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The Boltzmann equation and the one-fluid hydromagnetic 
equations in the absence of particle collisions 

BY G. F. CHEW, M. L. GOLDBERGER AND F. E. LOW 

Los Alamos Scientific Laboratory 

(Communicated by S. Chandrasekhar, F.R.S.-Received 9 March 1956) 

Starting from the Boltzmann equation for a completely ionized dilute gas with no inter- 
particle collision term but a strong Lorentz force, an attempt is made to obtain one-fluid 
hydromagnetic equations by expanding in the ion mass to charge ratio. It is shown that the 
electron degrees of freedom can be replaced by a macroscopic current, but true hydrodynamics 
still does not result unless some special circumstance suppresses the transport of pressure 
along magnetic lines of force. If the longitudinal transport of pressure is ignored, a set of 
self-contained one-fluid hydromagnetic equations can be found even though the pressure is 
not a scalar. 

1. INTRODUCTION 

In some cases of physical interest, such as in gas discharges and certain astrophysical 
problems, one may have to deal with plasmas so dilute that the mean free path for 

particle collisions is long compared to any other dimensions in the problem. The 

particles interact with each other but only through long-range fields which can be 
described macroscopically. Another way to express this situation is to say that all 
the important impact parameters are larger than the Debye radius. In such a case 
the usual collision mechanism which generates randomness and allows a description 
of the system in terms of the hydrodynamic variables, pressure, density and mass 

velocity, is absent. However, it is often assumed (Alfven 1950; Spitzer I955) that 
the presence of a strong magnetic field adequately replaces the randomizing 
tendency of collisions so that hydrodynamical concepts again are valid. The purpose 
of this paper is to investigate this assumption by attempting to derive hydromagnetic 
equations, starting from the Boltzmann equation with no collision term but a large 
Lorentz force. 

The attempt turns out to be not entirely successful. It is true that the Larmor 
radius of a particle may in a sense be considered a collision mean free path, but 
'collisions' occur only for motion perpendicular to the magnetic field. Motion 

parallel to the field is relatively free so there is no reason, in general, for odd moments 
of the velocity distribution to be small, the condition necessary for hydrodynamics 
to apply (Chapman & Cowling I952). Our conclusion, then, will be that a strictly 
hydrodynamic description of the problem is possible only when some special 
circumstance suppresses the third moment of the velocity distribution. When such 
is not the case one must go outside the framework of hydrodynamics, that is to say, 
to the Boltzmann equation itself. 

As a by-product of this investigation we are able to show that the electron degrees 
of freedom can almost always be replaced by a macroscopic current, so the problem is 

really that of one fluid-the ions. This result is independent of the difficulty with the 
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Boltzmann and the one-fluid hydromagnetic equations 

odd moments. Further, we write down, for what we believe is the first time,* 
hydromagnetic equations in the general case of a non-scalar pressure tensor. 

2. THE EXPANSION OF THE BOLTZMANN FUNCTION 

With no collisions the Boltzmann equation for the ions is 

+ (v.grad)f + (E +vxB).gradf= 0, (1) at + .d 

wheref is the distribution function, depending on position r, velocity v and time t. 
The ion charge is e and the mass M, while E and B are the electric and magnetic 
fields. (Rationalized Gaussian units with c = 1 will be employed.) The symbol 
grad, means gradient in the velocity space. 

The usual derivation of hydrodynamics from the Boltzmann equation (Chapman 
& Cowling 1952) depends on an expansion in powers of the collision mean free path. 
That is, the collision term is assumed to dominate in the equation and the other 
terms are treated as perturbations. We hope that in our case the Lorentz force will 

play a role analogous to that of the collision term, so we make an expansion in powers 
of M/e, which is equivalent to an expansion in powers of the Larmor radius. This 

procedure can also be stated as an adiabatic approximation, since it depends on the 
Larmor frequency eB/M being large compared to other frequencies in the problem. 

If we expand the Boltzmann function in powers of M/e, 

f = fo0+f+f2+. -- (2) 

then the equations satisfied by the sequence of functions f are 

(E + v x B).grad, f= 0, (3) 

( v a + v. gv x Bradf = 0, (4) 

a e 
(t + v. grad)A + (E + v x B).gradf2 = 0. (5) 

It is not obvious that this sequence of equations can be satisfied. For example, it 
is difficult if not impossible to fulfil (3) unless the electric field is perpendicular to 
the magnetic field. Fortunately, such a condition is satisfied to a very good approxi- 
mation because of the presence of the electrons. Owing to their small mass the 
electrons are highly mobile, so any electric field which develops parallel to the 

magnetic field will cause violent electron motion and cannot long persist. A semi- 

quantitative restatement of this argument is to say that if the electron plasma 
frequency is very large compared to the ion Larmor frequency, then plasma 
oscillations may be neglected. The plasma frequency is 

op- (ne2/m), (6) 

* Certain aspects of non-scalar pressure tensors are discussed in Spitzer (I955); however, 
we are not aware of any systematic discussions of the general case. 
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114 G. F. Chew, M. L. Goldberger and F. E. Low 

where n is the number of electrons per unit volume and m the electron mass. The 
ion Larmor frequency, on the other hand, is 

oL = eB/M. (7) 
Thus the ratio Op/OL is given by 

op IIMnlM\Ji 
~>( [mB 

( - ~~() (8) 

which is usually very large in problems of interest, not only because Mlm / 103 but 
also because the mass energy density nM is nearly always much greater than the field 

energy density B2. 

