}‘hence
Tee ~ Te» Tii ~ Tj» On the other hand, only a small fraction of Yhe en-
ergy istransferred (the order of the mass ratio} in collisions of a light par-
ticle with a heavy particle so thar

i

:Esl -~ (mi/ m’c) Te ™~ (m£/ me) L

If the ion temperature is smaller than the electron temperature, as
is frequently the case, the ion path is smalier and Tii is reduced, However,
both of the other characteristic times remain unchanged so that 1 e <75
and r4j < rg; as before. If the ion temperature is greater than the elee-
tron temperature the quantity ri; increases, bur the condirion T €8
is stili satisfied so long as T;/T, « (mi/me)w.

Thus, a Iocal equilibrinm (Maxwelliag distribution) is established
within each of the components in a simple Plasma before it is established
between the components, It is precisely this circumstance that makes it
possible to obtain transport equations when the electron and ion tempera-
tures are different. The transfer of momentum from the ions to the elec-
trons occurs in about the same time "Tgi as the wansfer of energy; hence
ion-eleciron momentum transfer is small compared with ion-ion momen-
tum transfer. For this reason collisions of ions with electrons generally
have very little effect on the form of the ion distribution funetion. On
the other hand, the transfer of momentum from the electrons to the ions
occurs in a time of the same order as the electron-electron momentum
transfer time 1, ~ 1 gg,s0 that collisions of electrons with ions have an
important effect on the form of the electron distribution functiomn.

The Fricrion Force Ry,. In collisions of electrons with ions
which have zero mean velocity (V; = 0) the electron velocities remain es-
sentially unchanged in magnitude but do undergo random changes in direc-
tion, Thus, the electrons lose their ordered velocity with respect to the
lonsu = Vg —V;in a time ~T, and consequently lose momentum s
per electron (which is given to the ions). This means that a frictional
force (mene /7o) u is exerted on the electrons; this force is equal and op-
posite to the force exerted on the ions. We note that the quantity T, de-
fined by Eq. (2.5€) is chosen in such a way that the frictional force R’ that
appears in the interaction of an electron Maxwellian distribution shifted
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with respect to the lon function by an amount u will have the simple form
R’ = —(mghe/Te)0 (without numerical coefficients), Actually, if any force,
say an electric field, produces an electron velocity u dizected along B

(or if B = 0) the electron distribution function is not a Maxwellian
simply shifted as 2 whole by an amount u. This results from the fact that
the Coulomb cross section diminishes with increasing electron energy

(T =~ vs); hence,a Coulomb force shifts the faster electrons more (witj;_ges-
pect to the ions) than the slow electrons, 1The distribution function is then
distorted in such a way that the mean velS'city u,i. e,, transport of electzic
current, depends more on the fast electrons 50 that the friction coefficient
is smaller than for a true shifted Maxwellian. |This effect would vanish if
clectron-electron collisions, which tend to establish a Maxwellian distri-
bution, were to occur muchmore frequently than the electron-jon collisions,
which distort the distribution. Since Tge ~ Tes however, an "effect of order
umity® is obtained, that is to say, the distortion of the Maxwellian is of

the same order as the shift. For example when Z = 1 the friction coeffi-
cient is reduced by 2 factor 0,51, The friction coefficient is reduced srill
more for higher values of Z, where electron~ion collisions are relatively
more important than electron-electron collisions.

In the motion of electrons withrespect to ionsacross a strong magnetic
field (u = u, ) the correction to the shifted Maxwellian is of order (tue're)"l;
thus, when were 1 this correction can be neglected so that the transverse
frictional force is simply Ry = —(mefe/Te)t . I a sirong magnetic field
the coefficient of friction between electrofis ard ions is then smaller for 2
longitudinal eurrent than for a transverse curent, that is to say, the longi-
rudinal elecrric conductivity @ , is greater than the transverse conductivity

g
0,. WhenZ =1 we find oy = 20,.

Thermal Force Rp. Letus assume that the electrons and ions
are at rest on the average (Ve =Vj =0} then, the number of electrons
moving from left to right and from right to left per unit time will be ex-
actly the same through any cross section, say X = X, The order of magni-
tude of these two compensating fluxes is DeVe. As a result of electron-ion
collisions these fluxes experience frictional forces R, and R_ of order
MgleVe/Tes in 2 completely homogeneous situation these frictional forces
balance exactly and there is no resultamt force, Collisions of electrons
with ions can, however, produce a resultant force if the velocity distribution
of the electrons coming from the left is different from the distribution char-
acterizing elecmons coming from the right, in which case the forces R, and

*The presence of runaway electrons increases theratio o /o .
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R_ do not cancel, For example, if electrons coming from the right have
higher average energies than those coming from the left the force acting
on the fast "right" electrons will be less than the force acting on the slower
"left” elecirons (since r ~ v%); as a result a force directed to the left is
produced.

Let us assume that there is a temperature gradient along the x axis
(Fig, 1) and no magnetic field (or that there is a magnetic field along AT).
At the point x = x, collisions will be experienced by electrons that have
come from the right and from the left and that have traversed distances of
the order of the mean free path I ~ vr; thus, electrons coming from the
right come from regions in whichthe temperature is approximately 18Tg/8x
greater than in the regions from which the electrons from the left criginate.
Tlie unbalanced part of the forces Rt and R__ will be of order

2
[ T, meneve  Mels T [2¥
Rr~m g = 7T, "o T leox

and will be directed to the left, that is to say, in the opposite direction to
the temperature gradient [minus sign in Eq, (2.9)]. As in the case of the
longitudinal friction force Ry (and for the same reason) the size of this ef-
fect increases with increasing Z (cf. Table 1), It should be emphasized
that the thermal force arises specifically as a consequence of collisions;
hence its magnitude and sign depend on the actual velocity dependence
of the collision frequency (in the present case r ~ v%) even though the
thermal force const ndTe/0x does nor contain T explicitly.

Let us now investigate the case in which there is a stwong magnetic
field along the z axis while the temperature gradient is still along the
x axis (Fig, 2). Tn a strong magpetic field (were # 1) the elecrons gyrate
in circles of radius 1e ~ vo/we; at the point x = X, there will be electrons
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that come from the right and from the left and that have traversed dis-
tances of order rg. These electrons "carry”™ a temperature difference of
order r 8T ./0x and produce, as is evident from Fig, 2, an unbalance in
the friction forces for fluxes directed along the y axis, On the other hand,
the fluxes along the x axis at the point x = x; are due to electrons that
come from regions where x = x),s0 that the frictional forces are balanced
in this case. As a result of collisions with ions there then arises a thermal
force directed perpendicularly to both B and AT, i.e,, zlong the y axis;
the order of magnitude of this quantity is

R T aT, Mgl Mg aT.
T Te 0x T ;T Ox
&

It is easy to verify that the sign of the thermal force (minus) is precisely
the same as in Eq. (2.9).

We may note that the effect of a magnetic field on the thermal
force is directly analogous to the well-known phenomenon in metals, where
it iz known as the Nernst effect [19],

Eleciron Heat Flux qﬁ. The existence of thermal forces is
intimarely related to the presence of terms proportional to the relative ve-
locity u in the expression for the electron heat flux. Starting from the ge-
neral principles of the thermodynamics of irreversible processes (the so-
called principle of symmetry of the kinetic coefficients, or the Onsager
principle) it can be shown that a knowledge of the terms in the fiictional
force which are proportional to VT, can be used to find the terms in the
heat fiux that are proportional to u. This is actually done in detail in §4.
For the present purposes, however, the qualitative significance of these
terms can be stated as follows. As we have shown above, because 1 ~ v
the current along the magnretic field (or the current with no magnetic
field) is carried predominantly by the faster elecrons, Thus, in the coordi-

S
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nate system in which Ve = 0, more fast electrons mrove in the direction of
u and more slow electrons move in the direction —u, Although the electron
fluxes are balanced in this system, the energy fluxes are not and heat flows
in the u direction, It is clear from the considerations used in the analysis
of the friction force that this effect is of "order unity” so that the corres-
ponding heat flow will be of order ~neTeu. Like the longitudinal thermal
force, this heat flow is due to collisions although it does not contain T ex-
plicitly.

Heat also flows when a current flows across a strong magnetic field
u = u,, but for a different reason, The friction force exerted on the elec-
trons by the ions accelerates the electrons over one half cycle of rotation
of the electrons, and retards them over the other (Fig, 3), Hence an area
in the plane defined by u and B is intersected by accelerated electrons
and by retarded electrons, The difference in the energies of these two
electron groups is of order (mellf_"'_ﬂfe- As a result, when u = uy, B = By,
a heat flux of the following magnitude arises

2
u
u
q o e xrnuemmeu‘f e ~ ngle o,
L4 T, ¢ Ty g °© T, ¥

Gas Kinetic Approximations (Kinetic Theory). Before

analyzing the remaining effects we wish to review some simple approxima-
tions that should be familiar from the elementary kinetic theory of gases; these
approximations are used to determine the order of magnitude of the diffu-
sion coefficient, the thermal conductivity, and the viscosity of gases. There
is a rather general analogy between these processes, in which matter, energy,
and momentum are transported.
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Let us first consider diffusion. Diffusion occurs in 2 specified medium
which we will assume to be fixed and not affected by the particles that dif-
fuse through it,

Assume that the particle density isn{x) (Fig, 4) and that each particle
is displaced through a distance Ax, with equal probability for motion to
the right or to the left, in the time » between two successive collisions,
In unit rime, the plane x = x, is traversed in the positive direction (from
the left) by half of the particles which experience collisions in the layer
between X, — Ax and xp; the otker half of the particles move 1o the left
as a result of collisions. Assuming that n(x) does not change greatly over
a distance Ax so that

n{x) =n (x)+ g—z ‘x=xu (x—x,),

we find that the unidirectional flux from the left is

Xg
.1 1 1 dn Ax7 Ax
t.i_——f-f ?n(x)dx—?[n(xo)—aT]T.

xX,—Ax
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The diffusion flux is the difference between the flux moving to the left
and the flux moving to the righr i = i, —i_ and is given by
(Ax)*

j=— 887 On gy On D= (3.1)

This relation can still be used to estimate the diffusion coefficient if Ax
and r are not constant but proper values must be used for Ax and r.°

The heat and momentum fluxes can be estimated in similar fashion,

Suppose that there is no particle flux. The unidirectional heat flux,
for example from the left to the right, will be of order q, ~ (Ax/r)nT.
Because of the presence of a temperature gradienr 2 relative fraction of
order (Ax/T){dT /0x) of the unidirectional fluxes is not balanced and there
arises a heat flux q equal to

o,

ox * e

2
g=—u LACUA (gx) ~nD. (3.2)
Now assume that the velocity Vy varies with x; in precisely the same way

there will be a flux Tyx of y momentum along the x axis because of the

¥We note that different particles can have different Ax and r; if Ax and

T depend on velocity, Eq, (3,1) describes particles with a given velocity
and the total flux is obrained by summing (or integrating) the particle
fluxes for all velocity classes:

. 0 [[(an? B R CEI AN ’

=— = dv = — 3.1

: ax” 7 ]pfm" x|\ "7 /"}' (819
where the angle brackets denote averages over the particles at point xg.
For example if Ax = vyr and + = const,

PPNy B AT G -/ AU - ]
TR x T " 2m dx  2m ox

However, if r depends on v :he flux will contain a term proportional to

Vp in addition to the term proportional to VT. This effect is called ther-
mal diffusion, In moving through the medium the particles experience a
friction force of order mi/r. It is evident from Eq, (3.1) rhat diffusion of
particles can be regarded as motion with friction under the effect of a force
Vp. The thermal diffusion can be regarded as motion with friction under the
effect of a corresponding thermal force,
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lack of cancellation between the two uridirectional mementum fluxes,
each of which is of order (Ax/r)nmaV.,:

¥
av mn (4x)%
fa= —nl. g~ D, (3.3)

Equations (3.2) 2nd (3,3) give the connection between the thermal
conductivity «, the viscosity 5, and the diffusion coefficient,

If a particle moves freely between collisions we note that Ax ~] ~ vy
and Eq, (3,1) gives the usuzl expression D ~ Iv found in texbooks on the
kinetic theory of gases. However Eq. (3.1) is more general than D~ 1v
since the approximation D ~ (Ax)z/r applies in those cages in which the
displacement of the particle between collisions is not equal to the mean
free path. The same considerations apply to Eqs, (3.2) and (3,3); thus,
these expressions can be used to estimate the transport ceefficients in the
presence of a magnetic field,

Thermal Conductivity. The thermal conductivities appear-
ing in the expressions for the electron and ion heat fluxes parallel and per-
pendicular to a magnetic field can be easily estimated using the kinetic-
theory relation in (3.2). Here we need only take account of the fact that
in morion across 2 strong magnetic field (wr > 1) 2 particle is displaced by -
a distance of the order of the Larmor radius(between collisions) rather than
the usual mean free path (Ax); ~r ~ v/w so that n, ~ w?/r ~ T /me’r;
on the other hand the particle moves freely along the field (Ax) y o le~vr
so that x| ~ ni%/r ~ nTr/m. Thus, % /%y ~ (wr)’. These estimates
apply for both ions and electrons so that the subscripts i and e canbe omitted
and we need only use rhe velocities, temperatures, etc,, appropriate to the
species at hand. We note that if T, ~ T; the electron thermal conductivity
in direction of the field is greater than the ion conductivity uﬁ Iy~
(mi/rne)w; on the other hand, the ion thermal conductivity is greater in
the transverse direction: x§/x} ~ (me/mp¥.

The relations in (2,11) and (2.14) also contain the "transverse®™ heat
fluxes that are perpendicular to both B and VT, These fluxes arise because
an area lying in the plane of B and VT (Fig. 5) will, on the.average, be
traversed by more fast particles from one side than from the other; if the
unidirecticnal particle fluxes ~nv are halanced,the unidirectional energy
fluxes, of order aTv, will have an unbalanced part of order (r/T)9T/0x.

As a result there is produced a heat flux

T cnT 6T
To™ " 5 ™o an
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These fluxes are of opposite sign for the ions and electrons, The transverse
fluxes carry heat along isotherms and do not cool the plasma or increase
its entropy,

Viscosity. The viscosity of a plasma in a magnetic field is com-
plicated because it is a tensor quantity, Expressions for the stress tensor
whken wr > 1 are given in §2; expressions for arbitrary wr are givenin §4,
These expressions show that the viscous stress is not a simple function of
the velocity derivatives 3V /dxg either with or without 2 magnetic field;
rather, it depends on combinations of these derivatives in a way given by
the so-called rate-of-strain tensor

Wa Vg

2 .
a—xﬁ' E‘—Téaﬂdlvv.

Wﬂ.ﬁ =

It is easily shown that this tensor vaniskes if the plasma rotates as a rigid
body V¥ = [Qx] or if it undergoes a uniform isotropic compression, V = constr;
that is to say, this tensor vanishes if the volume elements of the plasma are
not deformed, The tensors Wyg and 7, are symmetric and have zero
trace: W, =0,

In the absence of a magnetic field the relation between g and

" Wgg is the simple one, o = ~MWop- The magnitude of the viscosity

coefficient can be estimared from the usual kinetic-theory formula (3.9)
by substituting Ax ~ { ~ vr; this procedure yields g, ~ nT'r.

The presence of a magnetic field leads to significant differences
between momentum transfer along the magnetic field and across the field;
moreover, the direction of the transported momentum itself becomes im-
portant, In rhis case the relation berween T g 20d Weg is much more com-
plicated and contains five independent viscosity coefficients, Since a sym-
metric tensor with zero trace has five independent components the most
general linear homogeneous dependence requires precisely five independem

coefficients of proportionality,

We now consider several simple cases involving plasma viscosity in
a strong magnetic field wr » 1, In all of these cases it is assumed that
the magnetic field is along the z axis,

First assume that the velocity is along the z axis and exhibits a deri-
vative in this same direction; the momentum flux that arises is of the same
order as in the absence of the field Tyy ~—mdV,/0z and the viscons stress
is Fy =(8/82z)ne( 0 V;/dz) since the longitudinal momentum is freely trans-
ported along the magnetic field,
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Now suppose that the velocity V5 varies in a direction perpendicular
to the field direction, say along the x axis, In this case mornentmum is irans-
ported across the magnetic field and in estimating the viscosity coefficient
from Eq. (3.8} we must substitute Ax ~ 1; this relation gives the following
momentumn flux and viscous stress:

aV. d av
T~ gy P g
where ATt
¥
1 h o= =
s Nﬁ""‘m""’“a L™ 2w

An analogous reduction of the viscosity by a factor of (wr)® obtains in the
case in which the wansverse velocity Vy varies along the x axis. In this case

av, a  av,
T~ Mgy Fe g

The transport of wansverse momentum is inhibited by the magnetic field
even when this momentum is transported in the field direction. Forexample,
if v, varies in the z direction, i e,, if 8V, /82 # 0, the rate~of-strain ten-
sor W o8 turns out to be the same as for 8V, /dx # G so that b will also be
the same: Tyz ~ —1,0Vy/02X It might be said that as a consequence of its
gyration the particle loses its "memory™ of wansverse ordered velocity in

a time ~w"?, during which it can only be displaced by a distance of the
order of the Larmor radius, )

As is evident from Eq, (2,21), the stress tensor also contains terms
that are only reduced by a factor wr (rather than (u-r)z} compared with
the case B =0, When 8¥,/9x = 0, for exalee, there still are viscous
fluxes and stresses given by "_{ oty EAN

nT 8V, Mo 0Vy
i w™ o Bx  wr ox’

¢ aT av,
Fe~ 2o 5

When 0V, /8z = 0, there Is a flux and stress

AT Vs | o s

T~ aVy d nT %
y2 w dz T Oz

v 8z Tw oz

, F

These stresses are perpendicular to the velocity and do not resulr in dissi-
pation of energy. The terms in the momentum flux that are independent of
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r are analogous to the transverse terms in the heat flux ~(nT/mw) [boT];
we shall not interpret these terms in derail, but refer the reader to a paper
by Kaufmann[22] which contains a lucid discussion of this point.

iFinally, we consider compression of a plasma in a direction perpendic-
ular o a strong magnetic field, which leads to a correction in the scalar
pressure because of a completely different mechanism, For example, as-
sume that V = V,, changes in the x direction so that divV = 8V /0x =
—n/n # 0; the magnetic lines of force are also compressed and the mag-
netic field increases: B~ n. In the growing field the transverse energy of
the particles is increased and the energy is distributed over all three
degrees of freedom as a consequence of collisions. However, equipartition
of the energy does not cceur in zero time; as a result the transverse pres-
sure is found ro be greater than the longitudinal pressure by a fractional
amount of order q-é/B =—rn/n, giving rise to a stress.

17 Ve Vs
ﬂT’Jr:.ac="51:_r,'y""’—'p—"'""""‘"’'qo'_'"' Ty~ Mo 37 -
n dx dx

Thus, for motion characterized by divV = 0 the viscosity coefficient in a
strong magnetic field is of the same order as with no field, The establish-
ment of equilibrium is an irreversible process which, as is well known,
always implies the dissipation of energy in the form of heat, In the present
case the heat generated is

av av G B2
Qvis =_“aBaT:=—“xx'3}£~T|o(Tgf') "‘"rlo(_g') .

Plasma heating based on this process is sometimes called gyrorelaxational
heating..

