Optimizing for Intel's Knights Landing and Other HPC Architectures

Hal Finkel
hfinkel@anl.gov
2016-07-21

Argonne Leadership
Computing Facility

e Argonne°

NATIONAL LABORATORY

ne Leadership
mputing Facility

Optimizing for HPC

v Some trends in HPC architectures
v How you can optimize your code for these architectures
v Q&A

-~ Argonne Leadership 2 4
Computing Facility N e

High-Level Optimization

-~ Argonne Leadership e
Computing Facility = =

High-Level Optimization

-~ Argonne Leadership N 4
Computing Facility N e

High-Level Optimization

-~ Argonne Leadership e
Computing Facility = =

Computer Architecture

Traditional computers are built to:

 Move data

 Make decisions

« Compute polynomials (of relatively-low order)

f(x) = a9+ a1z + aox’ + asx® + asx’

——

v

Computer Architecture

$ cat /tmp/f0.c
#include <math.h>

double foo(double a0, double al, double a2, double a3, double a4, double x) {
return a0 + al*x + a2*pow(x, 2) + a3*pow(x, 3) + ad*pow(x, 4);

}
$ gcc -0O3 -S -0 - /tmp/f0.c

movsd %xmmO, 8(%rsp)
movapd %xmm5, %oxmm0O

movsd %xmm1l, 56(%rsp)
movsd .LCO(%rip), Y%oxmm1
movsd %xmm2, 48(%rsp)
movsd %xmm3, 40(%rsp)
movsd %xmm4, 32(%rsp)
movsd %xmmb5, 24(°
call pow

call pow

-~ Argonne Leadership e
Computing Facility = =

Computer Architecture
$ gcc -03 -S -o - /tmplf.c
$ cat /tmpl/f.c _

double foo(double a0, double al, double a2, double a3, double a4, double) { ~ mulsd %xmm5, %xmm1
return a0 + al*x + a2*x*x + a3*X*xX*xX + a4*x*x*x*x; mulsd %xmmb5, %exmm?2
} mulsd %xmm5, %xmm4

mulsd %xmmb5, %xmm3
addsd %xmm1, %xmmO
mulsd %xmmb5, %xmm?2
mulsd %xmmb5, %xmm4
mulsd %xmmb5, %xmm3
This Is better, but... addsd %xmm2, %xmm0
mulsd %xmmb5, %xmm3
movapd %xmmoO, %xmm?2
movapd %xmm4, %xmmO
addsd %xmm3, %xmm?2

mulsd %xmm5, %xmmO

' ' mulsd %xmmO0, %xmm5

addsd % xmm5, %oxmm?2

— movapd %xmmz2, %xmmO
ret

* Argonne Leadm :
Computing Facility

Computer Architecture
$ gcc -0O3 -S -0 - /tmp/fl.c
$ cat /tmp/fl.c

double foo(double a0, double al, double a2, double a3, double a4, double x){ mulsd %xmm5, %xmmé
return a0 + x*(al + x*(a2 + x*(a3 + a4*x))); addsd %xmm4, %xmm3
} mulsd %xmmb5, %xmm3

addsd %xmm3, %xmm?2
mulsd %xmm5, %xmm?2
addsd %xmm2, %oxmm1l
mulsd %xmmb5, %xmml
addsd %xmm1, %xmmO

And this Is better, but... ret

i Argonne Leadm\ \ .
Computing Facility =

Computer Architecture

$ cat /tmp/fl.c
double foo(double a0, double al, double a2, double a3, double a4, double x) {
return a0 + x*(al + x*(a2 + x*(a3 + a4*x)));

}
And remember the correct target flags... ,.
P

$ gcec -03 -S -0 - tmp/fl.c $ gcc -03 -S -0 - /tmp/fl.c -march=native
mulsd %xmmb5, %xmm4 vfmadd231sd %xmm5, %xmm4, %xmm3
addsd %xmm4, %xmm3 vimadd231sd %xmm3, %xmm5, %xmm2
mulsd %xmmb5, %xmm3 vimadd231sd %xmm2, %xmm5, %xmml
addsd %xmm3, %xmm?2 vimadd231sd %xmm1l, %xmm5, %xmmO
mulsd %xmmb5, %xmm?2 ret

addsd % xmm2, %xmm1l
mulsd %xmm5, %xmm1l
addsd % xmm1l, %xmmO
ret

-~ Argonne Leadership 2 4
Computing Facility N e

Computer Architecture

IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 25, NO. 5, ocToBER 1990

$ cat /tmp/fl.c

double foo(double a0, ..., double x) { A B ; |
return a0 + x*(al + x*(a2 + x*(a3 + a4*x))); l -~

} MUX

MPY % _/Bit Alignment
t0 = fma(a4, x, a3) Ay |
tl = fma(to, x, a2) e

t2 = fma(tl, x, al)
t3 = fma(t2, x, a0)
return t3

'

ADDER LZA

\Mv_l“

LATCH
Norm./Round

#

Reg File

-~ Argonne Leadership N 4
Computing Facility N e

Computer Architecture

But this is not good...

t0 = fma(a4, x, al3)
Waiting...