Assuming that the electric and magnetic fields are mutually perpendicular we 
introduce a vector a perpendicular to both B and E by the definition 

E =-axB, (9) 

so that a = E x B/B2. (10) 

Equation (3) may then be written in the form 

(V x B).gradf0 = 0, (11) 

where V =v-a. (12) 

The solution of equation (11) is straightforward. The function f0 may vary in the 

plane containing the vectors V and B but may not vary in the direction V x B. 
Thus the most general solution of (11) is 

fo{(V- a)2, v. B, r, t}. (13) 

By inspection of (13) it is clear that the component of the average ion velocity 
perpendicular to B calculated fromf0 alone is a. Furthermore, a is also the average 
electron velocity perpendicular to B, since the above arguments about f0 are 

independent of mass and charge. Very often a is referred to as the 'electric drift 

velocity'. There are other drift velocities perpendicular to B, but these are of higher 
order in the mass to charge ratio and arise from fl, f2, etc. For the electrons these 
other drifts can be completely ignored. For the ions we shall take into account 
drifts arising from f1. 

It is possible to show systematically that the remaining equations (4), (5), etc., 
may be satisfied, but this demonstration will be deferred to a subsequent paper 
which actually attempts to solve for the Boltzmann function. Here we shall consider 

only the first few moments of the Boltzmann equation in an attempt to get hydro- 
magnetic equations. 

3. THE HYDROMAGNETIC EQUATIONS 

Integrating equation (4) over all velocity space yields a continuity equation: 

an0 
a?+ div (nou0) = 0, (14) 

where o = dvf0 (15) 
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Boltzmann and the one-fluid hydromagnetic equations 

and no0u = dvvf0. (16) 

Next we multiply (4) by v and integrate to obtain 

Po d= -divPo+ [edv(v-uo)f] 
x B, (17) 

d d 
where Po = Mno and = a +u. grad, (18) dt at + 
and P0 is a pressure tensor defined by 

P = M dv(v-o) (v-uo)o. (19) 

The restriction (13) on the functional form of f implies that the pressure tensor 
must be of the form 

P0 = Pnnn+ P,(1 -nn), (20) 

where n is a unit vector pointing along the magnetic field and 1 signifies the unit 

dyadic. In other words, the pressure tensor is diagonal in a local rectangular 
co-ordinate system one of whose axes points along B. In the plane perpendicular 
to B the pressure is a scalar of magnitude PI. The pressure 'along' B is Pn, which in 

general need not equal Ps. 

Equation (17) is peculiar in that it should be regarded as determining the 
behaviour only of the component of u0 parallel to B. Recall that the component 
of u0 perpendicular to B is the electric drift a, which is determined by the electro- 

magnetic field. The component of equation (17) perpendicular to the magnetic field 

properly should be regarded as a condition on the function f. Before taking a third 
moment of equation (17) let us consider the Maxwell equations, which must be 
added to the Boltzmann equation in order to make the problem determinate. 

Remembering that E = - x B, the Maxwell equations become 

-div(uox B) = e dv(fo+f-fe), (21) 

divB = 0, (22) 

-t (U x B) - curl B-ejdvv(fo +fi-fe) (23) 

aB 
and -- = curl(uo x B), (24) 

if we keep only terms up to first order in the ion mass to charge ratio and denote the 
Boltzmann function for the electrons by f,. It will now be shown that one may 
eliminate both f1 and fe in favour of a single macroscopic quantity which will be 
called jl. 

We define j, as the difference between the total current and the charge density 
times the velocity u0. That is to say, 

j = efdvv(fo +f -fe) - ejdvuo(fo +f -fe) (25) 

8-2 
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Remembering the definition (16) of uo, the terms containing f0 cancel and we find 

i = 
eJdv(v-uo)fl-eJdv(v-uo)f,. (26) 

The way in which the function f1 occurs in jl is exactly the same as the way in 

whichf, occurs in the hydrodynamic equation (17). Furthermore, the part of j due 
to fe is parallel to B, since we have seen that the average electron velocity per- 
pendicular to B is a, which is also the component of uo perpendicular to B. Thus the 
second term on the right-hand side of (17) may be written j, x B. If we note further 
that j, itself can be determined by equations (23) and (21), that is, by 