In contrast wirh the case of thermal conduetivity, where the elec-
tron conductivity is greater along the field (for w;rj > 1), when Te~T;
the ion viscosity is always much larger than the elecon viscosity:

i e i £
T]i ( m; e ¢ L m; Mg Mo ( m; 3 Mo
0 e 0’ AT me @z ' mgi'l:? g 6)31:

For this reason the viscosity of a plasma is determined essentially by

the ions,

We may also note that the existence of thermal fluxes can also lead
to the transfer of momentum and the production of viscous stresses even
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when V = 0, These stresses are alwzays small but, in a strong magnetic field,
can in principle be of the same order as the terms in Eq. (2.21) that contain
the viscosity coefficient reduced by the factor (wr)?. These stress terms can
be estimated roughly by adding to the tensor Wyg a similar tensor composed
of the derivatives of the vector ¢/nT. A more rigorous quantitative caleula-
tion of these terms is given in [16, 22a],

Heat Generation, We assume first that the ion mass is infinite
and that the ions are at rest on the average: Vj = 0. In this case collisions
of electrons with ions occur without the exchange of energy. The eleciron
velocities are randomized in the collisions so that the energy associated
with the ordered velocity u = V_—V; is converted into heat, The ion en-
ergy is not changed, In this case the heat generated in the electron gas is
equal to the work resulring from the frictional force exerted on the electrons
by the ions ~Ru, We now assume that the ratio mj/m, is large, although
finite, and thatu=0. If Te = T the ions and electrons are in thermal equi-
librivm and no heat istransferred betweenthem. However, if T e > T; heat
istransferred from the electrons 10 the ions. It is well known, that when a
Light particle collides with a heavy fixed particle the order of magnitude
of the transferred energy is given by the mass ratio m,/m,. For example,
the mean transferred fractional energy in isotropic scattering is 2m,/m,,
Thus the energy exchanged per unit time between electrons and ions Qy
is roughly

Qu~leim 3 (p 7).

Te M

The calculation of Q4 using a collision term was first carried out by Landzu
[11]. Landau showed that when 7 ¢ is chosen in the form given in Eq. (2.5e)
this relation becomes exact.

Ifu=0and Tg— T; = 0 simultanecusly, neglecting the fraction
(~ me/m;) of —Ru acquired by the ions and the ~ meuz/'re carrections, we
can simply add both of these effects so that

QEZQA: Qe=_RquA=_Ruu—RTu—QA-

The term —R4n is the Joule heat, which can be written in the more familiar
form

o .2
i_|_"_-‘-
oy gy

Q=

1 -ab .
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This term (Ru) changes sign when either the direction of current flow or
the temperature gradient are reversed and represents a reversible genera-
tion of heat, The analogous effect in metals is called the Thomson effect
[41.

In formulating the heat balance in a plasma at high temperatures
it is necessary to take account of bremsstrablung and electron synchrotron
radiation as well as the heat generated by thermonuclear reactions. Under
these conditions Qg and Q; must be modified by the addition of appropriate
terms.

Conditions of Applicability, The "fluxes"q, rgp. R 20dQ
that appear in the transport equations are defined under the assumption
that the relaxation process, which forces the distribution function te ap-
proach a Maxwellian, is not inhibired; thus, these equations apply only
when certain requirements are satisfied: essentially, the requirements are
that all average quantities in the plasma must change slowly in time and
space, The distribution function becomes a Maxwellian in a time of the
order of the coilision time; hence, if the transport equations are to be
used all plasma quantities must not change significantly in a time r, char-
acteristic of the collisions, or over distances comparable to that traversed
by the particles between collisions. The requirement that the time varia-
tions must be slow can be written

7

d I 3.4
“3}‘((7- (3.4

The requirement that the spatial variations must be slow (for the case in
which there is no magnetic field or when the field is weak, i.e,, wr 1)
can be written

L>l (3.5)

where L is the characteristic scale length over which all quantities change
significantly; ¥ ~ 1/L. These two conditions must also be satisfied when
the usual kinetic-theory (gas dynamics) equations are used,

In a strong magnetic field {wr>> 1) the first requirement still applies
but the second becomes somewhat more complicated. The motion of par-
ticles across the magnetic field is bounded by the Larmor radius r, which is
smaller than the mean free path by a factor wr, Thus, in many cases the
conditions of applicability are relaxed, becoming

Lo>r, Li>|, (3.6)
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where L) and L, are the characteristic distances in the directions perpendic-
ular and parallelto the magnetic field: v, ~ 1/Ly; V| ~1/L), However,
the requirements are relaxed in this way only if the system is highly elon-
gated along the magnetic field and has the required symmetry; typical ex-
amples are a long axisymmetric plasma cylinder of radius ~ L, with sym-
metric magnetic field, or a torus obtained by closing such a cylinder upon
itself using a very large radius of curvature R, In an inhomogeneous mag-
netie field, the particles execute 2 drift motion with velocity of order

V. ~ vr[VB/B| in addition to gyrating around the Larmor circle. This drift
represents particle displacement between collisions; if the drift trajectories
of various particles pass through regions with different temperature there
will be an additional transpost of heat and a resulting deviation of the dis-
tribution function from 2 Maxwellian, The conditionL; * 1 applies only
when this "mixing* mechanism does not operate, In a symunetric systemn

in which the curvature of the lines of force is small (for example a torus
with a large radius of curvature R ¥ L), the mixing occurs with a char-
acteristic velocity of order vr/R; hence a pamicle can be displaced over

a distance ~vrr/R ~ I1/R in one collision time and the requirementL, *» o

1/R must be satisfied in addition to L, > r. If this special kind of sym-
metry does not obtain mixing occurs with veloeities of the order of vi/L,
and the applicability requirement becomes

Li»Vir, Ly»L (3.7

In computing the transport coefficients we have used the collision
term in the Landau form, in which ecase the effect of the magnetic field
on the collision itself is neglecred, This approach is valid if the Larmor
radius is large compared with the effective dimensions of the region in
which the Coulomb interaction occurs, that is to say, if the Larmor radius
is large compared with the Debye radius ép = (T/éfrezn)w: r® dpor
B* « 8rngmec?.

The transport coefficients are changed to some extent if this condi-
tion is not satisfied; in practice the change is usually less than one order
of magnitude because the importance of collisions characterized by impact
parameters gnaller than r can at most be [In (5D/r)] =1 times that of ¢col-
lisions having large impact parameters. The effect of a very strong mag- '
netic field (r < 1p) on the transport coefficients has been considered in[18],

Let us now consider some numerical examples,

Take B =10%G, m; = m_, Then w, = 1.8-10" sec™; w; = 10° sec”?,

P

-

————

—— — - - —
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withn = 10* cm™® and Te = T;j= 80 eV, using the notation v =
(.‘21‘/1'1'1)1/z we find: e = vo/We = 1.8-10*% cmy 14 = vilwy = 1.7 10-% cmy;
§p=4.11107% cm. The Coulomb logarithm A = 1L Ly = 1y & 20 cm; re =
5.107% sec; 7= 3:107°% secy ws T = 104 wyr; = 310 Z

When n = 107 em™, T, = T; = 10 eV, we find 1o = 8+10° cm; 13 =
1.4-107% em; 6py = 2.4:10% em; A =10; 1.~ 15~ 0.25 cm; Te =
3,5+107%9 sec; ;= 2.1 1078 sec; weTe = 635 wyTy = 2.

There is one other factor that can limit the applicability of the trans-
port equations that have been used here, This is the presence of any instabi-
lity in the plasma, An unstable plasma can generate random fluctuating
fields which, in turn, can produce strong mixing with a significant enhance-
ment of the transport coefficients, This effect is analogons to turbulence in
hydrodynamics, For example, it is well known, that the flow in an ordinary
water pipe cannot be computed by means of the stationary solutions of the
Navier-Stokes equations because of turbulence effects,

At the present time the theory of plasma turbulence is only in its in-
faney. This subject will, in fact, be treated in subsequent volumes of rhe
present review series, However, it may be appropriate at this point to make
a simple estimate showing the extent to which the rransport mechanisms
can be enhanced in a magnitized plasma in a turbulent state,

Let us assume thar the plasma generates fluctuating electric fields
of amplitude ~ E' which become uncerrelated at points separated by dis-
tances greater than ', These fields cause particle drifts with characteristic
velocities V' ~ ¢E'/B which change direction randomly after the particle
has drifted a distance of order ', The effective diffusion coefficient ap-
propriate to this mechanism can be estimated from Eq. (3.1) and we find
Dyurp ~ 'V, ~ cEZ'/B,

We now make the reasonable assumption that the amplimdes of the
fluctuating fields are such that the corresponding energy is of the same
order as the thermal energy of the pasticles, i,e., €E'l" ~ T, While this
relation has obviously not been rigorously justified it can serve as a rough
guide, We then have

T
Dowrb ~ <5 (3.8)

_similar results are obtained for the other transport coefficients through
the use of Egs. (3.2) and (3.3). This estimate was first proposed by Bohm,




236 8, I. BRAGINSKII

who was one of the first investigators to note the possibility of a strong en-
hancement of the diffusion coefficient in 2 plasma as 2 result of turbulence
and the associated fluctrating fields. Bohm published the expression D =
¢Te/16eB without formal derivation [23] and this diffusion coefficient is
sometimes called the Bohm diffusion coefficient (cf. also [23a]), Compar-
ing this coefficient with the “classical™ transverse diffusion coefficient

we find

D
turb 3.9
rejy or. .9

Thus, when wr 1 twbnlence in a plasma can, in principle, cause
stiong enhancement of all perpendicular (to the magnetic field) wansport
processes.

§ 4. Kinetics of a Simple Plasma (Quantitative
Analysis) '

The local distribution functions for ions and electrons can be deter-
mined by a successive-approximation method that is deseribed, for example,
in the well-known monograph of Chapman and Cowling {1]. This approach
can be described roughly as follows, The distribution function is assumed
to be approximately a Maxwellian F° with parameters n, V, and T, that are
slowly varying functions of the coordinates andtime, and is expanded in the
form

F=P+rtp+ - (&)

The important terms in the kinetic equation are assumed to be the colli-
sion term and the magnetic term, The other terms, which contain space
and time derivatives and the electric field, are assumed o be small, The
magnetic term [vw]Vf vanishes for any spherically symmetvic velocity
function,

If small terms are neglected the solution will be the function fo,
which is obtained by also setting equal to zero the collisional term and
the magnetic term.*

In the next approximation, substituting f = f® + f! in the kinetic equa-
tion we only take account of f° in the small terms, neglecting f% in the

*This statement is not completely accurate and will be modified appro~
priately below.
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collision term C(f, f) we only consider the part that is linear in !, i.e.,
CF°, 7 + CfY, f%;terms quadratic in f! are neglected. In the small
terms the derivatives over coordinates and rime appear only as a conse-
quence of differentiation of the parameters n, V, and T; by means of the
trapsport equations, (cf, §1) the time derivatives can then be expressed
with the desired accuracy in terms of the coordinate derivatives at a given
instant of time, This procedure results in a linear integro-differential _
equation for the function fl in velocity space. Having solved this equa-
tion we then find the function f¥v), which will be a linear funerion of
both the parameters and of the factors that disturb the Maxwellian distri-
bution: VT, 0V ,/ axB,etc.

This procedure can be extended to take account of second-order
perturbation terms in order to find f% however, this step leads to exuemely
complicated calculations. By substituring Flin the expressions for the heat
flux, momentum flux, ete,, it is possible to find these fluxes so that the
chain of wansport equations can be closed, This procedure requires that
the neglected terms must be smali compared with those that have been
considered in determining the local distribution function, that is to say,
the series in (4,1) must converge sufficiently rapidly. To determine the
condition of applicability for the first approximation rigoronsly one should
really find the cormections associated with the second approximation f* to
be convinced that they are in fact small; however, we shall limit ourselves
to the qualitative considerations given in §3.

Simplification of the Cross Terms in the Collision
Integzral. Inthe further analysis it will be found convenient ro make a

substitution in the kinetic equation (1.1); we shall replace the velocity v

by the random velocity ¥, =¥ — V, (t,r). The function fa(t,r, v,) is then
deseribed by the equation

dofa €y " d,Va
-_da—t + vana"l" (m_: Ea——"zt ) Vafa_
Vay Ia

(=74 2
oy VB gy T imge VaB1 Ve = - Cop(far i), 42

where V., is the gradient in velocity space;

dﬂ g N , 1
r =77 T (Vav), Ea=E+ —[V,B]

In deriving Eq. (4.2) from (1.1} we have also taken accouur of the
fact that VyF = 0,
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!
The collisional term is taken in the Landau form [113: ] Vag Vg U;Uzs

2aheiel 8 1 f falv)  Ofp(¥) _ [o(v) fa(v) "
Cab (fm fb) = —_Ta‘?ﬁj { my ' 60.;, T g ;U\,- } U'B'de ’
(4.3}
I /
Ugy = — (uP0gy — tglty); up = v —0p.

In collisions between particles it is the relative velocity that is im-
portant ¥ = v'; hence, Eq, (4.3) retains its form in any coordinate system,
but obviously the distribution functions in Eq, (4,3} must be expressed in
the same coordinate system.

The Coulomb logarithm A in Eq. (4,3) is eqnal to the logarithm of
the rario of maximum to minimum impact parameters A = In{Pmax/Pmin)-
The lower parameter will henceforth be taken to be the impact parameter
characterizing & deflection through an angle of 7/2 se that prjp =
et/m<v?> ~ e/3T. The maximum impact parameter is defined in such
2 way that the Coulomb field of the plasma particles is screened at dis-
tances of the order of the Debye length p .. & 87;, where 6D=(Te/41rezn)’/ 2
At large velocities, in which case */hv < 1, where b is Planck’s constant
(i.e., v/c < 1/187), it is necessary to use a smaller value for the maxirmum
impact parameter; specifically, weusethe distance for which the scattering
angle is of the same order as the quanturn uncertainty, in which case Py 5 @
6Dez/hv. The effect of the magnetic field on the collisions themselves is
not considered in Eq, (4.3); this procedure is justified as the fields are
weak enough so that the radius of curvature of the particle wajectory is
large compared with the Debye length,

The solution of the ion and electron kinetic equations can be sim-~
plified by exploiting the fact that the mass ratio of these particles is small,
When this iz done the cross terms in the collision integral Cej and Cje ¢an
be simplified and the equations in (4.2) can be solved separately. This sim-
plification results from the fact that the relative velocity is essentially equal
to the electron velocity since the electron velocities are much greater than
the ion velocities, Thus, to a high degree of aceuracy the collisional cross
term Cgi(fe,f1) is independent of the detailed form of the ion distribution
function and can be determined from a2 knowledge of the mean quantities
n;, Vi, and Tj.

The tensor Uggp = (uzéaB - uaua)u's that appears in Cgj depends on
the difference berween the electon velocity v and the jon velocity v' since
u =v~—v'. Let us expand Ugg in powers of the ion velocity

UG’B = Vdﬁ - 603, U-v dl’)yavﬁ 2 + R |

where

1
Vs = Usplormo = 55 0%0ap — Ya¥s):

and integrate over v'; an approximate expression is then obtained for Cgy.
"This calculation is convenient in the coordinate system in which the mean
ion velocity is zero, As a result we find

Ce£=3]/?;‘L(2Tg)=/= ] {V e i

8 Te e B'TG op %E
Here
3Ty T
T, = y ]/——Qn-r._-—keze?m . (4.5)

The electron velocity in Eq. (4.4) is computed from the mean ion velocity
¥ (tather than Vo). The first (principal) term in Eq. (4.4) will be called
C’esbelow; it is completely independent of the ion distribution function:

C =3__V?._L(2T8)’“ O (Vapge) . (447

8 T, \ me dug \ °B dug

In the integration over V' in the second term Cy; ~ m,/m; we have
neglected the difference between the ion pressure tensor and the scalar
pressure ;T (i, e, we have neglected m; ). We compute the friction
force B exerted on the electrons by the ions when the electrons have 2
Maxwellian distribution shifted with respect to the ion distribution by an
amount* U = Vo — V;. Assuming that the displacement is small compared
with the electron thermal velocity and expanding in U we can write this
electron distribution approximately in the coordinate system in whichVy=0:

*Here, in contrast with §2 and 3, the difference of the mean velocities is
denoted by a capital letter.



240 S. I, BRAGINSKIL
g0 L Mg 0 __ He . ngu?
fo=Ffe (I T UV) ,where f, == Ty exp ( 57, )

Substituting this expression in Eq, {4.4),using Eq, (1,18),and neglecting
me/m; terms we find

3V 1 2T\ d figh
0 UL () v 3o = —
(4.8)

Here we have made use of the following property of the tensor Vg :vyVys=
Vg Vg = 0; thus, C'yg vanishes for any spherically symmetric electron dis-
tribution function. The property 8V gs/av,, = —2vg/v* andvgvg=(v2/3)é 45
has also been used (the bar denotes an average over direction),

The quantity 7 derived in Eq. (4.4), which represents the character-
istic time between electron-ion collisions, is chosen in such a way that
Eq. (4.8) {for Rn) will be of simple form,

The jon-electron collision integral Cig(fi, fo) can 2lse be simplified
by expanding the tenser U,g in powers of the ratio of ion velocity v to elec-
tron velocity v':

Vap

<]

. I s, .
Ugg = Vap— Uy ke Vaﬁ=ﬁ(n g5~ Valp)-

4

Here, however, the electron distribution funretion must be known, in order
to actuaily carry out the integration over electron velocity v'. Let us as-
sume that the electron distribution function is essentially a Maxwellian
%, i.e., assume the form fg = J‘“e + f1, where f1 is a small correction, in
which the difference in mean velocities U = Vo — Vj is small comapared
with the characteristic electron velocity, Some simple calculations yield

the approximate relation

Te 0fe
mg dug

1
g

Mghly
Cl'z =

ming Te auu( Vaf i -+ R;v.f:. (4.7

)+
Here the ion veloeity is computed from the mean ion velocity Vi. In ac-
cordance with Eq. (1.18) we have used the notation R; = fmivcie dv =—R
{R without a subscript denotes R.). The caleulation required for the deri-
vation of Eq. (4.7) can be carried out conveniently in the coordinate sys-
tem in which the mean electron velacity is zero (V, = 0); we then convert
1o a system in which the mean ion velocity vanishes (V; = 0) for whichv

it
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is replaced by v ~U and Eq, (4.6) (for B is used. In computing small-
correction collisions due to fé we need consider only the leading term
VigginT B

As is 1o be expected, Eq. (4,7) is of the same form as the Fokker-

Planck collisiopal term that describes Brownian motion of particles in a
moving medium with temperature Te.

The collisional heat exchange between electrons and ions can be
computed neglecting the small deviations from a Maxwellian in the dis-
tribution functions. Substituting Eq. (4.7) in Eq. (1.22), for 2 Maxwellian
ion function we find Q; = Qa where

Qs =242 (T, —T). (4.8)

114

Similarly, using Eq. (4.5) and taking account of mg/m; terms we obtain
Qg =—Qp if it is assumed that the electrons have a Maxwellian distribu-
tion with Ve = V. In the general case it is easiest to compute Q. using
conservation of energy and momentum (1.24) for the collisions: Qg + Qj =
—RU, whence

Q.=—RU—Qa. “@.9

In the remainder of this section we shall only use the variables v, =
v —V_(t1), i, e., the random velocities; for reasons of brevity the subscript
a will be omirted.