Waiting... G . How do we put useful work here?

A lot of computer architecture revolves around this question:

Waiting...
Waiting...
Waiting...
t1 = fma(to, x, a2)

t2 = fma(tl, x, al)

t3 = fma(t2, x, al)

~returnt3

Hardware Threads

One way is to use hardware threads...

t0 = fma(a4, x, a3) [thread O

t0 = fma(a4, x, a3) [thread 1]

t0 = fma(a4, x, a3) [thread 2]

t0 = fma(a4, x, a3) [thread 3

t0 = fma(a4, x, a3) [thread 4

t0 = fma(a4, x, a3) [thread 5

t1 = fma(to, x, a2)

t2 = fma(tl, x, al)

How many threads do we need?

t3 = fma(t2, x, a0) How much latency do we need to hide?

~ return t3

Time Scales in Computing

Latency Comparison Numbers

L1 cache reference 0.5 ns

Branch mispredict 5 ns

L2 cache reference 7 ns

Mutex lock/unlock 25 ns

Main memory reference 100 ns

Compress 1K bytes with Zippy 3,000 ns 3 us

Send 1K bytes over 1 Gbps network 10,000 ns 10 us

Read 4K randomly from SSD* 150,000 ns 150 us ~1GB/sec SSD
Read 1 MB sequentially from memory 250,000 ns 250 us

Round trip within same datacenter 500,000 ns 500 us

Read 1 MB sequentially from SSD¥* 1,000,000 ns 1,000 us 1 ms ~1GB/sec SSD
Disk seek 10,000,000 ns 10,000 us 10 ms

Read 1 MB sequentially from disk 20,000,000 ns 20,000 us 20 ms 80x memory
Send packet CA->Netherlands->CA 150,000,000 ns 150,000 us 150 ms

Latency Numbers Every Programmer Should Know: https://gist.github.com/jboner/2841832

Argonne Leadm : X
Computing Facility

The IBM BG/Q network is fast...

Each A/B/C/D/E link bandwidth: 4 GB/s

<

Bisection bandwidth (32 racks): 13.1 TB/s

<

<

HW latency
v Best: 80 ns (nearest neighbor)

v Worst: 3 us (96-rack 20 PF system, 31 hops)

<

MPI latency (zero-length, nearest-neighbor): 2.2 us

-~ Argonne Leadership i i
Computing Facility N e

Supercomputing “Swim Lanes”

“Many Core” CPUs

http://www.nextplatform.com/2015/11/30/inside-future-knights-landing-xeon-phi-systems/

2

~

" Argonne Leadm i N
Computing Facility N

Supercomputing “Swim Lanes”

“Many Core” CPUs GPUs
* 4 hardware threads per core * Lots of hardware threads
* To make up the rest, relies on: « Many hardware threads share the instruction
* OOO processing with branch prediction stream (SIMT)

e Loop unrolling
« SIMD (vectorization)

-~ Argonne Leadership e
Computing Facility = =

Some CUDA Terminology

 Dispatched threads are organized into a grid; all threads in a grid execute the
same kernel function

» A grid is decomposed into a 2D array of blocks (gridDim.x by gridDim.y)

» Each block is decomposed into a 3D array of threads (blockDim.x by
blockDim.y by blockDim.z)

» The size of each block is limited to 1024 threads

e Threads in different blocks cannot synchronize (using __ syncthreads() - they
might execute in any order)

__global__ void add(int *a, int *b, int *c) {
int index = threadldx.x + blockldx.x * blockDim.x;
c[index] = a[index] + b[index];

SIMT

* Threads are divided into groups of 32, called “warps” in NVIDIA's terminology
(AMD calls these “wavefronts” - with a size of 64)
 All threads in each warp share many instruction stream resources (i.e. they
have the same instruction pointer)
* The size of a warp is akin to the number of vector lanes on a CPU's SIMD unit
* Beware of branch divergence...
PLELLELD