= curlB+ (u x B)+uodiv(u x B), (27) 

then we see that f1 and f have indeed been successfully eliminated. 
To recapitulate, we have found the following equations for uo, po and B: 

duo <r1 
Po dt =-div Po + curl B x B + (uo xB) x B + (u x B) div (uxB), (28) 

aPo a + div(puo) =0, (29) 

and 
aB 

= curl (u x B). (30) at 
What is missing is an equation for the pressure. We have succeeded in the task of 

eliminating the electron variables, but we do not have a useful hydrodynamics until 
an equation for the pressure in terms of uo, po and B is obtained. We attempt to get 
this equation by the standard procedure (Chapman & Cowling I952) of multiplying 
(4) by (v - Uo) (v - u0) and integrating over velocity space. Separate equations for 
the scalar quantities P. and Ps are obtained if, in addition, one takes the scalar 

product with the dyadics nn and 1, respectively. The result is 

dt =-P, div uo- 2P . (n.grad) u - div (q+q)n-2n.gradq, (31) 

dP d- = 2P div uo + P,n. (n .grad) o- div (qsn) - q divn, (32) 

where the new quantities q. and qs are components of the pressure-transport tensor 

(Chapman & Cowling 1952). Precisely, if we introduce the totally symmetric third- 
rank tensor q(o) by the definition 

q()k = M 
jdv(i 

- o, i) ( - Uo, j) (vk -, k )fo, (33) 

then the known functional form (13) offo implies that q() can be written 

q() =qnni nk +q s(ink + Siknj kni).(34) ijk n k + nik + 6jki)( 

The presence of the pressure-transport terms in (31) and (32) in general prevents 
the closing of the hydromagnetic equations. A new equation is needed to determine 
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qs and q., and this equation will bring in a fourth moment of the velocity distribution. 
The sequence does not terminate unless some moment vanishes. When collisions 
dominate the Boltzman equation, f is isotropic in velocities, so all the odd moments 
vanish. Here the Lorentz force has given an isotropic velocity distribution only in 
the plane perpendicular to B. There is no reason in general for moments involving 
an odd power of the velocity along B to vanish. 

It is possible of course that some special circumstance may cause the unwanted 

pressure-transport terms in (31) and (32) to be small. For example, if the problem 
is essentially two-dimensional with no important variations along the magnetic 
lines, then the pressure-transport terms, all of which involve derivatives along the 
lines, may be dropped. The remainder of this paper will discuss the hydromagnetic 
problem in such a case. In general, however, one must go back to the Boltzmann 

equation (4) to have a complete description of the problem. 

4. THE HYDROMAGNETIC PROBLEM WITH NO PRESSURE TRANSPORT 

With neglect of the terms involving q, and q,, equations (31) and (32) determine 
the behaviour of the pressure as a function of the variables B, po and uo. In fact the 

equations may be cast in the following very simple form: 

dt ) 

and d = 0. (36) 

These pressure laws can be given an interpretation in terms of the known behaviour 
of individual charged particles in a strong magnetic field. For example, equation 
(36) says that if one moves along with a fluid element the average transverse energy 
per particle is proportional to B. This is not at all surprising in view of the well-known 

constancy of the magnetic moment of an individual particle in the adiabatic 

approximation. The result (35) can also be discussed in terms of individual ions, 
although not in such a simple way as (36). 

The pressure equations (35) and (36), together with equations (28), (29) and (30) 
for uo, po and B, respectively, completely determine the hydromagnetic problem. 
They are quite similar to the one-fluid equations which have been used in the past 
(Alfven I950; Spitzer 1955) but have a greater generality. In particular, no assump- 
tion has been made here that the charge density is small, and the pressure need not 
be scalar. More important, we feel that a systematic derivation based on the mass 
to charge ratio has been achieved. This is not entirely academic because one under- 
stands now that the hydrodynamic velocity, pressure and density in these equations 
contain only effects independent of the ion mass to charge ratio. The so-called 
'pressure drift', for example, is not contained in u0. It does contribute to j, and thus 
has not been ignored, but the only transverse component of uo is the electric drift. 

It is easy to show that the quantity 

E = dr[poU2 + (2Ps + Pn) + B2 + (uo x B)2], (37) dr[p''~o 
(37 
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118 G. F. Chew, M. L. Goldberger and F. E. Low 

is conserved by the hydromagnetic equations; E may therefore be interpreted as the 
total energy of the system and can be used as the basis of discussions of plasma 
stability such as have been given by Frieman (I955). The only new element here is 
the non-scalar pressure, but our pressure equations (35) and (36) maintain the 
essential feature required by Frieman's approach: they are holonomic constraints, 
so P. and P, can be eliminated in favour of a fluid displacement variable. 

In conclusion, we emphasize again that a strictly hydrodynamic approach to the 

problem is appropriate only when some special circumstance suppresses the effects 
of pressure transport along the magnetic lines. A subsequent paper will discuss 

attempts to solve the Boltzman equation when pressure transport cannot be ignored. 
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