Correction Eguations, We now derive the equations for the
electron distribution functions. The electron kinetic equation (4.2) can
be written

Cee (fer fe)+C;i(fe: ft)_
= % v (B S v~ G 0T —
_C;E(fev fi_ff)_C:i(fE! ff)'

Here wy = (ee/mecJB is 2 vector whose magnitude is equal to the cyclo-
tron frequency of the electrons and whose direction is antiparaliel to the
magnetic field since ¢, =—e,

ive, Vafe =

(4.10)

The terms or the right side of this equation will be small if the gra-
dients are small, if the time variations are slow, and if the shift between
the mean velocities of the electrons and ions is stall,
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In Eq. (4.10) we have added and subtracted the term C'gi(fe, £}
where f is the ion distribution function shifted in such a way that the
mean J.on velocity coincides with the mean electron velocity. Hence
C'el(fe, f } represents the quantity Cley [in accordance with Eq. (4.4)]
but with the glectron velocity computed from Vg [s is the case for all

© terms in Eq, (4,10)], The term C'gi(fo, fi— 1) on the right side of the
equation is small compared with C'ei(fe, fl) if the relative macroscopic
velocity of the electrons and ions U = Vo — V; is small compared with the
thermal velocity of the electrons, a condition that has been assumed.

The zeroth approximation satisfies the equation with the right side
set equal to zero, Its solution is a Maxwellian distribution with mean ve-
locity V. and arbitrary density and temperature, We take the parameters
of this distribution to be the density and temperature of the electrons at
a given point in space.

Consider Eq. (4.10); if the enrtire cross- collisional integral Cg;
on the left is retained, the solution of the equation without the right side
{with the corresponding equation for the ions) is a Maxwellian distribution
with Tg = T; and Vi = ¥5. This is the approach used in the monograph of
Chapman and Cowling. However, this approach does not exploit the fact
that the ratio me/m; is small, The regrouping in Cej used in Eq. (4.10),
in which only C'ei(fe, ') remains as a prineipal term is necessary speci-
fically in order to eliminate the effect of small terms on the choice of the
zeroth approximation. This feature makes it possible to obtain separate
transport equations for the electrons and ions with different temperatures
(and different velocities) and to uncouple the electron and ion kinetic
equations,

Let us write the electron distribution function in the form f, =
f‘é(l + @) where & is a small correction. By substituting this expression
in Eq. (4.10) and neglecting second-order terms we can obtain an equa-
tion for the correction term. As a result of this linearization procedure
the left side becomes

jee ((_1)) + 1e£ (Cb) - fg [Vme} Va(D»

where

Ir.’ﬂ (‘D) = Cee (fgr ECD) -+ Cee (fS(D; f{e))! (4.11}
10(@) = Cu (7o, f).

2l onts B — 1 T 1.
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It is valid to substitute f° on the righe side of Eq. (4,10) and toomit m,/m;
terms; then, expanding the integral C'gi(f%, f§—1 ;) in powers of U(me/Te)Y?
it is valid to neglect all terms beyond the first term of the expansion, The
time derivatives of ng, Ve, and T on the right side can be replaced by
their zeroth approximations, With the right side set equal to zero the equa-
tion has the solutions® ® = 1, v%; hence, if the equation is to be solved the
right side must be orthogonal to this solution.

Multiplying the comection equation by 1, v, and m,v*/2 and inte-
grating over velocity we obtain an expression for the zeroth time deriva-
tives of n,, Ve, and T which are to be substituted in the right side. These
expressions are the same as those derived from the transport equations in
the zeroth approximation, i.e., neglecting viscosity, heat fiow, etc, The
first-approximation correction & is thus given by

Lo @)+ 1 (@) — £ vo,d 7.0 = Fo{ (55— — 5 ) vwin T+
3Va  (Te/me)’ Mg
| vt
+ 2£Te; (Uavﬁ - % aaﬁ) Weuﬁ}' (+.12)
where
R = [ mvl, (@) dv. {4.13)

We note that-the right side of Eg. (4.12) does not contain terms pro-
portional to Vn and g, = (ggEg/me) — dgVe/dt. This results from the fact
that the f ¥V lnng term is combined with g,V e =—f(m /T (Vg
and that the sum of these gives terms proportional to VT and R= R’ + R =

—(mene/T) U + R! as follows from the equation of motion —mengge =
VneTe +R,

We now symumerrize the last term on the right side of Eq, (4.12)
forming the symmetric tensor with zero trace W,

Vg Vg 2 R

_ — 4,14
Was 5% + e 3 OggdivV, (4.14)
which is called the rate-of -strain tensor,

*This follows immediately from the fact that the left side of Eq. (4.10)
vanishes for 2 Maxwellian distribution with arbitrary nandre.




J— — — ——re

244 §. L. BRAGINSKII

The ion kinetic equation is transformed in similar fashion with the
difference that the cross-collisional term Cie (s can be shown by simple
estimates) is small compared with the "self” term C;; 50 that the former
ie grouped with the small terms and wansferred o the right side. The
zeroth approximation, which satisfies the equation without the right side,
is the Maxwell distribution fg. The ion distribution function is written in
the form f; = fg(l + &) where the small correction is given by the equartion:

Iy (@) —five, v =

: 2 5 i 2
= ff’{(—-—";;f[ _T)"V InT, 4+ %(vuvﬂw - éaﬁ) Wmﬁ}.
(4.15)

The terms on the right associated with electron-ion collisions cancel if
C;e is written in the form cormresponding to Eq. (4.7). Thus, Eq. (2.15)
has the same form as for a single-component gas (rather than a mixture),
In this approximation the form of the ion distriburion function is deter-
mined exclusively by ion-ion eollisions. On the other hand, the form of
the electron distribution function is determined both by self-collisions
(electron-electron) and cross-collisions (electron-ion), as follows from
Egs. (4,12) and (4.13).

Equation (4.15) determines the correction @ to terms of order
Cq + €;-V + ¢;v%, which causesthe left side 10 vanish. Since the zeroth
approximation gives the correct value of the density, mean velocity, and
mean energy of the fons, these terms are determined from the require-
ment that the comection must not change the values of these parameters,i.e.,
jPodv =0, [viddv =0, [ufoddy = 0. (4.16)
The same conditions must be satisfied by the correcrion to the elec-
tron distribution function, This requirement can obvicusly be satisfied:
the left side of Eq. (4.12) vanishes as an expression of the form cp+ ¢yv2,
while the right side contains a term proportional to the unspecified mag-
nitude R' so that a solution can be sought in a form that will satisfy the
condition fvfi@dv =Q,

Solution of Eqs. (4.12) and (4 .15). Equations(4,12)
2nd (4.15) are linear; this means that the solutions can be written as 2
sum of terms, each of which corresponds to some single perturbing factor—
the temperature gradient VT, the velocity shift U, the inhomogeneity in
the velocities Wg.

——
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Considerations of tensor invariance indicate the following form of
the solution;

D (v) = Dy (03 vg + Dy (v?) ( Up¥p — {f; éaﬁ) C {4

Here, the first (vector) term corresponds to the vector perturbations VT
and U while the second (tensor) term corresponds 10 Wgp. The first and
second terms are obviously orthogonal since averaging over angle in ve-~
locity space gives Vg = 0, W = 0. The angular dependence of the
first and second terms in velocity space is expressed by spherical functions
of first and second order respectively. The heat flux q and the momentum
transfer due to collisions R* are specified exclusively by the vector @ while
the viscosity w g is determined only by the tensor & B

As an example, let us consider how to determine the correction®,v,,
for the electrons connected with VT and the appropriate parts of ¢, and
RY. The collision integrals are isotropic and do not depend on a specified
direction, Hence, in the absence of a magnetic field, the symmetry of the
problem indicates that the dependence of the vector &(v%) on VT g must be
of the form &(v%) = A(VE)VInTe,where 4 Is a scalar function, In a mag-
netic field this depeadence is of the form

O =Ay,InT,+ Ay, InT,+ A'loygInT,], 1)
where V| InT, and v, InT e AI¢ the components of the vector ¥V InT,
parallel and perpendicular to the magnetic field. Evidently it is sufficient
to consider the case of a transverse gradient since A(v? is obtained from
AYVY) by writing we = 0.

The equation that deseribes the part of the correction arising from
V-L lnTe is

Lo @)+ 1 (@) — 12 v 9,0 = o {3~ <) vy.InT, +

1 1
T RV

(4.19)
The thermal force R4 can be written in the form

Ri=nT (K'y.InT,+ K"[o,yIn Ty,

where K™ and K" are functions as yet unknown. Substituting Eqgs. (4.18) and
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(4.20) and setting the coefficients of V) InTg and [,V In T,] equal to zero,
we obtain two equations for determining A' and A%, Introducing the com-
plex quantities

A=A +i{o A", K=K +i(eh) K" (4.20)
we can reduce these to a single equation for A:

e (AV) o La (Av) = (o) 12 Av = F{ 55— 5 + K} v.
(4.21)

In order to avoid the need for numerical solution of this integral
equation, we proceed as in reference [1]. The quantity AV is expanded
in terms of orthogonal functions; in the present case it is convenient to
use the Sonine polynomials (sometimes called Laguerre polynomials),
These polynomials Lg'n) (x) have the foliowing generating function:

A—85 """ exp ( ) 2 FLO (). (4.29)
p=0

The polynomials are orthogonal over the interval 0 to = with respect to
the weighting factor x™Me™*:

o

!
J' 2L () LU (%) dx = L& jlm) 8- (4.23)
0
The fizst two polynomials are L(m) =1 L m) m+1—x.
We expand A(vY) in the form
2
A@) =+, 2 GLE? (1), x =T (4.24)

The expansion starts with the k = 1 term rather than the k = 0 term in order
to satisfy the condition fvf‘é@dv =0, Multiplying Eq. (4.21) by

4 1 me s (mev )
— 15 or, VER \5r ) avs

integrating over velocity, and using Ed. (4.23), we now find that the inte-
gral equation is replaced by an infinite system of algebraic equations for
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the expansion coefficients:

°«

Z(ak,+uk;)a,—|—z(m h) (k+ /ﬁ)la,e=61k, E=1,2,...,

= FITORY
(4.25)
where ey and «'y; are the dimensionless matrices:
Uy = 1451;1 2T f LY (%) Vgl (LE7 (%) Uﬁ) dv; x= r;;?: :
. AT My () 2y (*.20
Our = — T5r g | Lk () vl (Lf vg) dv.

Equations (1.18), (1.21), (4.23) and (4.26) can be used to write the heat
flux q 7 and the thermal force R in terms of the expansion coefficients
in (4.24):

5 oTe
G =—-32 "e(al viT.+ ailoyTl), (4.27)
5 ~ Il . "
Rrp=—— neE or(arviTe + ar [0.57.]), (4.28)
k=l

where, by analogy with Eq. (4.20), we write ap = a'y +i(w Wa",, If the
expansion of A(v®) is now limited to the first few terms in the series {(4.24)
a corresponding cutoff can be introduced in (4,25). Solving the resuiting
finite system for the first few coefficients we obtain approximate expres-
sions for the heat flux and thermal force by dividing ), into real and imag-
inary parts and using Eqs. (4.27) and (4.28),

* In completely analogous fashion we can find the contributions to the
distribution functions and the contribucions toq, and R! due to the relative
velocity U = Vg —~ V; as well as the correction to the jon distribution func-
tion due to yT;; the ion heat flux can also be found. The appropriate sys-
tem of equations analogous to (4.25) and the coefficient matrices o, and
a'yy are given in [17],

The calculation of & o 204 the viscosity tensor proceeds in analogous
fashion but the division of the perturbation into independent parts is some-
what more complicated, The tensor W g Is divided imto three independent
parts W oB = Woap + Wing + Wogng and two new tensors Wsap and Wyan
made up of components of Wy g are introduced. The correction to the
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Maxwellian distribution due to the perturbation W is written in the form

UE
aﬁvaﬁ =— yon (v?) W pagUqp, Where Ugg = U,Ug — = 8

(4.29)

The tensors Wy, 4 can be chosen so that the magnetic operator [vh] V.,
causes the term Wy oV s to vanish and [VR] VW, 48V a8 = 2Waapv o5

VRV Weqpves = —2WiasVeps [YRIVyWousVas = Weas? op

[VRIV, Wynsva8 = = WpqpVege Thus, there are three independent kinds

of motion all of which have different effects on the viscosity, The correc-
tions associated with each of these & 43 can be found independently, The
equations for By, B; and for B,, By can be combined in pairs by the introduc-
tion of appropriate complex quantities, The function B(v®) is found by the
same approximation method as A(v%), The function B(v®} can be repre-
sented conveniently in a series in the polynomials Lf/ 2)(mv?/2T) in which
an appropriate cutoff is introduced in the chain of algebraic equations for
the expansion coefficients. This system of equations is given in [17]. The
viscosity tensor is found by means of Eq, (1.17). I depends only on
the coefficient of ]_,55/ 2,

The larger the number of polynomials N used to approximate the
correction to the distribution function the more exact the transport coef-
ficients that are obtained by the approximate method we have described,
Comparison of the results obtained with different values of N shows that
the error in certain coefficients can be comparable with the coefficient
itself when N = 1; however, the accuracy increases sharply if N = 2,
Further increases in N do not increase the accuracy significantly but do
increase the complexity of the expressions greatly. The transport coeffi-
clents cbtained with two approximation polynomials [17]* are given below,

The results of calculations of the electron fluxes in which a large
number of polynomials have been used (up to N=6) for 0 < w, 7, = 6 are
given in [21]. "Exzct™ values of the transport coefficients for wore =0
have been obtained in [14] by numerical integration of the comrection
equations,

An accuracy of several percent is obtained when N = 2 and wr = 0.
The asymptotic behavior of the transport coefficients for wr — « is deter-

*We wish to note certain typographical errors in [17]: In Eq, (3.18) for 4y
the minus sign in frontof the curly brackets should be replaced by a plus
sign, In Eq. (4.14) the quanatity b™ should read —b", since —b™ is a positive
number, as follows from Eq. (4.13).
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mined by nurnerical coefficients which are given below in the form of sim-
ple rational fractions, These coefficients have been obtained exacily [18],
The largest error {10-20%) in the transport coefficients occurs in the
intermediate region we ~ 1.

Results. The transfer of momentum from the iops to the elec-
trons in collisions R = K + R' is made up of the frictional force R, = K, +
RY, and the thermal force Ry = Rip:

Ry=—ayu; —ou, + o,fhu], (4.30)
_ ul urt ul
Rr=—PByvi7.— By, T, — BN [hyT,). {4.31)

The electron heat flux q, = q + q% consists of two analogous parts:

i = b7 uy + BTu, + pL“[hu], (4.32)
a7 = — v Te— #1yiT, — x5 (hyT . (4.33)
Here
Mgt man @At + g
AR ° (4.39)
Or = Mglly x(alx-+a0)
N = T, A 3
U ' g
ﬁTjT =np, B = ngﬁ]—A'ﬁg, pa = ng_gﬁ_‘__‘-_ﬂ”), (4.35)
A
T 7 T
BT =B V=pCT,, BN =pNT (4.36)
e _ nd v, ¢ el T (V1x2 -+ 'Vu) e’ n,Tex x(y'{x'a 'i"'\’no)
) = —— el ghy
1= T Yo M= A AT T A
where (4.37)
X =T, A=x'4 61+ 0, (4.38)

The coefficients «, 8, 7. and & are given in Table 2 for various
values of Z.
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The exact values of the coefficients as obizined by direct mumerical ;
solution of the integral equation for B= 0 and Z = 1 are as follows [14]:
o = 0.5063; By = 0,7083; y, = 3.203. For Z == an exact solution of the

correction equation indicates that TABLE 2
3z 3 128
= & == 0.2045, =—, =7 = 13.58. :
o 32 5 E'o 2 Yo 3n 13 Z=1 Z=2 Z==3 Z2=4 | Z+ @
The ion heat flux is . s
ap=1—( ap/6, ) 0.5129 | 0.4408 | 0.3965 | 0.3752 | 0.2949
q, = —®y v T — #1veTs + % [byT4), (4.39) Bo = Bo/ 5 0.7110 | 0.9052 | 1.016 | 1.000 | 1521
Yo == Yo/ 65 31616 | 4.890 | 6.064 | 6.920 | 12471
%Lu = 3.906&,-7"{5,-/”1;, &
3.7703 1.0465 | 0.5814 | 0.4106 | 0.0961
i — X 2 0 0 :
% = (n,Tv/m) (2x 5—£— 2.645)/4, (440 81 1479 | 1080 | 9618 | 9.055 | 7.482
iy = (1T ey x (-2 + 465 )/A,
a; 6.415 5.523 5.226 5.077 4.63
where ag 1.857 | 05956 | 0.3515 | 0.2566 | 0.0678
a 1704 | 1.704 .
¢ = om, A= #2706 - 0677, 1 0 1,704 1,704 1,704
0 0.7796 0.3439 | 0.2400 0.1957 0.0940
The stress tensor for particles of a given species (the symbols i and e -
are omitted) is expressed in terms of the corresponding tensor Wep [of. Eq. lSi 5.101 4,450 4,233 4,124 3.798
(4.14)] by means of the five viscosity coefficients: | B, 2.681 0.9473 | 0.5905 | 0.4478 | 0.1461
. . . . . .
Top == — MoWoas — MWW iap — M2Woap + W sag + MW aops P 2 e A2 32 52
(4.41) Bo 3.053 | 1.784 1.442 1.285 | 0.877
where Wog = Wogg + Wigg + Waab-
Hore ¥ 4664 | 3.957 | '3.721 3604 | 3.25
3 1 1 ; :
Wiag = (hah;a 1 5:;13) (huhv —L Gw) W i Y 11.92 5118 | 3525 | 2.841 | 1.20
; Y, 5/2 5/2 52 5/2 5/2
Wi = 05485 5 iy} Ve, .
1B anOpv + 5 Oaptpfiy | Wiy Yo 21,67 15.37 1353 | 12.65 | 10.23

(4.42)

Wogp = (Banhighy + 85haM,) Wy
1
W sap = 5 (San2py + BpvEayn) iy W v

Woep = (Ahutpw + Bghyeo) W s

here 55 = 85~ Db i ; ic uni
where @B = Cub otBr B(xsy is an antlsymmetrlc unit tensosi.
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In the coordinate system in which the z axis is along the magnetic
field (x,y,2 —~1, 2, 3):

10 0 0—1 0
h=1(0, 0, 1), 8a3a=|0 1 o0, gavgfiy=|1 0 0],
00 0 \0 0 0
and the tensors WP ap are:
1
o (W e+ W) 0 0
Woas = 0 F(W,+W,) 0
0 0 W,
! 0 0w,
T(Wxx Wyy) ny 0
- 0w
Wiep = Vi 5 Wy—We) 0fVae 0 vz
0 0 0 W, Way O
— W,y = Wy—W,) 0 00—,
Vi =\ s W=, W, 0 f Ves= 0 0 w,
0 0 0 —W,, W, O

It is easily shown that the following orthogonality relation holds:

W oW jop = 0, When p =L g (4.43)
The ion viscosity coefficients are
T]i = O.QGﬂITfTI,

v = T (2t + 2.23)/A, (2.44)
= nT7x (x4 2.38)/A,
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where
¥ =07, A=xtd4.03x2 -+ 2.33.

The coefficients nf and TJ; are obtained from Tl; and ni' by replacing
wi by 2wy:

n = 1 (2x), 1 = 0} (2%).
The electron viscosity coefficients are (for Z = 1):

'I’]S = 0,733.’18?1,?‘55,
g = n.T.7, (2,05x% 4+ 8.50)/A, N = ng(2x), (4.45)
Mg = — 1,7 ,Tx (2 + 7.91)/A, s -~ M2 (2x),

where

X = ©,T, A=x*4 13842+ 1186.