RRRRRRY!
b
AL

RRRRRRY!

http://cs.nyu.edu/courses/spring12/CSCI-GA.3033-012/lecture5.pdf

GPU Layout

~_https://devblogs.nvidia.com/parallelforall/inside-pascal/

-~ Argonne Leadership
Computing Facili

GPU SM

Single precision / SM
» Pascal: 64
Warp Schedulor » Kepler: 192

—— e — —— + Double precision / SM
Register File (32,768 x 32-bit) Register File (32,768 x 32-bit) Pascal: 32
» Kepler: 64
Core Core SFU Core Core Core ° Max 64 WarpS / SM

Max blocks / SM
 Pascal: 32
» Kepler: 16

Core Core SFU Core Cars Cara

Core SFU Caore Core Cora

Core SFU Core Core Corns

Core 5FU Cora Cang

SFU Core Cora
SFU Core Cara

SFU Core Cora

Texture [L1 Cache

-~ Argonne Leadership 2 4
Computing Facility N e

~https://devblogs.nvidia.com/parallelforall/inside-pascal/

Register Pressure!

 Each SM has a 256 KB register file

* Each thread can use up to 255 32-bit registers

 An SM running its maximum 2048 threads, however, could support
only ~32 reqgisters / thread!

t0 = fma(a4, x, al3)
t1 = fma(to, x, a2)
12 = fma(tl, x, al)
t3 = fma(t2, x, a0)
return t3

Unlike on a CPU, after the first 32, there is a significant cost to
the incremental use of each register!

Loop Unrolling

CPUs have a fixed register file per thread, and the compiler can use that to hide latency...

for (inti=0;1<n; ++) {
X = Input[i]
t0 = fma(a4, x, al3)
t1 = fma(to, x, a2)
t2 = fma(tl, x, al)
t3 = fma(t2, x, a0)
Output[i] =t3

for(inti=0;i<n;i+=2){

X = Input[i]

y = Input[i+1]
t0 = fma(a4, x, a3)
u0 = fma(a4, y, a3)
t1 = fma(to, x, a2)
ul = fma(uo0, y, a2)
t2 = fma(tl, x, al)
u2 = fma(ul, y, al)
t3 = fma(t2, x, a0)
u3 = fma(uz, y, a0)
Output[i] = t3
Output[i+1] = u3

If you need to tune this yourself, most compilers have a '#pragma unroll' feature.

-~ Argonne Leadership N 4
Computing Facility N e

.|
CPU Registers

You can't unroll enough to completely hide anything but “on core” latencies (e.g. L1 cache hits and from
FP pipeline) — you just don't have enough registers!

e X86_64 has 16 general-purpose registers (GPRs) — for scalar integer data,
pointers, etc. — and 16 floating-point/vector registers

« With AVX-512 (e.g. with Knights Landing) there are 32 floating-point/vector
registers

 AVX-512 also adds 8 operation mask registers

 PowerPC has 32 GPRs, 32 scalar floating-point registers and 32 vector
registers (modern cores with VSX effectively combine these into 64 floating-
point/vector registers)

OOO Execution and Loops

 CPUs, including Intel's Knights Landing, use out-of-order (OOQ)
execution to hide latency

e S0 to say that there are only 16 GPRs, for example, isn't the whole
story: there are just 16 GPRs that the compiler can name

for (int1=0; 1< n; ++i
X = Input]i]
t0 = fma(a4, x, al3)
t1 = fma(to, x, a2)
t2 = fma(tl, x, al)
t3 = fma(t2, x, a0)

Output[i] =t3 Q

I
OO0 Execution

* Importing to exploiting instruction-level parallelism (ILP) — each core's
multiple pipelines

« Combined with branch prediction, can effectively provide a kind of dynamic
loop unrolling

 Limited by the number of “rename buffer entries” (72 on Knights Landing)

 Limited by the number of “reorder buffer entries” (72 on Knights Landing)

» Mispredicted branches can lead to wasted work!

KNL Pipeline

~ http:/ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7453080

-~ Argonne Leadership e
Computing Facility = =

Vectorization: The Quad-Processing eXtension (QPX)

(This is for the IBM BG/Q, but the picture is fairly generic)

-~ Argonne Leadership e
Computing Facility = =

SIMD: What does it mean?

Scalar SIMD

X1

Y1

X1 Y1

https://software.intel.com/en-us/articles/ticker-tape-part-2

-~ Argonne Leadership 2 4
Computing Facility N e

Vectors Have Many Types

« A 512-bit vector can hold 8 double-precision numbers, 16 single-
precision numbers, etc.