Symmetry of the Kiretic Goefficienrs. We now wish
.o review brieily certain terminology and resuits of the thermodynamics of
frreversible processes (these are discussed in greater detail, for example, in
[9]). The various agencies giving rise to deviationg from thermal equili-
brinm X, (for example VT, wcxﬂ’ etc.) are called thermodynamic forces,
These produce corresponding fluxes I, (for example g, Tyge €LC.). For
small deviations from equilibrium the fluxes and forces are related linearly:

I,= }n]L,,mXﬂ. (4.46)

The irreversible increase of entropy in a ronequilibrinm systern is called
entropy production and is denoted by 6. According to the second law of
thermodynamics it is always true that 8 > 0. A flux I, and a foree X
are "conjugate” if the entropy production can be expressed in the form

0=227.X, (4.47)

One of the important theorems in the thermodynamics of irreversible
processes is the so-called principle of symmetry of the kinetic coefficients,
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or the Onsager principle, Assume that the fluxes and forces are chosen in
such a way that Eq. (4.47) is satisfied. The kinetic coefficients relating
these fluxes and forces then satisfy the conéition

Lmn. (B) = an ( - B): (4-4‘8)

if both forces X, and Xy are even functions of the particle velocities
(for example yT) or if both functions are odd in the particles velocities
(for example W ,g). However, if one force is odd and the other is even,
then the following relation holds:

Lo (B) = — Ly { —B). (4.48"

The entropy balance for the electrons can be obtained easily through the use
of the heat-balance equation (2.3€) and the equation of continuity (2.1e),
The entropy per electron is

3, = -% In7T,—Inn, + const. (£4.49)

The entropy balance is written in the form

-+ div( sV, - ;-:-) -+ % =8, (4,50)

OteSe
ot

where 6, is the entropy production per unit volume:

TH=—qyinT,—Ru— % oW eap- (4.51)

The left side of Eq. (4.50) contains the change of entropy in time and the
loss of entropy into other regions of space and to the ions.

It is evident from Eq. (4.51) that the fluxes dg, R, T4g, a0d Qa are
conjugate to the forces vInTe, U, 1/2 Wy, 2a0d (T — T/TeTy

Let us now examine the zelations (4.30) - (4.33) between the fluxes
and forces, Since B is an axial vector while q, R, ¥T, and u are polar vec-
tors the coefficients o, B, and y must be even functions of B. The Onsager
principle then leads to the following nontrivial relation for the "cross™ ef-
fecrs—the dependence of the thermal force and heat flux on the relative
veloeity:
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THIT =pT*, TR =pl*, THY =pL*. (52

These relations are satisfied automatically when the transport coef-
ficients are derived from the kinetic equation [cf, Eq, (4.38)]. The Onsager
principle does not yield a nontrivial relation for the viscosity or for the ion
transport coefficients.

Taking account of the symmetry of the transport coefficients and the

?rthogonality condition (4.43) we can write the entropy production in the
orm

Ke Me 5 2
Tde= - (ViT P+ o (guTr AL Ly
e [ 7L
l e
+ 5 | W + Wi + MW iee |- (4.53)

Similarly, the entropy production for the ions can be written

pup”

i i 2
=2 *1 1 .
TH =7 v;Ty +5- . TP+ 5 E W2 e (454
p=i0
The entropy balance for the entire plasma is
‘?—S-{—divIsenV LV, +2 435 L g
Bl l ete Pep Y Tg T; — Ye + i '{‘ egz’ (4-55)
where 8 = s5.n, + sinj is the plasma entropy per unit volume:

. 1 1y  3me ne {(T,—Ti?
%= 0 (=) =0 5 T wsw

§ 5. Certain Paradoxes

The direct application of the transport equations to a magnetized
plasma in which wr % 1 frequently leads to apparent contradictions with
wha'F might be expected from a eursory examination of individual parricle
moiion in a magnetic field (drift theory). Some of these paradoxes have
been analyzed in [6, 26, 27, 28] and a few particular cases are considered
in this section.
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Let us assurne that the elecwric field and the gradients of ali
quantities are perpendicular to the magnetic field, We shall also be inter-
ested in processes that are so slow that the electron and ion inertia terms
can be neglected; similarly, it is assumed that all quantities do not change
greatly in the time between collisions, From these conditions and the equa-
tions of motion we can obtain explicit expressions for the transverse velo-
cities of the ions and electrons in terms of the gradient, If the ion and
electron equations of motion are added (neglecting viscosity and inertia)
the plasma equilibriom relarion can be written in the form

1. '
This expression then yields the transverse electric current
jo=—en (V,— V), =—+[h¥ (g, + p)] (5.1)

Substituting Eq. (5.1) in the expressions for the force R, (2.6) and (2,9), and
invoking the condition —egnte = £in4 = en,we have

V, = - [Eh] — — = [0Vp,] + V,,, (5.2¢)
V, = & [Eh] 4+ =& [WVp, + Vp, (5.21)

where

2 3
VU::_EEF{ Vip.+ p) _TneVTe]=

20 Vn 1
z_g’:-if;_z[(Te—r-Ti)—n-—i—VTf—TVTe}. (5.9)
Taking account of viscosity would lead to the appearance of terms of

order B™%.

Now let us temporarily neglect the cellision term in Eq. (5.2) VD’
and compare the remaining terms with those that would be obtained from
single-particle motion.

In 2 strong magnetic field the motion of a charged particle (without
collisions) can be described as gyration around a circle whose center
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(the so-called guiding center) moves with velocity V. given by (cf, for
example [8, 38])

e 2e
Vo= (B8] S [0 2] + 20 hawy by o+
2
-+ % h(hroth) + o h, (5.4)

where b = B/B; vy and v, are the projections of the particle velocity
{averaged over the gyration) in the direction of the magnetic field and
perpendicular to the magnetic field at the location of the guiding center,
The first term in Eq. (5.4) is usually called the electric drift, the second
term the magnetic drift, and the third the centrifugal drift. If Eq. (5.4)
is averaged over a velocity distribution that is approximately Maxwellian
we find

<vc>=-§—[Eh]+%[ ,lﬁ——l—(hv)h] +

+ < h(h-roth) + V. (5.5)

" Here m<v¥>=T; m<+v? >= 2T, <v>=V,=V-h

The quantity n<Vy > is the flux density of guiding centers, and
/o <¥.>d§ is the flux of centers through a surface §,while nV and [nVds
§ s

represent the flux density and flux of the particles themselves, In general the
particle flux can differ from the guiding-center flux and certain paradexes
arise when these two quantities are confused,

Let us compare Eqs, (5,2) and (5,5),

The first term in Eq, (5.2) is easily interpreted—it is the electric
drift,

The second term in Eq. (5.2), which we shall call the Larmor term,
is associated with the fact that particles intersecting an area in opposite
directions arrive from regions characterized by different densities and rem-
peratures, as 4 result of which the unidirectional fluxes do not balance each
other, Particles arrive from a distance ~r = mvc/eB and "carry™ a flux
~nv so that the resulting difference in flux is of order (mc/eB)Vav? ~
(c/eB)Vp. At first glance the fact that Eq. (5.2) does not contain terms
corresponding to the magnetic and centrifugal drifts, i. e., terms explicitly
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exhibiting the spatial derivatives of the magnetic field, appears to be
paradoxical, Actually, however, the absence of such terms is completely
natural since the magnetic field, whether it is uniform or not, does not
disturb the Maxwellian distribution: [vw]Vv;F° = 0. Hence, if the particle
demsity and temperature are independent of coordinates the particle flux
within the plasma (5.2) vanishes although the guiding-center flux (5.5)
does not vanish if the magnetic field is inhomogeneous. In this case the
magnetic and centrifugal drifts appear as edge effects which produce sur-
face particle fluxes at the interface with the region of constant density
and temperature. This is easily shown by simple examples but can also
be shown in general form, Introducing the idenriries

(h¥)h = — [hrot h], 5.6)
[h-(hV)h] = rothwh(h-roth),}

we can write Eq. (5.5) as follows:
<V,> = [Eb] +-LrotL Ly (5.7)
~ ' - B e B [y - -

Now, comparing the guiding-center flux with the pariicle flux (neglecting
collisions) for particles of any sort we find

nV=n<Vc>—rot(% h) (5.8)

or

Env-dszj'n< VC>-dS—w(ﬁ Z’;T (h-dl). (5.8

It is evident that the difference between the particle flux and the
guiding-center flux through any area as a whole is determined by the
values of the quantities at the boundary of the area. This difference arises
for the following reason: near the edge of the area in question particles
enter and leave whose guiding centers are cutside the area. The magnitude
of the flux associated withthese particles is cnT'/eB perunitlengthof edge
along by opposite edges of the area are intersected in opposite directions,

Thus, a magnetized plasma can be regarded as consisting of “quasi-
particles” - or "circlets" that move with the drift velociry. It Is easily
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shown that the magnetic moment of a circlet isp = —(mv?, /28 h; hence,
if collisions are neglected the plasma magnetization per unit volume is

\ ma<vi>a
M= —%ma—ﬁ—h. (5.9)

The total current density obtained in this representation is the sum of the
drift (convection) current and the magnetization current:

2
= e oot M Dy, <V, > —rot 3 Lo A>ey,
(5.10)

z . .
?v’hen ma <V >, = 2T, Eq. (5.1) is obtained exactly, As is usually done
in macroscopic electrodynamics, we can introduce H = B~ 4aM in ad-
dition to B and in this case Maxwell's equations are written in the form

o . 1 JE
r = —_— ——
otH et — >

divB =0, (5.11)

In practice, however, in plasma problems it is usually more conve-
nient to write all currents in explicit form without separating the drift and
magnezization currepts, When all currents are written explicitlyB= H and
Maxwell's equarions become

ok

g
rot B = - J—{TW’

divB = 0. (5.11%
The V terms in Eq. (5.2) stem from particle collisions, specifically,
from collisions of electrons with ions. These terms might weil be called
diffusion terms, They are exactly the same for the ions and electrons and
depend only on the gradients of density and temperature but are indepen-
demt of electric field. At first glance both of these results appear to be
paradoxical for the following reason., The diffusion coefficiemt for diffu-
szion of a charged particle across a magnetic field is approximately D, ~
r*/r. For ions, r and r are larger by a facror of (rni/rne)lf2 than for elec-
trons. Hence it would appear that the ion diffusion coefficient should be
(mi/me) " times greater than the electron diffusion coefficient. Actually,
however, this is not the case. For example, assume an lon-density gradient
along the x axis and take the magnertic field along the z axis. There then
arises a Lammor flux of ions along the.y axis characterized by the velocity
Vy‘ = (cT/enB)dn/dx. In this case, however, the formula D ~ r*/r cannot be
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applied directly because the diffusion is taking place in a2 moving medium
and in the collisions the ion obtains some momentum along the y axis (on
the average). We then transform to a coordinate system in which V,, = 0.
In this system there is an electric field E'y = (Vy/c) B=(T/e)dlnn/dx in
which the ions are described by a Boltzmann distributfon and in which the
ion flux is zero since the flux produced by the electric field compensates
the diffusion flux, Thus, collisions between like particles can not produce
diffusion across the magnetic field. On the other hand, collisions between
electrons and ions do cause diffusion because the Larmor currents of elec-
trons and ions are in opposite directions, The flux along the x axig that
results can be regarded as coming from the drift produced by the effect of
a frictional force between the electrons and ions which is along the v axis.
Since Ry = —R¢ the velocity is exactly the same for both kinds of particles.

Now let us consider the role of the electric field, Assume an elec-
tric field along the x axis, This field produces a particle drifi (bothcharge
signs} along the y axjs with velocity Vy =—cE/B, In the coordinate sysiem
in which V,, = 0, however, the electric field E' = 0; hence there is no flux
along the ¥ axis, that is to say, there is no flux in the direction of the ap-
plied electric field, In this connection it is somerimes said (erroneonsty)
that the plasma conductivity across the magneric field is zero,

Now let us consider the hear transport equation. The quantity v 1./Bis
conserved for a magnetic field that changesslowly intime, i. €., the energy as-
sociated with the transverse motion, £ | =mv® /2, isproportional to the field—
this is the so~called betatron effect. The heat transport equation does not con-
taina term proportional te 8B/dt, Nevertheless, using some simple examples
we can easily show that the equation does take account of the betatron effect.

Ler us consider a uniform magnetic field zlong the z axis that in-
cteases in time. Let the plasma occupy a cylindrical volume of infinite
length along the z axis, We assume that the plasma density and tempera-
ture are constant over the volume {so there is no heat flux}; also, for reasons
of simplicity we neglect collisions of electrons with ions and the consequent
Joule heating. We can also neglect the screening of the external magnetic
field by the plasma currents. Under these conditions the induction electric
field E = Ep = —Br/2c. The electric drift leads to plasma compression at a
rate V; = —Br/2B so that divV¥ =—B/B. The heat wansport equation becomes

n-é—?—m-—aniv vl 45

il 5,12
o (5.12)

tOl sl
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This expression is a statement of the betatron effect; actually in betatron
heating it is only the energy associated with the transverse motion ds =

€ ,dB/B that increases directly, Collisions then establish an equipartition of
energy over the degrees of freedom so that &, = (2/8)e and (3/2)de/dt =
{e/B)dB/dt. The betatron effect then appears as heating by virtue of adia-
batic compression of the plasma, This reversible (in the thermodynamic
sense) heating should not be confused with the irreversible gyrorelaxational
heating mentioned in §3 which arises as a consequence of an irreversible
process: the equipartition of energy over the degrees of freedom, Whenthe
magnetic field is reduced to its original value (with the corresponding
expansion of the plasma) the adiabatic cooling associated with the expan-
sion is equal to the heating that took place in compression, in accordance
with Eq. (5.12); on the other hand, the heat generated in gyrorelaxational
heating remains in the plasma since it is proportional to (F'J/B)z.

We now consider the case in which electron-ion collisions precisely
equilibrate the electric drift: cE,p/B +Vp=0; in this case the plasma re-
mains immobile, Under these conditions heat fluxes will arise in the plas-
ma and we must consider the total increase in energy over the entire plas-
ma volume, If the ion and electron heat wansport equations are added and
integrated over the volume of the plasma cylinder (unit length along the
2 axis) we find

3
- d—a;f J(n,TE + 0,7} 2nr dr = wajWQnrdr.

Substituting E, = —Br/2e¢, Jo = (c/B)Bp/r, p = neTg + 0Ty, and integrating
on the right by parts we have (3/2)de/dt = (¢/B) dB/dt. In this case the be-
tatron effect appears as the generation of Joule hear,

There is at least one difference between the two examples we have
Just considered, In the first case the ions and electrons are heated uni-
formly by the compression, In the second case the heat is generated di-
rectly in the electron gas and is then transferred to the jons by means of
collisions, It would appear that the ions should obtain as much heat as the
electrons in betatron heating. In the absence of ion current a radial elec-
tric field arises in the plasma; the magnitude of this field is determined
by the ion equilibrium condition e;n;E, =—8p;/ 8r, This field causes an
ion drift in the azimurhal direction in opposition to the induced elecrric
field, It is easy to show that the work done by this field {negative) on the
drift precisely compensates the betatron heating of the ions, The electrons
also drift in the radial field and acquire exactly as much energy as is lost by
the ions.
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The transport of heat (like the transport of particles) can also be
interpreted in terms of the motion of guiding centers, If collisions are
neglected 2 formula analogous to Eq. (5.8) is obtained, The total flux
density of internal energy is Qporal = (6/2) 0TV +q, as follows from
Eq. (1,20), We use Eq, (5.8) taking account of the g term in the heat
flux, which is independent of collisions; this term is given by Eqgs, (2,11)
and (2.14): g, =(5/2)(cnT/eB)[hVT]. The expression for ¢, .; can
then be written

5 enl?

5 5
Ghorar™ 7 #TV + 4n = 51T <V, >—rot (5- %),
(5.13)

The remarks made above in connection with the derivation of
Eq. (5.8) also apply to the derivation of this formula,

§ 6. Hydrodynamic Description of a Plasma

The transport equations correspond to a plasma model consisting of
Interpenewrating charged gases—the ion gas (one or more species) and the
electron gas, It is frequently more convenient to use a single-fluid model
for the plasma. In this case, the two equations of motion (for the fons and
electrons) are replaced by a single equation of motion for the plasma as a
whole; this equation represents an extension of the equation of motion of
conventional hydrodynamics while the expression for the electric current
is essentially a generalization of the familiar Ohm's law, The single-finid
hydrodynamie model is found to be tnost useful for the deseription of low-
frequency phenomena because it is then valid to neglect electron inertia
and to assume that the plasma remains neutral.

We shall first treat the single-fluid gas dynamic medel for a simple
plasma; in §7 we discuss certain characteristic features of multicomponent
plasmas.

Equations of Continuity and Quasi- Neutrality, We

first introduce the mass density g and the hydrodynamic velocity V (the ve-
locity of the mass):

e = ;manm (6.1)

1
V= ?gm‘,n&va. (6.2)
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Neglecting the electron mass compared with the ion mass we can now
make the. approximation

e = m;, (6.3)
V = VL-. (6.4)

The equation of continuity for the ions #s rewritten in the form of a mass
conservation relation (it is simply called the equation of continuity):

bl .
= +div(eV) =0. (6.5)

Equation (6.5) also holds for the exact definitions (6.1) and (6.2).

The density of electrical charge p, and the density of electric cur-
rent § are (we use the notationu =V e~ Vit

0 = e, = e(Zn —n,), (6.6)
i=XenV, = e V; — en,u. (6.7
a

The equations of continuiry for the electrons and ions yield an equation
for the comservation of electric charge:

%fi - divj=0. (6.8)

We shall assume hereinafter thar the plasma is quasi-neutral. This
does not mean zero space charge in the plasma; rather it means that the
space charge is small compared with the quanrity en, 50 that the differ-
ence Zn; — g can be neglected compared with n = n,, The current den-
sity is then expressed in the form

j = —enu. (6.9

We will assume that all processes are slow (in electrodynamics these are
called quasi-stationary processes} so that 9p/8t can be neglected in

Eq. (6.8) and the displacement current can be neglecred in Maxwell's
equations, Under these conditions Eq. (6.8) and Maxwell'sequations become
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divj=0, (6.10)

)
otE=—1. 22 (8.11)
rot B="%; divB=0. (6.12)

The neutrality condition provides one relation for the quantities that de-
scribe the plasma: Znj = n,. Consequently one equation rmust be omitted
from the system of plasma equarions; specifically, this is the Poisson equa-
tion, in which the space charge appears explicitly:

div E = 4mp,. (8.13)

The quantity p e €(Zn; = ng) is neglected in the remaining equa-
tions and no requirement is imposed on divE, In this case the rotational
electric fields are determined from Eq. (6.11) while the irrotational fields
arising from the small differences in positive and negative spsce charge
(2lthough the fields themselves are not small | } are determined from
Eq. (8.10) in conjunction with the equations of motion. In other words,
the irrotational electric fields in the plasma are automatically chosen in
such a way as to avoid 100 strong a charge separation Znj = ng. In this
case Poisson's equation only serves as a means of determining p, once
the field E is known,

It will now be useful to estimate certain quantities. In order-of-
magnitude terms, we find from Eq. (6.13) that pg ~ E/21L. In a static or
slowly moving plasma or in a plasma with no magnetic field we usually
find enE ~ Vp or E ~ T/eL, whence p,/en ~ 5%/1,2 where &7 = (T/4wenyl/?
is the Debye length; the Debye length is always small compared with the
characteristic dimensions of the plasma (if this condition is not satisfied
the jonized gas cannot properly be called a plasma}), The neutrality con-
dition can obviously be violated in layers of thickness ~&p, These de-
partures from neutrality usually occur near the boundaries of the plasma
or in high-frequency oscillations. It is 2lso possible for an induction field
E ~ VB/c to arise in a plasma moving across a magnetic field, Let us as-
sume thar we are dealing with a fast process (see below) in which the ve-
locity of a plasma is determined by its inertia and by the magnetic force.
Then wpV ~ (1/¢)iB where w is the characteristic frequency of the process,
In this case the charge density is of order pe ~ E/4mL ~ (czA/cz) j/wL where
c4 = B/(21p)"/? is the so-called Alfvén velocity and the first verm in
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Eq. (6.8) is of order wp/(§/L) ~ ¢?,/c® so that Eq. (6.10) can be used if
c’a/c = B*/4npc® is small, It will be assumed that this condition is
satisfied everywhere below. For example, take n; = 10 em™, m; =
1.8+107% g, B = 10*G, in which case ey /e ~ 1074,

The neutrality condition can also be violated in a low density plas-
ma and in 2 relativistic plasma, in which V~coru~e,

Equation of Motion. Adding the ion and electron equations
of motion and neglecting the electron inertia, we obtain the plasma equa-
tion of motion

dav .
QG =—Vp+ —i' [iB] +F,. (6.14)

where V.= V; d/dt = 38/8t + (VV); p is the total pressure,

pP= p,+ p. (6.14"

In a magnetized plasma under laboratory conditions the principal forces
are the pressure gradient and the magnetic force. The term F represents
the sum of the remaining forces acting on a unit volume of plasma. These
include the following: the viscous force F, = —dr op/ 0%, Where T g =
Tigs * Teqs ™ Tiyg is the stress tensor; the gravitational force Fg-= pg.
which is important in many astrophysical problems, where g is the gravi-
tational acceleration, The electic force Fg = p,E is usually very small
compared with the others,

For greater clarity the magnetic force is frequently expressed in
the terms of the Maxwell stress tensor

1. ars
F8 = [jBly = —2

T8 = (B,By— %B%GB) _(6.15)

aXB Y a7 T4xm

This expression is easily obtained from Eq, (6 .12). The tensor Tgﬂ COrres-
ponds to the pressure B/8r across the magnetic lines and the tension along
the lines, i.e., this tensor gives the isotropic pressure B*/8r and the longi-
tudinal tension B2/47. For example, if there is a tangential field B at the
Plasma boundary and this field is shielded by currents in the surface layer
the field pressure B /8r is transferred to the plasma which shields it. The
field normal to the plasma surface cannot transfer tension to the plasma
since the magnpetic lines of force cannot be cut off (div B = 0) bur continue
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into the plasma, The tension of the magnetic lines can be transferred to

the plasma if currents flow in the plasma in such a way as to distort the lines
of force. A "straightening” force is produced under these conditions; this
force is again across the field lines, If n is the principal normal to the

line of force and R the radius of curvature,

- AR (6.15")

A magnetic pressure B /8 equal to 1 kg/n:rnz requires a field B=5- 10°%G.

The electrical force can also be represented in terms of Maxwell
stresses, If rot E = 0 we have from Eq, (6.13):*

ark
- _ B _ 1 ]
Fﬁ i QeEu - 6';; ! TEIEs It (EGEB - TEZGG&) - (6:18)

Only the normal component of the electric field can change sharply
near the plasma boundary. In this case the lines of force terminate on
charges close to the swface and the plasma is not subject to pressure that
acts to contain it, as in the case of a magneric field, but rather is subject
1o a tension (negative pressure) E2/81r. A tension of 1 kg/cm2 corresponds
to E = 1.5+ 10% V/cm,

If enE ~Vp we find |VE/8r| / {vp| ~ 62D/L2 so that the force Fg
can only be large in thinlayers, If E ~ VB/c then E/B ~ V2/c", It is then
obvious that the electrical forces in a relativistic plasma can be of the
same order as the magnetic forces.

The effect of inertia can be used to classify plasma phenomena as
fast or slow, In fast phenomena the inertia term in Eq. (6.14) is of the
same order as the other terms—these are phenomena characterized by re-
latively high frequencies [of order cg/L or ¢ 4/L where cg ~ (p/*? and

*In the general case, taking account of the displacement current and
rot E # 0 we find

P ars aTE 1 88
FB4 FE = — [[Blg+ 0y = + =L — - o1,
c dxp dxg c gt

where § = (c/4r)[EB] is the Poyaring vector and s/c? is the electromagnetic
momentum density,
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cy= (B/47p)*?]. T slow phenomena the inertia term can be neglected
as a first approximation—either the plasma is at rest or it moves so slowly
that the forces acting upon it are approximately in equilibrium at all times.
Fast phenomena include various short-lived and transient processes; for a
long-lived plasma rpagpetqhg@:_g?yggmig waves are regarded as fast pheno-
mena. Slow phenomena are those in which equilibrium is established in
characteristic times appreciably greater than L/cg. A typical example is
the compression of a plasma by a rapidly applied magnetic field—eirher
externally produced or produced by current flowing through the plasma
(fast pinch), The characteristic compression velocity in such cases is of
order c4.

To analyze slow phenomena we need retain only the principal terms
in Eq. (6.14); thus,

Vp = < (iB) (6.17)

This equation, together with Eq. (6,12), defines so-called equilibrivm mag-
netohydrodynamic configurations. It is evident from Eg, {6.17) that BVp =10
and j¥p = 0. Comsequently, the magnetic lines of force and the current flow
lines lie on surfaces of constant presswre which are called magnetic surfaces.
A plasma confined by 2 magnetic field (equilibrinm configuration) can be
regarded as a series of magnetic surfaces nested within each other.

An important dimensionless parameter that characterizes the effect-
iveness of a magnetic field for plasma containment is the ratio 8rp/E,
where p and B are the pressure andfield, respectively. In actual laboratory
devices, used to study slow phenomena this quantity is generally much
smaller than unity since the plasma usually loses heat very easily.

Our classification of phenomena as being fast or slow is cbviously an
arbitrary one and does not exhaust all possibilities. In this review, however,
we shall only be interested in making rough estimates for purposes of orien-
tation rather than in the detailed classification of plasma phenomena, In
actual problems a more detailed analysis would obviously be required.

Ohm's Law. As it is conventionally stated Ohm's law j = oE
relates the current density to the electric field at a given instant of time,
However, the electric field is actually responsible for the acceleration of
electrons rather than their velocity so that in the genesal case no such re-
lation obtains. In processes in which all quantities vary slowly in time (no
significant changes in cne electron-ion collision time) the electron inertia
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is unimportant and the effect of the electric field is balanced by friction
due to collisions of electrons withions, n = —j/en. This equilibrium con-
dirion for an electron gas is called Ohm's law. An Ohm's law can be de-
rived for a plasma in similar fashion,

It is convenient to express the electric field in terms of the current
rather than vice versa, In addition to simplifying the formulas, this method
of description gives 2 more accurate picture of the qualitative nature of
the effect: in a highly conducting plasma, where the reactance is greater
than the real resistance, the current is usually determined by the external
conditions while the electric field is determined from the current by Ohm’s
law,

Neglecting the electron inertia and viscosity in the equations of mo-
tion and using Eqs. (2.6) and (2.9) or Egs. (4.30) and (4,31) for the force
R = R + Ry we have

i 1

v jj_ .
E _0_”+B_+ eneCI]B], (6.18)
where E' is the effective field, given by
, 1 I
E'= E+ — [VB]+ —— (Vp.—R;). (8.19)
14
If j is expressed in terms of E' then
j= 0B} + — % [E [hET)
I=o0Ey 4+ ¥ ol L+ .7, [hE |} (6.20)

The quantity E* contains the electric field E* in the coordinate system
moving with the matter {with the ions):

E* = E+ —[VB]. (6.21)

Furthermore, E' contains the thermoelecrric force _RT/ ene and the elec-
won pressure term Vp./en.. The latter is not important in ordinary metal
conductors because the electron pressure is uniform. In a plasma, however,
the electron pressure can vary sharply and this term can be of great import-
ance,
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If there is no magnetic field E' = j/o. In a swrong magnetic field
(“"e"e »> 1) the same relation holds for the components along the field

E'“ = j” /cr", {6.22a)

but the transverse components are modified significantly (Fig, 8). The ef-
fective field E'| is essentially perpendicular to the current j ,+ The pro-
jection of the field E', on the current is related to j, by

CAIRINCR .29

and is not very different from Eq, (6.22a). The magnetic field does not
have much effect on the friction produced by electron-ion collisions, For
example o) = 9 /2 when Z = 1, However, flow of current across the mag-
netic field requires a component E* perpendicular ro both it and the magne-
tic field, the so-called Hall field. This field equilibrates the force acting
on the electron (1/¢)[§B] and is given by

’ 1 . DpTe ¢.
Ehan = 5, [iBl = %:[Jh]- (6.22¢)

Frequently E'ry,1 arises automatically in a plasma as 2 consequence of

the small charge separation allowed within the framework of quasineutrality,
while the external field, which must be applied to the plasma, is deter-
mined by Eqs. (6.22a) and (6,22b). In this connection it is sometimes said
that the magnetic field does not affect the conductivity of the plasma.

This statement is to be understood within the context we have indicated
here,

Ohm's law for a plasma can be written in several equivalent forms,
Frequently it is convenient to replace the electron equation of motion by
the ion equation of motion and to introduce a new effective field E" de-
fined by

” 1 1 ; dV I
E"=E 4 - [VBl— o~ (Vp, + Rr) — 70 G+ 2 F.(6.29)

In this case the resulting expression does not contain the Hall term:

B = -c% (6.24)
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This expression is also obtained if the {1/c)[iB] term is eliminated from
Eq. {6.18) by means of the equation of motion (6,14}, Schliiter has pro-
posed that Ohm's law for a plasma should be written in the form given in
(6,24) without the Hall term [24]. This form of the equation is especially
convenient in cases in which dV/dt can be determined easily, in particular,
in slow phenomena where this term is small and can be neglected to first
approximation,

Although Egs. (6.18) and (6.24) appear to be different they are ac-
tnally the same when the equation of motion is raken into account, A
peculiar inversion of the equation occurs in 2 magnetized plasma confined
by a magnetic field, The transverse component of the current can be de-
termined from Eq. (6.14). If viscosity is neglected this quanrity is

i, =ghval (6.25)

On the other hand, Ohm's law determines the plasma velocity across the
magnetic field, Substituting Eq. (6.25) in Eq. (6.24) and omitting 61r / Bx
and dV/dt (neglecting Ry for simplicity), we find

v, =+ [( __E) h]—%vlp. (6.26)

L B en,

The second term in the square brackets in Eq, (6,26} is called the
rate of diffusion across the magnetic field, We note that according to the
generally accepted terminology diffusion means the relative motion of dif-
ferent components of a complex plasma; actually Eq. (6,26) expresses the
hydrodynamic velocity of the plasma. For this reason it appears to be de-
sirable to use a different terminology, the "leak” rate. If the current(6.25)
is maintained by induction, which is expressed by the term (1/c)[VB], the
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leak rate of the plasma across the field is given precisely by the second
term in Eq, (8.26), which is proportional te the transverse resistance of
the plasma 1/0,.

The order of magnitude of the current and velocity u = —j/en are
determined by the equation of motion. According to Eg. (6.12), B'/L ~
4mj/c where B' is the field produced by the currents in the plasma. For
fast phenomena, from pV: ~ B%/4x we find v*/V? ~ 1/IG for slow pheno-
mena from p ~ B/4r we find u?/c’s ~ 1/1F where

4ne n‘L2 2. 12
n == 4nZe£r: oL ) £6.27)
lat:

The dimensionless number II is proportional to the mumber of particles
nL? per unit length of the system.

Thus, in a system containing a large number of particles the elec-
tron velocity is "tied™ to the ion velocity by the self-censistent magnetic
field as well as collisions.

The characteristic frequencies of fast phenomena are of orderc A/L ~
wif /2, ¥ 1% 1 these frequencies are small compared with the ion cyclo-
tron frequency,

Estimating the order of magnitude of the various terms in Ohm's law
for fast phenomena with Il » 1, w << wj, L > ri we find that the principal
terms in the effective field are E + (1/c)[VB]. When collisions can be ne-
glected we can also neglect j/o, and to a first approximation Ohm's law
can be written in the form

E+—-[VB] =0. (6,28)

Elimirating the electric field by means of Bq. (6.28) we obtain the induc-
tion equation in the ideal magnetohydrodynamics approximation:

aB

T = rot [VB]. (6.29)

This equation allows a simple interpretation: the magnetic lines of force
behave as though tied to the matter and move with the matter at a velocity
V. Equation (6.29) is frequently used in the analysis of plasma oscillations
and plasma stability,
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‘When all terms are retained the induction equation obtained from
Eq. (6,18) becomes rather complicated:*

dB i
<7 = ot [VB] — rot [;}z: BJ —-e—i'[V”'VTl —

¢ Rr — j” ! _J_-L 6.30

_TrotTﬂ ”Ot(a” T35 {6.30)

In place of this equation one frequently makes use of the following simpli-
fied equation with isotropic uniform conduetivity

2
B rot[VB] - v (6.31)

Here we have used Eq. (6.12) and the relation 1ot rot B =— w?B. This equa-
tion describes the skin effect; it takes account of the fact that the lines of
force are not completely entrained but move through the matrer with a
diffusion coefficient D,, given by

C2

Dm = Zno’ (8.32)

*Eliminating [jB] from Eq. (6.30) by means of the equation of motion or by
using the relation (6.24), by means of the iransformation rot dV /dt =
9 rot V/at~rot [V rot V] we can write the induction equarion in the form

d , M y , me :
= (B —1—%rotv) = rot {v (B Tf;—rotv)J -+
+ e [VAVT4] = (dien,) ot (FF 4 R, = exot (3 fo +5, /o),
(6.307)
where

F’L."a = — 6r|:[-aﬁ/6x5,

If the last three terms on the right can be neglected the lines B +
{mjc/e;) rot V are tied to the matter; if, however, I3 1, w « wi wWe
find {rot V| <« e;B/mjc 2nd it may be assumed that the lines B are tied
to the matrer, Thus, when B = 0 we ohtain the familiar theorem on attach-
ment of the circulation lines of conventional hydrodynamics [3],

———
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The same phenomenon, penetwration of plasma through the magnetic field,
Is described by the last term in Eq. (6.26). When p ~ B*/4r the rate of
penetration is of order D,/L, It is evident from Eq. (6.26) that the rate

of penetration is of order (47p/B% Dy /L when p < B%/4r, This same re-
sult is obviously obrained from Eq. (6,32) since the relative magnitude of
the field gradient is of order B'/LB ~ 47p/B’L where B is the difference

in fields outside and inside the Plasma as determined by the plasma equi-
librium condition BB'/4r ~ p; thus, the rate of penewation of the field is

~ DpB'/LB ~ (47p/B*) D /L.

If the effective value of o ', is reduced as a result of rurbulepce
Eq. (6.26) shows that the penetration of the Plasma through the magneric
field is much more rapid; this is the so-called "anomalous diffusion™ effect,

Equarions of Energy and Hear Transport. Whenthe
electron and ion temperatures are very different the individual hear-balance
equations given in the preceding sections are used, However, if the thermal
coupling between the electrons and ions is strong, the relative temperature
difference is small |T¢—T;| < T and one c2n use the combined equation,
Writi[lg Te = Tl =T,

The temperatures of the electron and ion fluids can be very different
if much more heat is generated in one than in the other, For example,
Joule heat is generated in the elecrron gas. If Qpy e is equared roughly
with the heat transferred to the ions QA we can obtain the difference of
temperatures responsible for this transfer, A rough estimate yieids

{Te — Ti)J'uule - fsz Nﬂ_"‘ or (T, —-T[)Inu]e_ L_J?’_z
T S T ETEETS

Here we have used the relation {4n/c)j ~ B"/L where the magnetic field B'
is produced by the curremts in the Plasma. In slow phenomena, in which
the main source of heart is Joule heating, the electron temperature tends

to exceed the ion temperarure,

On the other hand, heat generation by virtue of viscosity effects
occurs primarily in the ion gas since the jon viscosity is much greater
than the electron viscosity. Equating roughly the quanrities Qg ~nVY/LE
Qa we obtain the appropriate temperature difference, If the "longitudinal™
viscosity ng is important

Ti=Tovis _ m Vit (ﬁ)‘/: ( Vi, )3 my M f L Va2 ,
T Mg Lﬁ! Me L I ( me) LIJ % )
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. NP 2 2
and if the "transverse™ viscosity is important 5y 5 ~ /' Wity

{T;— T ovie, myTe [ mVe 2~(_ﬂ)’/z m,.;VC'EN
T = 7 men \eBL] mg ) \eBL i)

ﬂ’_i)’f’ EENAY
N(me Ly wi)”

The velocity of strong shock waves in a plasma is greater than the ion ther-
mal veiocit_y but usually smallerthan the electron thermal velocity; hence
strong heé.-ujing due to shock waves is experienced only by the ions, When-.
the primary source of heat is the dissipation of energy associated with plas-
ma motion (shock waves, intense plasma oscillations resulting frorm irsta-
bilities, etc.) most of the heat is generated in the ion gas and the ion teifi-
perature can be higher than the electron temperature,

If Te = T; = T (to the required aceuracy) the individual energy
equations for the electrons and ions can conveniently be replaced by a
general energy balance equation, Combining the energy transport equa-
tions for the ions and electrons (1.20),taking account of Eq. (1,24), and ne-
glecting electron inertia, we obtain the plasma energy transport equation:

3 a 1 5
% (";— Qv+ P) -+ W{(TQVE -I-TP) Vg +
+ gV + dg} = Ej. (6.33)
Here p = p, + P4
q4=0,4 0+ a1 (6.33%

Cn the other hand, Maxwell's equations (6.11) and (6,12) provide an
energy relation for the field (the Poynting theorem in the approximation
E « B):
a Bt e s (6.34)
WB—ﬂ—i—leS_ Ej, ,

where § = (¢/4m)LEB] is the Poynring vector,

Combining Eq, (6.33) and Eq. (6.34) we obrain a conservation law for
the total energy:
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degotal , 1:
%ta"f“ div Qyorar= 0,
1 3, B
Etotal™ 3~ oV? - 5 PT g (6.35)
1 1 5
75" = (5o + 5P) Vot TugVo + g5 + 5.

Adding Eq, (1,23) for the electrons andions, taking account of Eq. (1,24)
and the relation div (ngu) = 0, or eliminating the kinetic energy from
Eq. (6.33) and using Ohm's law (6,18), we obtain the plasma heat balance
equation '
3 dp . 3 . .
< - div (—z—pV) +pdivV =—divg 4-uVp, + ¥Q.

(6.36)

The right side of this equation contains all heat sources, including the
heating due to viscosity: ZQ =-Rn + Qyis-

Energy is transferred by macroscopic mechanisms (transport with
velocity V and work due to the pressure) and by microscopic mechanisms
(thermal conductivity, viscosity, erc.). The microscopic mechanisms and
the corresponding terms in the energy and heat equations are called dis-
sipative. These mechanisms increase the entropy of the plasma and result
in'the conversion of mechanical epergy into heat. The entropy of the plas-
ma (per particle), as for any monatomic gas, is equal to 1n(T%*2/n) or
ln(ps/ 2/,05/ %) (to wirhin an unimportant constant). It is evident from Eq.
(6.36) that the entropy is conserved in the absence of dissipative processes,

We note that the left side of Eq. (6.36) can be written in the follow-
ing form if the equation of continnity is used:

3 5 p dg 3 d
oE T o &~z PainieY).

afs

where y = 5/3 is the adiabaticity index for the monatomic gas.

The relative importance of dissipative processes becomes smaller
as the dimensions of the system become larger because the energy trans-
port due to these processes is of a diffusional nature. If the characteristic
time of the dissipative processes (L?/D__ for the electrical resistance,
L%n/x for the thermal conductivity, sz/n for the viscosity, etc.) is large
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compared with the reciprocal frequency of the plasma motion 1/w or L/V,
the dissipative terms are small, Under these conditions we can assume
that the process is adiabatic and write as a first approximation

4 _ 8.37)
di ¥ =0. (

Dissipative processes increase the entropy and result in the damping of any

macroscopic motion of the plasma, magnetchydrodynamic waves, and so on.

The plasma enmropy balance equation can be obtained by adding
Eq. (1.23" for the electrons and ions:

oS i .+ ai) __
T le{SV + Seu + —T—} = 0, (6.38)
T8 =—(+a)VinT+ 2Q. (6.39)

Here, 5=5¢ + 5;=Dp ln(TS/Z/ne) + 03 In(T%%/ny) is the plasma entropy
per unit volume, The quantity € is called the entropy production. It is
easily shown that this quantity is always positive, that is to say, dissipative
processes always cause a meonotonic increase in entropy. The clluantity TO
contains the Joule heat jzn /oy + sz_/o_L and the viscous heat -1/, "aﬂwaﬂ’
which are always positive,

§ 7. Multicomponent Plasma

Diffusion in a Three- Component Mixture. A simple
model of a three-component mixture is an incompletely ionized gas that
contains electrons, one ion species, and one species of nentral particles,
The motion of these components can be specified by the three velocities
Ve, Vi, and Vi or by a common hydrodynamic velocity V which is approx-
imarely

V= % (min;‘ v - M, Vn)! (7.

and two relative velocities, which cap be taken as

u=V,—V, w=V,—V, (7.2)
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In a simple plasma there is ope equation for the relative velocity,
Ohm's law; in a three- component mixture two equations are required:
one for the diffusion velocity w and one for the velocity associated with
the current u = -j/ene.

The determination of the diffusion velocities requires the solution
of a system of three kinetic equations and the determination of the Iocal
distribution functions for all the components [12]. However, approximate
results can be obtained by a simpler technique if the equations of motion
for the individual components are nsed {1.14). The friction force is then
obtained from the interaction of particles of one species with the remain-~
ingspecies: R, = bZ Ry The forces R, = —Rys canbe computed approx-

imately under the assumption that the components a and b have Maxwellian
distributions with velocities V, and V. As a result we find

Rab = Uy (va - vb)» Ugp = Upg. (1.3)

The coefficient of friction e, is obviously proportional to n,np, the re-
duced rmass of the colliding particles Myp = Mamp/(my, + my,), and the
coefficient o' ab.which is of order vo where v and o are the charaeteristic
values of the relative velocity and the effective cross sections for the eol-
liding particles:

aab = nanbmabaab' (7’4)

The calculation of Cap is shown in the Appendix and can also be
found in [1], Suppose that T, =Tp =T. Kthe scattering cross section
[here the so-called transport cross section o' = f{1 — cos Hda(S) is the
important factor] is inversely proportional to the relative velocity g’ (v)=
®ah/v Eq. (7.4) is obtained directly. For solid smooth spheres of radius
X, and rp the cross section is oy, = (r, + )%, For this case

. 4 8 T\
% = 5 0w (5 ) . (7.5)

For ions of charge e, and €p, [eompare Eq. (2.5¢)]

. 4V Imele
O =7 7.6
alb SmT 2 ( )




e ey
T

T 1 R Ak ki At T

| W UM S WS WA WS Wemw— W WS

I — | — " L . — T

278 8, I, BRAGINSKII

The relation in (7.3) does not take account of the possible anisotropy
of the coefficient of friction in a magnetic field and also neglects the ther-
mal force, so that it does not give thermal diffusion, In simple cases these

effects can be estimated as in §3,

The component equations of motion, [using (7.2) and (7.3) and ne-
glecting electron inertia] can be written in the form

l i
—-Vpg—ene(E+T[VeB])=—aea;—,—aenw, (7.7€e)

. 1 H
— mny S0V p, 4 en, (E + - [ViB]) = 0 5 o+ W,

dat .
(7.73)
d,V j 7
—mnnn—;-f——Vp,,=ama—anw. (7.7m)
Here we use the substitution 1 = —j/en, and the notation
ot = l)l (7.8)
@, = Uy + Qo = Ml Ty} e =\ Ten ’
@y = Gy + By = O/ (1 — £); & = Gq/ Oy (7.9)

Actuzlly, we should take account of the viscosity in Eq. (7.7) writing
P, 4p/0%g = Bp,/Bx, + 87, o5/ 0% in place of Vps(a=e,i, 1), Inthe pre-
sent analysis viscosity will be neglected.

The coefficient of friction between the plasma and neutral gas oy de-
pends primarily on the collisions between heavy particles beca{lse such col-
lisions result in large momenturm transfer; thus, one usually writes

o, =Q, &= o, /e 2= (me/mm) (aeﬂ/am) &1,

Adding Eqgs. (7.7¢) and (7.7i) we obtain the equation of motion for

the ionized particles; the electric field vanishes in the equation:

AT 1 .. i
— 2V (o, + p) + - [B] = — Gl + 8. (1LTH)

The sum of equations (7.7n) and (7.7p) gives the general equation of motion.
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If the collision frequency is low it is more convenient to use the
individual equations of motion for the neutral and ionized parti-
cles since the velocities are no longer "tied together” by collisions(strictly
speaking the kinetic equation should be used in the low-collision case),
On the other hand, the hydrodynamic description applies at high collision
frequencies and it is more convenient to use the general equation of mo-
tion for V and the relative-velocity equations, We shall be interested in
the second case, In the inertia terms we replace d;Vi/dt and 4,V /dt by
dV/di; rhis corresponds to neglecting terms of order dw/dt compared with
terms of order w/r which are contained in the friction force, Viscosity is
also neplected,

Various authors, for example [7, 25, 291, transform Eq. (7.7) by dif-
ferent methods and different expressions are obtained for the various reia-
tive velocities convenient for particular problems. The plasma diffusion
rate with respect to the neutrals w can be determined, for example, from
Egs. (71.7n) and (7.7p). Himinating the inertia term from these two equa-
tions we write w in the form

w=g{—6+ e} 2L (7.10)

where

G=LV{p,+p)—5Vp. (7.11)

Here we have introduced the relative densities

§n = mgnylo, & =munlo,

En + Ei = 1.
I Tj=Tp=T, mj=mythen G=EVpg + (p; + p)VEs; Pi + Py = Tp/my.

For example Obm’s law can be obtained by eliminating w from the
electron equation of mation (7.7e) by means of Eq. (7.10):

E+ —[V,B] + eine (Vpe—2G) = L 4 L= gy (1.1

eneC

where

2,1,

(1.13)
me

= p2pn2 Oentin 1
cr-_ene(aei-l— ) L9

e + Cin
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Equation (7.12) is very similar to Eq, (6.18) since & < 1 but it contains the
resistance 1/o,which is determined by the total electron collision frequency
1/7o. If the [JB] term is eliminated from Eq. (7.12) by means of the general
equation of motion, Obm's law is obtained in the form given by Schliiter[25].

Sometimes in writing Ohm's law it is convenient to retain the elec-
tric field E* = E + (1/c)[VB] in the coordinate system moving with the ve-
locity of the common mass V. Using the relation V; = V + §;,w and Eq.
(7.10) we have from Eq. (7.12)

B+ L ver+ -1 (vp—e0)— ZioBI = JL b 2t 4
€1

eneg

1—2zE,
£N,C

-+ [iB], (7.14)

where

£8°
anet

1 1
o) =0, 0 =_G—+
Oy

(7.15)

When m; =m_, & <« 1,we find a/a% =1+ 2Eqwer WiTiy, Where

I/%fll = G.En (ﬂ‘: + nn).

Proceeding in the same way as in the derivation of Eq. (6.26) and
using Eq. (7.12), we find that in the presence of neutrals the rate at which
a plasma moves across the magnetic surfaces (the corresponding term in
V) is (cZ/chz) Vp where o is expressed by Eq. (7.13) and p is the total
pressure,

Chm's law in the form given in (1.14) was derived by Cowling [7],
It contains the effective transverse resistance l/q'_L; in a strong magnetic
field this can be much greater than the longitudinal resistance, This effect
is explained by the fact that the motion of a plasma across the magnetic
field means motion of the plasma with respect to the nentral gas; because
of the large coefficient of friction between the ions and neutrals thie im-
plies a high rate of energy dissipation. It should be noted, however, that
in certain cases (especially in slow phenomena, where the plasma pressure
is almost always in equilibrium with the magnetic force) the rerms in the
curly brackets in Eq. (7.10) can almost balance each other; in such cases
the last term on the left in Fq. (7.14) will almost balance the jJ_/c'J_ term,
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We wish 1o emphasize rhe great difference between Eq, (7,12) and
:Eq. (7.14) which contain E + (1/¢)[V;B] and E + (1/c)[VB] respectively;
in evalvating an electric field in the presence of a magnetic fieid it is
of paramount importance to specify the coordinate system in which the
electric field is being determined, A marked change in electric field
ocecurs for even a small change in the velocity of the coordinate system,

We now consider the energy dissipation caused by friction in a mix-
ture e, i, n. The total heat generated as a result of friction is Qf =Qg +
Qj + Qp. Taking account of the general relation (1.24) this expression

can be written in the form Qp =—R,u—R. (u+wW)—R w, Usin
{7.3} we find ' et e = 8 F-

Q= ytt® + 0y (u + W) + 00 =
= qu® + a,w? - 20,,uw. (7.16)
Using Eqgs. (7.10) and (7,13} we now transform Eq. (7.18) as follows:

1
Gn

" 2
Qp = *’7 + (% [jB] — G) ) (7.17)

I the current flows along the magnetic field (or B = 0), we find W ~ gu <« 1
because of the high coefficient of friction for the heavy particles so that
the dissipation due to heavy-particle friction is smail: anwz ~ gauf,
However, if the curent flows across the magnetic field the dissipasion can
be larger because of collisions between jons and neurmals,

Fc-ur example, when G can be neglected, if the plasma s cold or
wealkly jonized we find from Eq. (7,17) Qf = jznla + J'Z_L/O‘J‘.

A fully ionized plasma consisting of electrons (a = e) and two ion
species (a = 1, 2) represents another important example of a three-compo-
nent mixture, Typical mixtures of this kind are a hydrogen plasma con-

taining impurity ions, an ionized mixture of deuterivm and tritium, and
SO on,

In such 2 plasma the density and hydrodynarmic velocity are approx-
imately

_ I
0 == My, + Mahty, V = - (myng Vi + myn,V,).  (7.18)
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The current density is expressed as the sum of the electron and ion

cOImponents;
= ot () e, g

where we have iniroduced the notation

,=V,—V, w=V, —V,, (7.20)
and the relative densities &; = myny/p and £, = mpn,/p which appear ip
the expressions Vy = W+ §;W and V, =V — £,w,

The component equations are

\' 1
My iy %T = —yp e (E =+ T[VIB]) — AW —

— g, (EaW — 1), (7.21)

ity S = —ypy+ ey (E - [V3B)) + o -
+ g, (Elw + ue)’ (7.22)

— v —em, (B + - [V.BI] + (aaky — oafy) W — .
(7.23)

Here we have replaced daVa/dt by dV/dt, 3P, ,5/0%g by 9p,/dx o and have
introduced the notation

Gy = Oy + Qpy = M,/ T, 1T, = Uty + 1T (7.24)

Using this system of equations we can find the relative velocity .and obtain
Ohm's law and an expression for w which 1is rather complicated in the gen-
eral case [10a, 10b],

I T is not very much greater than Tp, We have oy # gy, Ceg.
For example when T; ~ T, Oy ~ (mi/m )% .

When B = 0, because of the large value of oy we find W << ug 50
that the current is eransported primarily by electrons and Ohm's law can
be written approximately in the form
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1 i
- —-L 7.25
B VPe=—3, (7.25)
g = LT (7.26)
mg

The same relation holds for the component along the magnetic field,

Because of their greater mass ions can move across a strong mag-
netic field much more easily than can electrons; hence the ion component
of the curent across the magnetic field can be larger, esspecially in fast
phenomena. Let us consider certain relations that hold between the trans-
verse components when wyr; is large. In this case, to a first approximation,
we neglect collisions and then introduce them as a small correction. For
example one can write W = W 4 w® yhere w( can be found neglecting
collisions, We divide Eq. (7.21) by eyn; and Eq. (7.22) by e;n, and subtract
one from the other. Neglecting the friction forces and writing w we find:

_ ¢ Vp Vpg c {m
wo =5 [0 (32~ 2]+ 5 (2 — 2 [n-51]. o2m

The electric field then vanishes, The L symbol has been omitted, Now,
taking account only of the friction between the jons and substituting Eq,
(7.27) in the o, wterm, we have

2670 oMl (Vp Vp) ( m my \ dV )
= — e SRS < =t -2 22 (1.28
w 318283 Z]ﬂl Zﬁ”‘ﬁ + ZI .Zz dt J ! ( )

where Z, = e,/e; Z, = ey/e.

The quantity ug = u%ﬂ + “(e can be expressed in similar fashion
using Eq, (7.28) 2nd eliminating the electric field B* = E + ¢”1[VB],

Let us consider a slow steady-state process in a plasma confined by
a magnetic field; inertia effects will be neglected,

An estimate of the terms in Bg. (7.28) shows that the diffusion velo-
city w(? i ~ (/o) ~ (mi/me)l/ ? times greater than the penetration
velocity for a simple plasma (6.26). The following question then arises:
is the penetration velocn:y of a plasma with different ion species increased
by a factor of ~(m /me)1 %as compared with a simple plasma as a result
of the friction between ions. In a steady state this process does not actually

occur since the electron velocity across 2 magnetic surface u%a) remains of
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order czp/oBzL, where o i5 given by Eq, (7.26). The current across the
magnetic swface vanishes so that w(2) w ug’. Consequently the ion dis-
tribution that is established in the plasmamust satisfy the condition

Vo Ve % g (7.29)
- &lly Q1 )

The equilibration process proceeds at a rate ~(mi/rne)1/ ? times faster

than the penetration rate, zfter which w(¥) becomes small w(¥) ~ (e/ atyyuld)

and there is no large frictional force between ioms, It is evident from Eq.
(7.29) that in this case the ions with higher charge will be concentrated in
plasma regions of higher density; for example with Ty=Ty=T andVT=0
the Boltzmann distribution (1/ epvVinn =(1/e)Vinn, obtains,

Diffusion in 2 Weakly lonized Gas. We denote by ua
the ditfusion velocity of the a component; then

u,=V,—V, Emanu,=0, (7.30)

where V is given by Eq. (6,2). Using Eq, (1.14), replacing d,V,/dt by
dV/dt and dp, a.B/dxs by 3pa/0xy, the equation of motion for the 2 com-
ponent can be wrirten in the form

av % 1
Mol dE =—=VPla "'i‘ €l (.E" _I" e [uaB]) - Ebaab (ua__ub)*

(7.31)

We shall consider the case in which the number of ionized particles
iz much smaller thar the number of nentrals (weakly ionized plasma) so
that the friction force is due to the R,y term associated with the neutral
gas. The electron-ion collision cross section is much larger than the elec-
tron-neutral cross secrion (for example, in hydrogen at T = 1 eV we find
i/ eon ~ 10 2r,zi/nl.l ). Hence, electron-ion collisions can only be neg-
lected when the neutral particle density is several orders of magnitude
greater than the jon density (the exact values depend on the electron tem-
perature and the nature of the gas), In this case the hydrodynamic veloeity
can be taken to be the velocity of the neutral gas V= Vn, u, ~ 0. Equation
(7.31) will then be treared for particles of all species a in addition to the
basic neutral component, The same staternent holds for the summations
over a used below, The velocity ¥ is determined from the general equa-
tion of motion, with viscosity taken into account. The frictional force in
Eq. (7.31) can be written in the form Ry = —a ;.
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Let B= 0. Then from Eq, (7.31) we have

v, = b, (e.E — G /n) = b, (eaE —m, %—)—Davln Pa» (7.32)

where
av
T Go = Vo + man, —. (7.33)
The mobility b, and diffusion D, are
_ e T _ Tz o,
b, = Tar = T’ D, = P T, where T, = ni" . (.34

These coefficients obey the well-known Einstein relation
D,=5,T,. (7.34%

The last term in Eq, (7.82) is proportional to Vn,/n, + VT a/ Ty but
the thermal force can affect the coefficient of VT, (cf. footnote on page
2a7),

The current density j = Zeyn,ll;, where the neutrality condition has
been used, According o Eq, (7.32)

j=0E —Ze .G, (7.35)
a
where
g = Eegnaba. (7.36)

In Fhe presence of a magneric field vector quantities parallel to B,
e, wy, 3, Ej, Gy satisfy the same relations as for B = 0. The perpen-
dicular components are obtaimed from Eq. (7.31):
Hoi = bay (6,E% — Gofng). + b [(e,E* — Gy/n)) h], (7.37)

where

bal = bap = 0y, 0, .. (7.38)

a
g 3
1+ mﬂnra
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Here we have used the notation
W = €,BIM g, 0y == — 0,
The current density across the magnetic field is
jr = 0EL + 0, [E*h] —ZegbeiGoy — Zegbap, [Gh], (7.39)
where
0, = lzE.e'gnal’:;,l L, Gy = %eznaba A {7.40)

n order to use Bq. (7.39) to express E*) =E) + (1/c)[VB] in terms of ji!'
we multiply (7.39) by 0,/(0% + o3), take the vector product with ha, /(0§ + 03),
and then add the results, In this way we obtain

El = o it o [ih] + 2Ba oy + ZPon [Ochl,  (T.4D)
L A a @

where 1/a, is the perpendicular resistance; h /op is the so-called Hatl
vector:

1 01 1 — 62
—_— =y, - T T g, 9 1
¢ oi4o3 " %A of - o3
_ (7.42)
ba.l. ba,\ _ ba/\ baJ.
ﬂaJ-:ea(U.L_aA)’ﬁa’\_e" UL+GA -

If gravity is important, dV/dt must be replaced by dV/dt— g in all equa-
tions. If necessary this term can be eliminated by means of the general
equation of motion,

Equations {7.39) and (7.41) can be simplified if the G, terms can
be neglected, In this case the frictiopal heat can also be expressed simply:
Q. =E={y/oy« ¥ /oy,

We now consider what is called ambipolar diffusion of a plasma.
Assume that all gradients and the electric field are parallel and in the
x direction, and let j, =0, This is the case, for example, of a plasma
in a long tube with insulating walls; the axial gradients can be neglf:cted
and we shall be concerned with plasma diffusion in the radial direction
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only (the role of x is played by r) with jr = 0. This joint diffusion of
electrons and ions is called ambipolar diffusion.

Suppose that the plasma contains ions of one species (for simplicity
Z=1)and let VTg =VT; =V =dV/dt=0.

If B= 0, we have from Eq. (7.32)
nu,, = —benE — D,yn, nu,, = benE — Dyyn.
From jy = Dugx — mijy = 0 we have

E = _ De=D; 1 dn
* be+ b en dx ~

Himinating the electric field we can express the plasma flux pugy =
nuy, in terms of one of the density gradients:

nu,, = nu;, = — Dyn, (7.43)
where Dy is the so-called ambipolar diffusion coefficient

0:Dg 4~ b.D; beb:
D= --ﬁr- =TT 5% (T.44)

This same expression can be obtained immediately from Eq. (7,10) if it is
assumed that £p & 1; V& V, =0; Wy = 1, = Ugyt Gx ~ (T + T dn/dx
and use is made of Egs. (7.9) and (7.34).

If there s 2 magnetic field B = B,, Eq, (7.43) becomes nu,, = nu;y, =
—Dy w0 where Dy, is obtained from Eq, (7.44) by replacing b, with b, , :

Da
I + @gre0ipmT -

Do = (7447

This same result can be obtained from Eq. (7.10) if we write V = 0, express
j}r by means of Eq. (7.14), jy = (o'J_EnBZ/ot.nc) G, and take & =~ 1,

Diffusion has been considered above using an approximate expression
(7.3) for the frictional force, A more exact analysis of diffusion and the
calenlation of thermal conductivity require the use of the kinetic equation,

A kinetic analysis of diffusion and thermal conductivity of electrons
in a weakly ionized gas in the presence of a magnetic field has been carried
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out by Davydov [30], It is shown in this work that the electron distribution
function can be approximated in the form ft,r,v) = J‘o(t.r, v) + £i(t, 1, v)v/y;
then, averaging the kinetic equation (multiplied by 1and v/v) over angle

in veélocity space a system of equations is obtained for fo and f;:

5 . 3(uthy)
-;—tu_l_—'g_ div §, + 3!‘1‘:112 _(;?1— - E=C,, (1), (7.45)
oh ‘B g ~— P (s
o T Vh T B — g MBl=— 2, (7.

where 1/rg = a'ypng and Cenlfo) is the collision term averaged over angle,
Here we have written V = 0,

Since it Is assumed that electrons collide with neutrals but not with
themselves there is no reason to agume that the spherically symmetric
part of the distribution function f, will be Maxwellian. If 3/3t <« 1/Tes
Eq. (7.45") can be used to express f; in terms of fu so that an equation for
fq can be obtained from Eq, (7.45). This equation has been solved in [30],
for various ro(v); the function fo has been obtained together with the cor-
respending expressions for the particle and energy fluxes, Flux expressions
for the case of a Maxwellian function fa are also given in [30].

Multicomponent Plasma. Inthe laboratory and under geo-
physical ana astrophysical conditions one is frequently concerned with a
multicomponent plasma, A fully ionized plasma may contain ions of vari-
ous kinds while a gas that is not fully ionized can contain various mole-
cules, atoms, excited atoms, ete, If collisions berween particles are suffi-
clently frequent the hydrodynamic description can still be applied to such
a plasma. The plasma density and hydrodynamic velocity are determined
by Egs. (6.1) and (6.2) wheze the summation is carried out over all compo-
nents; as in the case of a simple plasma the electrons can be neglected,
In addition to the mass conservation equations (6.5) we now require equa-
tions for the components that describe the change.of state of the plasma,
¥ the rate of production per tnit volume of particles of species a is T,
these equations can be writren in the form

Do 4 div (V) =T,

dE
Q7

(7.46) |

+ div (myn.u,) = m, T,
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where u, =V, ~ V is the diffusion velocity and £, = myn,/p is the relative
concentration of the a component, From conservation of mass and charge
we have Zm, [, = 0, Ze, I, = 0.

a a

The equation of motion of the plasma, which describes the total mo-
mentumn balance, is obtained by adding the momentum twansport equations
{1.12) for all components, taking account of momentum conservation in
collisions. Using the equation of continuity this is reduced to the form of

(6.14) where p = Zp,, T = 3 Myep *.
a a

The diffusion velocities B, can be determined approximately from
Eq. (7.31) but in the general case this procedure leads to rather complicated
expressions. Certain particular cases have been treated in the earlier sectiops.

In accordance with Bgs, (1.24) and (7.8), the total frictionél heat is
er = EQG = zQab = Eam, (ua —_— u,,)z. (7.47)
a a, b azh

Multiplying Eq, (7.31) by w, and summing over all components, taking ac-
count of Eq. (7,47), we have

Qf = E*j — 2 1,yp,. (7.48)

*It should be noted that these expressions are obtained if we adopt new de-
finitions of the quantities P, and T, .5 which are somewhat different than
those used in §1; these definitions are frequently used in the analysis of
gas mixtures. The difference lies in the fact that here, in defining the
temperature in terms of the random velocity of component a we take v* =
v — V rather then V; =V—V,asin§1, The "new” and "oid" quantities
are related by

2
Mglty new ___gld
3 * 2 = Pg

new_ old
Ty '=TJ% + mgnqe

new old
Tagy = Tapy 4 Malaglia gligy.

This difference is not important because u, is small when collisions dormi-
nate and the hydrodynamic description applies, in which case the quadratic
term can be neglected. Taking account of the difference between the "old"
and "new” quantities increases the accuracy of the hydrodynamice description.
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The energy balance equation for a multicomponent plasma is ob-
tained by summing the energy balances for all components and is formally
similar to Egs, (6.33) or (6.35), where the heat flux is*

5
q= EQa + 2 E’paua'

It should be noted, however, that Egs. (6.33) and (6.35) apply only
for a plasma consisting of monatomic components in which case it may
be assumed that the kinetic energy of all particles is associated with the
translational motion if, for example, the plasma is fully ionized. The
internal energy of the plasma {per unit volume) is then & = Teg = (3/2) p.
In the general case,(3/2) p must be replaced by the internal energy ¢ in
the expression for the energy while (5/2) p must be replaced by & + p in
the expression for the energy flux, For example, in a diatomic molecule,
which has five effective degrees of freedom, ¢, = (5/2)T,n, = (5/2) Py
€a + Pa = (1/2)p,.

The heat balance equation (the internal energy transport equation)
is obtained for a multicomponent plasma in the same way as Bq, (6.36)
and is of the form |

-%?— + div(eV) + pdivV = —divq + aEuavpa + 2Q =

= —divg+ E*j+ Q (7.:49)

vis'
where ZQ = Qﬁ +Q

If the plasrma ¢an be assumed to be approximately in local thermo-
dynamic equilibrium the entropy balance equation is obtained in the gen- o
eral case by the methods of imeversible thermodynamics [9,10al. This
equation is of the same form as Eq. (6.38) except that q, + q; is replaced
by Zq, and S,aby £§

vise Other sources (loss) of heat can also appear,

ally-

The heat flux and the viscous stresses of a plasma consisting of mon-
atomic components can be¢ obtained in general form and relevant orders

*More precisely, g= ZqI€W.. 5(5/ 2)p,u, where q;5"= qgéd-f- (ma/zjnauguaﬂ +

wgﬁyua but this difference is unimportant (see preceding footnote), The
quantity Zq, is sometimes called the reduced heat flux.
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of magnitude can be estimated using the qualitative considerations of § 3
and the results for a simple plasma, Inaweakly ionized plasma the thermal
conductivity and the viscosity are determined primarily by the neutral gas.
These can be estimated for a monatomic gas using the expressions given by
Chapman and Cowling [1].

New effects appear in gases thar have rotational or internal degrees

. of freedom (excitation, ionization, dissociation), For example, an addi-

tional heat flux arises if particles are ionized or dissociate at one point
and if they recombine at another point, liberating a corresponding energy
£10al, The stress tensor for a gas with internal degrees of freedom contains
terms of the form £8yp div V where ¢ is the so-called second viscosity [31.
Radiation can also play a role in the heat flux,

The electron temperature is frequently very different from the tem-
peratures of the heavy particles—ions and neutrals in a gas that is not fully
fonized; for this reason the individual energy equations are generally used,

If ionization is by electron impact, Te is determined primarily by the ioni-
zation potential of the gas and usually stabilizes at a level corresponding

to a small fraction of the ionization potential so that the fastesr electrons

are capable of ionization, In rhis case energy obtained by electrons is dis-
sipated primarily in exciration radiation and in icnization by electron impact.
The ionization rate is very sensitive to T, which, on the other hand, is a
relatively weak function of the various parameters and is of the order of

" electron velts. If the gas density is not very high the transfer of heat from

the electrons to the ions or neutrals is strongly inhibited because the ratio
me/mi Is so small. Thus, if the nentral gas is cocled and there is no other
source of hear it is easy for a large temperature difference to arise berween
the electrons and heavy parricles; this difference can reach two orders of
magnpitude, In gases that are not fully ionized ir is frequently found that
the important factor is not the plasma dypamical situation, bur rather

the maintenance of ionization, excitation of atoms, energy loss by radia-
tion, interaction of the plasma with the walls, and so on. When an electric
current fiows through a gas a host of new characteristic effects appear; these
are the subject of study of the physics of electrical discharges in gases, A
very good elementary introduction to this field is contained in the small
volurmne by Penning [10].

§ 8. Examples

Pinch Effect., The magnetic field produced by a current flow-

ing through a plasma tends to constrict the plasma because the current fila-
ments which comprise the total current tend to attract each other. This
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phenomenon is called the pinch effeet, For rea-
z sons of brevity a plasma contracted by its own
magnetic field will simply be called a pinch,

As a simple example let us consider an
infinitely long plasma cylinder contained by a
» magnetic field; this is the so-called linear pinch
(Fig, 7)., We assume that all quantities vary in the
1 direction only (8/8z = 8/8¢ = 0), that the plas-
Fig, 7 ma as 2 whole does not move along z, and that
it does not rotate, Under these conditions the
magnetic field and the current have only z and ¢ components and the mag-
netic surfaces are cylinders (r = const),

The equilibriym conditior for the pinch is [cf, Eq. (6.1M1

¢ 1, . 3rB 8B,
— 5 = (i:By — joB) = By =+ B a - &

We now multiply Eq. (8.1) by 1* and integrate with respect to r from 0 10 a,
where a is the radins of the pinch. Integrating by parts and taking p(a) = 0,
B (2) = 2]/ca,where J is the total current, we obiain the equilibrium condi-
tion for the pinch in integral form [31]:

WNT ANT) =P+ E2 [B@—BY, (.2

a
where B_i = I B2onr dr/na®;, Ng and Ny are the numbers of electrons

0
and ions per unit length of the pinch; 7_[."3 and ?i are the mean temperatures,
The self-magpetic field of the current J always acts to constrict the plasma,
The longimdinal magnetic field constricts the plasma if the external field
B, (a) is greater than the internal field, and tends to expand it if the external
field is smaller than the internal field,

Now let us consider the application of Ohm’'s law to the linear pinch,
From Eqs. (6.18) and (6.19) we have

Ey=ii/oy, Ex+—[VBl— R =jo., (3

where Ep is the component of the electric field perpendicular to the mag-
netic field and tangent to the magnetie surface r = const, From Eg, (6.24)

= _
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we find B = 0. If inertia and the radial viscous stress are neglected com-
pared with 9p,/0r, '

I oy
£ = en, or ° (8.4)
At equilibrium the radial elecwmic field automarically assumes the
value given in (8,4) and balances the ion pressure; the ions exhibir a
Boltzmann distribution in this field if T; = const. Then the Hall field will
automatically assume the required value in accordance with Eq, (6,18)

‘ 1 0 I ..
Er=E 4 =55 =—[jB],. (8.5)

In a fast pinch, in which ion inertia is Important, Eq, (8.5) still holds but
Eq. (8.4) does not,

The tramsverse current component j, =(c/B)[hvp], Substituting this
in the second equation in (8.3) we obtain an equation for the velocity:

_ ¢ ¢t rap 3 a7
V" -] (kZ’E(D—”h@Ez)_ o, Bt (W_Tn‘e are)- (8.6)
If the electric field corresponding to Eq. (8.4) is not established for any
reason (for example if the pineh is of finite length and if the ends exert

& strong effect) in accordance with Eq. (6.26) there will be a plasma velo-
city V component

Vo=—g (B — o 2 ) B

en, Or

The nonuniformity in Vo means that the ions feel the effecr of a ¢ pro-
jection of the viscous soress Fg = —a:ri aB/ axB; in accordance with Ohm's
law [cf, Eq. (6,24)] an additional term must now appear in the expression V,,

4

¢
T vis =m]‘7$hz. (8.7

This velocity is sometimes called the diffusion velocity due to ion colli-
sions [20] although it is proportional to the third radial derivative of the
density rather thar the first, In order-of-magnitude terms Vivis ™ (1'4]-_/1'ia8)~
1/8* and can be comparable with the joule rate of penetration ~/r.a for
IE/aZ ~ (me/mi)l/z- e’ 'i
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If the plasma current or the external magnetic field increase very
rapidly the equilibrium condition (8.2) is not satisfied and the magnetic
field causes the plasma to become constricted rapidly, Because of the
skin effect the magnetic field cannot penetrate to the inside in zero time,
but compresses the plasma in piston-like fashion while moving in from the
outer edge; thus, a strong shock wave moves from the outer edge to the
axis, Because of its elasticity the pinch rebounds after contraction and ex-
pands again; in fact, it has been shown experimentally, that the pinch exe-
cutes several oscillations before breaking up as 2 consequence of various
instabilities,

A detaited analysis of the oscillations of 2 pinch requires the solution
of a complex system of magnerohydrodynamic equations [34]; however,
the time required for total compression can be estimated rather simply
[32, 38]. For exarnple, assume that J = it and B, = 0. The skin effect be~
comes important when the current in the pinch increases rapidly, The cur-
rent flows along the surface of the pinch and the force due to the magnetic
pressure acts in the surface layer. The layer thickness is determined by
the specific resistance 1/0*; associated with ion~neutral collisions [cf, Eq.
(7.18)] which can be apprecizbly greater than the resistance due to electron-
ion collisions 1/0; this effect is sometimes described as the movement of
the magnetic lines with the ions [33]. Because of the skin effect and rhe
formation of the strong shock wave initially the plasma "rakes" the field
away from the edge and gradually more and more layers are accelerated,
Let us asgsume that the entire mass of the gas in motion is concentrated at
the point 2(t) and is equal to py7(a; — a®) Where a, is the initial radius of
the pinch and py is the initial density; the equation of motion for this mass
can be written in the form

2
d 2 oday By _ o
Ef‘{@of“(“0*“)2?}——%2“a——m——m-

We integrate this expression approximately, taking the value of a(t)
at the upper limit outside of the integral sign on the right in the first inte-
gration over time, As a result we obtain

o = ab (1 —12d), (3.9)

1, = (Brgye?) e, e, (8.10)
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Total compression corresponds approximately to the time ty and cur-
rent Jo = Jtp. I is evident that 1/t) ~ ag/c,, where ¢ 4 = By/(4mpg)/? and
By ~ Jp/cay,

The compression time of a pinch compressed by a B, field can be
estimated in completely analogous fashion,

If small perturbations that disturh the equilibrium are produced rap-
idly in an equilibrium pinch the pinch will execute small oscillations. In
the next section we shall analyze oscillations for the case of an infinite
plasma; however, the order of magnitude of the quantities obtained in that
analysis applies to the finite pinch.

If changes in an equilibrium pinch occur slowly (frequencies small
compared with the characteristic frequencies of these magnetohydrodynamic
oscillations) the pinch remains in a quasi-equitibrium state at all timesand
inertia does not play a role—this is in fact the description of a slow process.

All of the considerations given above will obviously hold only when
the pinch is stable; however, stability will not be discussed in this review.

Magnetohydrodynamic Waves. We wish to consider small
oscillations of 2 uniform plasma in a uniform . magnetic field, A plasma is,
in fact, capable of executing a large variety of oscillations. At this point,
however, we shall be interested only in the relatively low-frequency and
large-scale oscillations in which the motion of matter plays an important
role and which can be described by a hydrodynamic analysis §6 (the neu-
trality conditions ¢ <« ¢? etc.,are satisfied), An analysis of these oscilla-
tions will give us an idea of the "elastic™ properties of a Plasma. Because
an ordinary gas only exhibits longitudinal €lasticity, it ean support the pro-
pogation of only one kind of wave; this is the sound wave, As pointed out
by Alfvén [4, 5], however, a conducting fluid in a magnetic field exhibits
2 peculiar kind of elasticity with respect to transverse displacements; this
elasticity results from the fact that the magnetic lines of force behave as
though they were stretched rubber bands, The resulring oscillations are
called magnetohydrodynamic waves,

Let us wrire

=0 ¢, p=po+p, B=B,+B’, (811

where the zeros denote unperturbed equilibrium values and the primes de-
note small perturbations, The velocity V is also regarded as a smatl quantity,
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At the outset we neglecr all dissipative processes, assuming that the
Plasma conductivity is very large and that the viscosity is small, ete, (more
exact criterfa will be given in the following section), The adiabaticity
condition (8,37) then gives p/p? = const = p,,/p[,T where y = 5/3 is the adia-
baticity index, Using Eq. (8.11) and expanding in terms of the small quan-
tities we have

=p, () = p, L Yo | PYG=D (N
p_%(gu) ~_'U"’*{_eug"" 2 (90)+ -
’ —1 r
= p o+ + Y-t (8.12)

where c_ is the velocity of sound, which is defined by the relation

_ {9\ _ W’u)%
“= (%), =(2)" 19

Neglecting all powers of the small perturbarions higher than the
first in the equarions of continuity, motion, and induction we obtain the
following linearized system: '

% Fopdivv=0, (8.142)

av B H ,
@ =—0Vp ~3 [Byrot B, (B.14b)
B — rot[VBy). (8.14¢)

We have also neglected the Hall term in the induction equation in
accordance with the estimate in §6, which applies when I > 1., The char-
acteristic dimension can be taken to be the wavelength of the oscillation
X or, better still, the reciprocal wave number 1/k = A/2r so that Eq.(8.14c)
is valid when

4ne‘3n§

We now seek a solution of Bg. (8.14) in which ail perturbed quanti-
ties are proportional 1o el(Kf—wt , that s 10 say, we seek plane wave solu-
tions characterized by a frequency w and wave vector k. An arbitrary
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) Ky =Ky

Fig. 8

perturbation can be expanded in a Fourier series and represented as a super-
position of these component waves, Writing 8/9t —— iw, ¥ — ik we find

— 0Q'/gy + (kV) =0, (8.18a)
— oV = —kelo'lo, — [B, [kB']}/4mp,, (8.16b)
— B’ = jk [VB,I]. (8.169)

. The condition div B* = 0 indicates that the variable magnetic field is per-

pendicular to the wave vector. We choose the z axis along By = By,h and
take the y axis to be perpendicular to both By and k (Fig. 8). Projecting
Eq. (8.16) on these axes we see that the system of equations divides inro
two independent sets for the variables v » B', and for the variables p*, Vs
V. B'y, B'5. The Imaginary unit disappears’in Eq, (8.16) indicating rhat
p"V, and B in each wave are in phase, thar is to say, all are proportional,
for example, to the factor cos (kr ~ wt).

Let us consider the first set, Sincek-V = 0, then p' = 0 and conse-
quently p* = 0, From Eg. (8.16) we find

— oV, = k| B,B,/4ng,, (8.172)

— 0B, =k, V,B,. (8.17b)

The condition that must be sarisfied in order for this system to yield a non-
trivial solution yields a relation between the frequency and the wave vector:
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2
o = AF = (4‘3;_2 (8.18)
where ¢ is the so-called Alfvén velocity:
ey= iw: _ (8.19)
(47gy)

This wave is czlled the Alfvén wave. The velocity and variable field for
this wave are perpendicular to By and k and are related by

. _y
Vy = B, (4mgy) "%, (8.20)
while the density and pressure do not oscillate; hence the wave can pro-
pagate in either a compressable or an incompressible fluid,

The group velocity of the Alfvén waves 8w/0k = B (drpy) Vi=c ne
This velocity is independent of k, meaning that appropriate perturbations
of any (but obviously mot too small} scale size at any point of the plasma
are propagated with the velocity ¢4 along the magnetic lines of force.

We now consider the second set of equations for V and B'; these lie
in the plane of By and k. The magnetic field is pexrpendicular to k and is
along the z, axis (cf, Fig. 8). We denote this projection by B'. Projecting
Eq. (8.16c) along z; and Eq. (8.16Db) along x and z we have

0o/, =k V,+ £k, V,, {8.21a)
oB’ (dng)) 7/t = c kY, (8.21b)
oV, = ctkL g0, + c kB (4mgg) ", (8.21¢)
oV, = ck o'/, (8.21d)
Eliminating p* and B' we find
(0f — 20 — )V, = cik kLY, (8.22a)
(0 — cZkY) Vz = ik LV, (8.22b)
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The condition that must be satisfied for this system to yield a nontrivial
golution gives
wf— 2 (58 + C2RP) + actkK = 0. (8.23)

Thus, we find the two roots:

N R [ e Y R X

These waves are called magnetoacoustic or magnetosonic waves: the plus
sign corresponds to the fast magnetoacoustic wave, When cp<<cg one of
these waves becomes the usual acoustic wave with frequency w = ¢k
while the other behaves like the Alfvén wave with frequency w =c k. An
incompressible conducting fluid, for which c;~w=, can thus support the
propagation of two Alfvén waves with different polarizations.

Now let us comsider the case ¢; < ¢, in greater detail. The frequency
of the fast wave is
® = c4k. (8.25)

The group velocity is equal to the phase velocity and is in the direction of

* k. In this wave the motion occurs primarily along the x 2xis and the den-

sity perturbation is small. From Eqgs. (8.21) and (8,22) we find

B’ _ CE ku k) e’ B, Vg
£ = V.= e Ve, —=—=_ (8.28)
(47100} A Qo €A

When ¢, « cp the slow wave represents the acoustic wave distorted by

the magnetic field, The frequency of this wave is
0w = Csk“ . (8.2T)

The motion in this wave occurs primarily along the z axis and the pertur-
bation of the magnetic field is small:

2
.E’.’.. V. v o5 k"kl B &5 kg
x

-0—2; A2 2 (4,190)’/2 = A £ ¥

(8.28)
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The group velocity is also direcred along the z axis and not along k as in
ordinary sonnd waves: 9w /0k = ¢.lt. These perturbations are carried along
the lines of force as though the latter were rails,

The temperature oscillations can be expressed in terms of p':

F=E g e 8,20
Ty Pa Qu—('v )Qo' (8.29)

The electric field is determined by Ohm’'s law, According to Eq, (6.28),
E=Ey= — VyBy/c in the Alfvénwave;inthe fastwave E=Ey=V, By/c. These
expressions can be refined by using Eq. (6.18) without the dissipative terms
and taking p’e/ng = yT;p /P, Thus

1., . .
E = —— [VB] + o [iBy] 4 22

en en,

= — - [VB, + PR f“] + ‘kﬁg;"g . (8.30)
Here, the second rerm (the Hall term) is smaller than the first by a factor
of ~II, The thizd term {irrotational field) vanishes in the Alfvén wave but
is of order (cé/czA)/lI in the fast wave, In the 2coustic wave the irrotational
field can be smaller or greater than the induction field but does not affect
the induction equation since ot E appears in this equation,

The energy in the wave can be found by substituting Eq. (8,11} in the
general expression (6.85) and retaining second-order terms, Using the ex-
pansion ip (8,12) we have

(8.31)

The first bracket here represents the energy of the unperturbed plasma, The
second bracker contains oscillating terms which vanish when integrated
over the volume of the wave or wher averaged in rime, The third term
gives the energy associated with the wave, The energy of the electric field
is omitted since it is much smaller than the magnetic energy;

E*B"* ~ (VByle)*4mgyV® ~ ¢4/,

. e e —————————
pEs
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and it s assumed that this ratio is small, The wave energy per unit volume
is equal to the mean value of the third bracket:

o« 2 B

e="7 Tt m (8.32)

Using Eq. (8.14) it is easily shown that the quanrity & averaged over
the velume of the wave is comserved in the oscillations. In accordance
with Eq. (8,20), the energy of the Alfvén wave is

2

£ = QOTF:, = B",/4mn. (8.33)

The energy of the fast magnetoacoustic wave (when e, Ky is
approximately

|

N D

s = goV2 = B'4a, (8.34)

Here we have omitted the energy associated with the pressure and sz.

When ¢, « ¢ 4 he energy of the acoustic wave is approximately
& = gV: = cfo“/a,. (8.35)

Here we have omitted the magnetic energy and V2,

In the general case of arbitrary c./c 4, using Eq, (8.24) it is easily
shown that the following relarion holds:

& == 0,V = B'4n + 2o, (8.36)

Damping of Magnetohydrodynamic Waves, Dissipative
effects, which we have neglected so far, cause wave damping. The energy
associated with the waves diminishes in time and s converted into hear,
For this reason w becomes complexww =y — iw,, and the amplitude is
damped in time in propertion to e 2 - Repeating the foregoing calcula-
tions taking account of dissipative effects would lead to extremely com-
plicated expressions; in the case of greatest interest, in which the damnping
is small (w, << w,), the damping can be found more directty and simply
(cf, [3] §77).
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We use the following notation: w, = w isthereal partof the frequency;
w, = wd,where § Is the logarithmic damping decrement. The energy of the
wave (integrated over the volume) is proportional to the square of the ampli-
tude and, consequently with damping, & = 5,8 2" where &y = €(t = 0). Be-
cause part of the plasma energy (the wave energy) is in "organized” form,
the entropy of the piasma must have some negative part AS; in the couse
of time this negative entropy damps out together with the wave erergy:
-48 = —(E)le'zw‘ﬁ. When al] of the wave energy has been dissipated the
plasma entropy has been increased by an amount g,/T so that (AS); =%1/Ty.
Using this relation it is easy to express the damping decrement in terms of
dAS/dt:

1 T, dAS _ 1
7T @ e O (6.7

The quantity dA-§/ dt can easily be computed by means of Eq. (6.38).
For the case of weak damping, as a first approximation we can use the ex-
pressions obtained for all wave quantities with damping neglected, Both
the entropy production (6,39} and the damping decrement (8.37) will then
be expressed in the form of a sum, each term of which gives the damping
corresponding to a particular dissipative effect:

8= 6.Toult avis + 61:1‘1e:r + adif +oee (8.38)

If these calculations are to apply and if the expressions for the frequency
and polarization given above are to hold {neglecting dissipative effects)
the condition & <« 1 must be satisfied,

We first consider wave damping in a simple plasma.

Alfvén Wave, Taking Qyypye = jzucrII + jz_l_/cj_ and § = (c¢/4m) i[kB'],
for the Alfvén wave we have

Qe = (©/4m) (B1/o + Flo 1) By

Thus, using Eq, {8.37) and the expressions =§'zy/41r we find

T S AT
2£':’6101116”'” o | BL+ inG | Ey. (8.39)
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2
in viscous damping, Qvis= (1/2) mggWop = (1/2) 2 'qp'lViuﬁ ithe

. =0
following are important: 3Vy/0x = Wyy =k Vyi 6V§/ 0z = Wyg = iky Vy.
The tensors Wy,g and Wy g are nonvanishing; only the transverse viscosity
is of importance, Simple calculations made on the basis of Eqs, (4.,42) or
(2.21) yield:* Qyg = (kL + mak’)VE,

Taking & = p?f’zy, we find
.1 ‘
208y = o ('ﬂlki - lek2|| ) (8.40)

Since the density and temperature do not oscillate in the Alfvén wave,

Pther = 0-

Fast Magnetoacoustic Wave, In this wave the current is directed
along the y axis (across the magnetic field) so that Qjonple = it/ =
(c*/4no  Yk* (B /4w). Thus, taking account of Eq. (8.34) we have

— O g 8.41
2(’)E‘)Joule_’ dno | k. ( )

The velocity in this wave is directed primarily along the x axis and has
derivatives with respect to x and z so that all three viscosity coefficients

are important: iy, ny, Mz Computing Q. by means of Eqs, (8.34) and
(8.37) we have

= (M 2 2 8.42
2(1)5“5._ o [( 3 +n1)k_l_+ﬂ2klt} . ( )
The entzopy production due to the thermal conductivity is

Biher= —aV7/To = Quned To- )

where

13

D ME” 2 Ki l g K:“ 9 x_L V T ]
cher=To(VllTe) 'W'T_U(V-Lfﬂe) ‘|“T_D(VIIT|!) ‘t‘T—u( JITHR

*Here, in computing the viscous dissipation we have used the notation of
§4. It is also possible to use Ed, (2.21) directly but this procedure is not
as convenient, )
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Taking T's = T} = T", determining TYT, from Eq. (8.29) and using Eqgs,
(8.26) and (8.34), (with the notation % = %% + %) we find

(v— D Tok%
Q 06.24 &

.

200 ther= () B} + %0kl (8.43)

Acoustic Wave, Using the saine method, by means of Eqs. (8.28) and
(8.35), taking V ~ V, we find

2

2 2 ]
2méjoule = 4mg | kL E ’ | (8.44)
1 /4
208,15 = o> ( Mk + T]zkpl) ) (8.45)
—_ 3
200 pe; = “(% (e &G + % k). (8.48)

The temperature vanishes from Eq. (8.48) if we substitute c? = ypy/py =
Y(Z + 1)Ty/m;. I the thermal conduetivity of the electrons is very large
Egs. (8.43) and (8.46) must be modified, When He — the electron motion
Is isothermal rather than adiabatic hence we must assume that the electron
adiabaticity index is ye = 1, In this case the electron terms vanish from
Egs. (8.43) and (8.46) and the acoustic velocity is modified; % = (pg + YR/ P =
(Z+7) Tp/m;.

Collisions with Neutrals. The presence of a neutral gas causes the
heat of friction to increase because the elecrrons collide with peutrals as
well as ions; what is more important, hear is generated because of the
friction between the ions and neutrals., This effect has been considered
in [29, 35, 36]. Furthermore, the expressions for ‘Svis and 'Sther Now com-
tain the coefficients of viscosity and thermal conductivity modified appro-
priately to take account of the neutral gas; these are isorropic in weakly
ionized plasmas,

Frictional damping in a three-component mixture e, i, znd n can be
computed using Eq. (7.17). In the expressions caleulated above for STounle
We now substitute o in accordance with Eq, (7.18). The damping decrement
how contains an additional term which we shall call the diffusion term 845
It results from collisions of ions with neutrals and arises as a result of the
second term in Eq. (7.17):
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Q= {ZUBI—6), 6=85(,+p)—57p,

In the Alfvén wave G = 0; in the fast magnetoacoustic wave the
ratio of G to the first term in the curly brackets is of order &;c2/c%. Neg-
lecting G we find Qy;¢ = (EleZ/ ocncz) j?'_,_. This expression has the same
form as the Joule heat; thus, without repeating the calculations we can
immediately find the damping by means of Egs, (8,39) and (8.41) simply
by substituting 1/¢%) = 1/0 + E58%/ ac? in place of 1/, In this case col-
lisions of ions with neutrals simply increase the effective perpendicular
resistance,

We now write the diffusion damping for the Alfvén wave and for
the fast magnetoacoustic wave

o2 2” Ei B2

208 dif = 77 e (Alfvén wave), (8.473)
o2t E2B2

208 U = Gy o (fast wave). (8.47b)

Let mj = mp and assume that o, can be neglected compared with TN
The diffusion damping is then larger than the Joule damping by a factor
28 werowmpwhere lﬁin = ep(ni + ng), Both expressions (8.47a) and
(8.47b) then reduce to the forin

8 gif = 0Ty, (,/m;). (8.48)

Estimaring the magnitude of the diffusion velocity we find w/V ~ Wrinks
and this quantity must be small if the expressions we have obtained are

to apply.

Both terms in Qgijr are of the same order for the acoustic wave, Let
my = mp, in which case G = £0VPe. Calculations made with Eq, (8.28)
give Vpe = ik(ng/ng) pyeVz, where ny = ng + nj + np; [§B]/c = ik pyegVy
and, in the usual way, we find
g2 n? . 2
208 dGif= Qy sEn { k2"_e_ + k.2l_ (ng +2”n) }:

Cn ng ny

2 2n
= RPT, o8
n

(8.49)

nf sz_ {ni -+ ny?
2 + k2 2 *

”a Il ®o
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In the second relation we have neglected oep/e, and substituted
w = Csk INe

In the presence of a neutral gas & ;¢ frequenily can make the largest
contribution to the damping,

Collisions Between Different Ions. If the plasma contains fons with
different e/m ratios, these ions move with somewhat different velocities,
and friction between them can also cause wave damping.

Consider the case wiry = eiB/ myc > 1, Here we can take Egs.(7.27)
for the diffusion velocity of the ions. For the Alfvén wave and the fast
magnetoacoustic wave, neglecting the pressure we have

_i(_"j;__._"fz) [h d"] =_ﬁﬂ_(ﬂ__’:2a) lhV].

P 2, ar B \' e

Substituting the frictional heat aﬁ. = W (We only consider collisions
between ions), for hoth of these waves we find

a1y F mg \2 o
208 gy = (G- — ) o (8:59

or, in order-of-magniiude terms, S~ w/wziri. This damping is weaker
thap the damping due to collisions with neutrals because the primary ion

veloclty is the velocity due to the electric drift, which is the same for
both species,

APPENDIX

The collision term for elastic collisions is of the form [1, 2, 3]
Cat (s 1) = { {Fa OVIW(¥S) = Fa (V) o (vo) | udodvs (A1)

Here do = o(u, #) do is the differential cross section for scattering into the
element of solid angle do = sin $d8dy for collisions of particles with re-
lative velocity u = |v—vp|. Before particle a collides with particle b it
has a velocity v while the b particle has a velocity v,. The post-collision
velocities ¥* and v, are related to v and vy, by the laws of elastic collisions
(conservation of momentum and energy). The second term in the cusly
brackets gives the loss of a particles out of the element of volume dv in
velocity space around v resulting from collisions with b particles; the first

8, I, BRAGINSKII 307

term corresponds to the influx into this elementary volume, Collisions of a
and b particles with velocities v, and v}, can be analyzed most simply in

the coordinate system in which the total momentum vanishes: m,V, + MpVj =
0. Introducing the relative velocity u = v, — vy, in this system we have

Va = mp(ma + mp)™'m Vp = ~ma(ma + mp) 0 mavi/2 + mpvi,/2 =
Mmapu/2, where mup = mmy, (m, + mp)~* is the reduced mass. As a con-
sequence of the conservation of energy the relative velocity camnot change
in magnitude in the collision u= |v,~vp| =|vy—v}| bur can only

be deflected through some angle 9,

Strictly speaking, the Boltzmann form of the collision term (A1)
does not apply for Coulomb collisions, This results from the fact that sub-
stitution of the Rutherford cross section in the place of da leads to a diver-
gent integral. However, if this integral is cut off, as indicated in §4, the
expression in (A.1)givesthe same results as the callision term in the Landau
form,

We now compute the friction force R}, experienced by a pas of a
particles in collisions with b particles, assuming that both particie species
have Maxwellian distributions at the same temperature but with different
mean velocities V, and Vi, We use the notation U = V, — Vy, and assume
that the velocity shift is small compared with the relarive velocities of the
particles U < (T/mab)l/ 2, The friction force is

Rap = _[mavcab (fa, Fo)dv.

This force is independent of the coordinate system and will be computed
in the system in which V, = 0, Vi, =—0. In this coordinate system f5 =
_f%, and f}, can be expanded in powers of U to give the expression

fo= 1§ — (mo/T) (Uvs) £y
Substitution of f% and f% in Ryp obviously gives zero, so that

B = — m;,mb Uﬁ j‘ veCab (fg., fgﬂbﬁ) dv

abo

Here, C,y, Is given by (A.1) and represents a vector that depends on v

{on vy, in the intepration). Since this vector does not contain any vector
parameters other than the velocity v, it is of the form vA(v); in compo-
nent form: vgA(v) where A (v) i3 a scalar function of the speed, Averaging
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over angle under the integral sign 2nd using the relation v vg = (v2/3) 8B
we find

Rip = — T80 [ ogCas ( 13, fuep ) dv.

We now substitute C,p, in accordance with Eq. (A,1) and use the relation
Fovp) f%(vl')) = fi(va)fob(vb) which follows from the conservatic?n of en-
ergy in collisions (we write ¥, in place of v to obrain a symmetric expres-
sion), Then

m ’
Rop = _’Z_"T@. Uj‘ 4 fgﬂa_s [”bfs_ ubﬁ} udadv,dvy.

To compute the integral we convert from the variables v, and vy, to the
velocity of the center of mass v, and the relative velocity u:

(]
my Mg
Vag=Vot—————1u, Vp=v,—~—2% _qy. A2
a c+ma+mb ) [ [ ma+mbu ( )

It is easily shown that dv,dvy, = dvedu and that 3] = nynpfUfS, where

(ma"f'mb)ug M uz
0_  fMad-mp e T 2r 0 _ [ Mge \*/= T 2T
R=(Trt) e o fa={geF) e '
(A.3)

The integration over dv,, is easily performed and the v, term drops out of
Vai imegration of % gives upity, Figure 9 shows directly that ug(ug —ug)=
u”(1~—cos ¥ and finally we have

Rgp = — nanbmqba;bU, (A.4)

where
gy, = ”31;? j. u3c, {odu, (A.5)
Oy () = [l — cos ) do (4, 9). (A4.8)

When ¢ip = czéb/u we obtain Eq. (7.4); if oy, = const we obtain Kq, (7.5).
Substituting the Rutherford cross section in (A.8) we obtain a divergenr inte-
gral in which the arrificial cutoff gives Eq. (7.6),
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Similarly, it is possible to compute
the frictional heat Qg1, generated in a gas
u’ of a particles in collistons with b particles
. when both particle species have Maxwellian
distributions at the same temperature but
Vi ¥ Vg with small shifts U, In the expression

2
v
Fig. 9 Qav = j‘m;_ acab (fg, fb) dvg

We carry out an expansion up to the quadratic terms in the shift:

2
O L) Mg M 2
fo=1Fp [1 7 (Uve) — 5 U 4+ o7 (UVe) ]
Only the last term gives a nonvanishing contribution:
mom 0,02 (. -
Qop = 7 UﬂUﬂ fa /bua {f’bu"bﬂ — Upglbg ] udodvadvp.

Carrying out the substitution v,, ¥, = ¥, u,after some simple calculations
we find

Qab= Raftpigpa,, U2, {A.T)

my
Mg -+ mp
The expression for Qpa I8 obtained by inrerchange of the subscripts,
It is evident that Qap + Qb 2 = —RgpU, where the total heat generated by
friction is distributed between the components in inverse proportion to
their masses,
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