* Different assembly instructions have different assumptions about the
data types

« Except on the IBM BG/Q (where only FP is supported), both integer
and FP types are supported

SOVUDMDVDP O SOIUDIMDIDP 1

SWILWIMWISP O SWIUWIMWISP 1 SWIUWIMWISP 2 SWIUWIMWISP 3
n an Ra [127

(This diagram is from the IBM POWER ISA manual, showing the 128-bit VSX registers)

Vector Length
128 256 512
Byte 16 32 64
Ward 8 16 32
element Dw ord/SP 4 8 16
size Qw ord/DP 2 4 8

-~ Argonne Leadership e Tl
Computing Facility =

KNL ISA

KNL implements all legacy instructions
» Legacy binary runs w/o recompilation
« KNC binary requires recompilation

E5-2600 E5-2600v3
(SNBY) (HSWY)

KNL
(Xeon Phi?)

KNL introduces AVX-512 Extensions
« 512-bit FP/Integer Vectors

« 32 registers, & 8 mask registers
» (Gather/Scatter

Conflict Detection: Improves Vectorization
Prefetch: Gather and Scatter Prefetch
Exponential and Reciprocall i

iz e

No TSX. Under separate
CPUID bit

1. Previous Code name Intel® Xeon®™ processors
2. Xeon Phi = Intel™ Xeon Phi™ processor

Avinash Sodani CGO PPoPP HPCA Keynote 2016

e

-~ Argonne Leadership i o
Computing Facility N e

What's in AVX-5127

256b AVX1 256b AVX2 512b AVX-512

16 SP/8DF 32SP /16 DP 64SP / 32 DP
Flops/Cycle Flops/Cycle (FMA) Flops/Cycle (FMA)

AVX-512

512-bit FP/Integer
32 reqisters
: Bt 8 mask registers
256-bit basic FP Float16 (IVB 2012) Embedded rounding
16 registers 256-bit FP FMA Embedded broadcast
NDS (and AVX128) 256-bit integer Scalar/SSE/AVX “promotions”
Improved blend PERMD HPC additions
MASKMOV Cather Transcendental support
Implicit unaligned Gather/Scatter
SNB HSW Future Processors (KNL & SKX)
2011 2013 in planning, subject to change

https://gcc.gnu.org/wiki/cauldron2014?action=AttachFile&do=get&target=Cauldron14_AVX-512_Vector_ISA_Kirill_Yukhin_20140711.pdf

-~ Argonne Leadership i i
Computing Facility N e

KNL AVX512-CD

for(i=0; i<16; i++) { A[B[i]]++;}

index = vload &B[i] // Load 16 B[i]

old val = vgather A, index // Grab A[B[i]]
new_val = vadd old val, +1.8 // Compute new values
vscatter A, index, new_val // Update A[B[i]]

Code is wrong if any values
within B[i] are duplicated

index = vload &B[i] // Load 16 B[i] AVX-512 Conflict
pending elem = OxFFFF; // all still remaining 0 .
etection

do
VPCONFLICT{D,Q} zmm1{k1},
zmm2/mem

old val

new val = vadd old val, +1.0 // Compute new values | VPBROADCASTM{W2D,B2Q}zmm1, k2
vscatter A {curr_elem}, index, new_val // Update A[B[i]] VPTESTNM{D,Q} k2{k1}, zmm2,

pending_elem = pending_elem ~ curr_elem // remove done 1idx zmm3/mem

} while (pending_elem)

VPLZCNT{D,Q} zmm1 {k1}, zmm2/mem

Avinash Sodani CGO PPoPP HPCA Keynote 2016

-~ Argonne Leadership i o
Computing Facility N e

.|
AVX-512 Mask Registers

VADDPD zmml {k1}, zmm2, zmm3

a/ | ab | a5 | a4 a3 | a2 | al al

bl b0

L X o X1 X1 X1 X1 X0 Xo]
I

v iAo 7+c7 B 05 +c5bd+cdb3+c3b2+c2 N IEL

https://gcc.gnu.org/wiki/cauldron2014?action=AttachFile&do=get&target=Cauldron14 AVX-512 Vector ISA Kirill_Yukhin_20140711.pdf

AVX-512 has 8 mask registers (64-bits each)

-~ Argonne Leadership i o
Computing Facility N e

Why Masking is Special...
VADDPS ZMMO {k1}, ZMM3, [mem]

= Mask bits used to:

1. Suppress individual elements read from ‘z"" (I in vector length)
Aot d if (no_masking or mask[I]) {
= hence not signaling any memory fault) E::?EI] = OP(src2, src3)
2. Avoid actual independent operations = gzz:?;?g_:ﬂ;k‘fﬂg)
within an instruction happening alce
= and hence not signaling any FP fault) £/ destit] ds preserved
3. Avoid the individual destination elements }

being updated,

= oralternatively, force them to zero
(zeroing)

Caveat: vector shuffles do not suppress memory fault

Exceptions as mask refers to “output” not to “input”

https://gcc.gnu.org/wiki/cauldron2014?action=AttachFile&do=get&target=Cauldron14_AVX-512_Vector_ISA_Kirill_Yukhin_20140711.pdf

-~ Argonne Leadership i o
Computing Facility N e

|
AVX-512 Embedded Broadcasts
Embedded Broadcasts

VFMADD231PS zmm1, zmm?2, C {1to16}

= Scalars from memory are first class citizens

float32 A[N], B[N], C;

* Broadcast one scalar from memory into all for(i=0; i<8; i++)
vector elements before operation {
= Memory fault suppression avoids fetching the if(A[i]!=0.0)
scalar if no mask bitis set to 1 Ali] = A[i] + C* B[i],

Other “tuples” supported

= Memory only touched if at least one consumer
lane needs the data

VBROADCASTSS zmm1 {k1}, [rax]
= Forinstance, when broadcast a tuple of 4 VBROADCASTFE4X2 zmme {k1}, [rax]

elements, the semantics check for every VBROADCASTF32X4 zmm3 {k1}, [rax]
element being really used VBROADCASTF32X8 zmm4, {k1}, [rax]

= Eg.:element 1 checks for mask bits 1, 5, 9,
3 - -

https://gcc.gnu.org/wiki/cauldron2014?action=AttachFile&do=get&target=Cauldron14_AVX-512_Vector_ISA_Kirill_Yukhin_20140711.pdf

-~ Argonne Leadership i o
Computing Facility N e

Why Masking Matters?

void foo(float * restrict x, float * restrict y, float * restrict z, float * restrict v, float * restrict out, int n) {
for (inti=0;i<n;++i){
float r2 = X[i]*X[i] + y[i]*y[i] + z[i]*Z][i];
if (r2 > eps) {
out[i] = f(v[i], r2);
} else {
out[i] = 0;
}
}
}

Why? The compiler needs to deal with this (hypothetical) situation:

What if it were the case that the array “v” was not as long as X, y, and z (i.e. < n), but the
programmer has arranged that (r2 > eps) will be false for all indices i invalid for the array v?

With AVX-512 masking, this is not a problem (we can mask off the access we don't need).

Note: Fortran (potentially) does not have this problem, even without masking (it knows the length of
the arrays)!

-~ Argonne Leadership N 4
Computing Facility N e

Digression on “restrict”

void foo(float * restrict x, float * restrict y, float * restrict z, float * restrict v, float * restrict out, int n) {

restrict means: Within the scope of the restrict-qualified variable,
memory accessed through that pointer, or any pointer based on it, is not
accessed through any pointer not based onit.

-~ Argonne Leadership N 4
Computing Facility N e

What programs do...

O:,‘,'"”"'f -y iy

ST T Y
oy oy

AN

Read data from memory

AN

Compute using that data

AN

Write results back to memory

Communicate with other nodes and the outside world

<

* Argonne Leadm :
Computing Facility

Caches

 KNL cores are paired into a “tile”, which
'6 CHA Q— share an 1 MB L2 cache

e L2 cache can deliver 1 read cache line

VPU and 0.5 write cache lines per cycle

 Each core has its own 32 KB L1 I-cache
and 32 KB L1 data cache

BIU
* The cache is “writeback” - the processor
DL1 bL1 reads a cache line to write to it
« Each cache line is 64 bytes (the size of
Core 0 Core 1 one 512-bit vector)
IL1 IL1

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7453080

VPU

-~ Argonne Leadership N 4
Computing Facility N e

Memory Requests

-~ Argonne Leadership e
Computing Facility = =

KNL Mesh On-Chip Network

MCDRA M MCDRAM MCDRAM MCDRAM
EDC EDC
Tile i i
C I C
Tile i Tile Tile
S — ——
Tile Tile Tile Tile Tile Tile
=8 ot g - ot |
iMIC Tile Tile Tile Tile iMC
[oor Jem
I = I S = NSt O v —
Tile Tile Tile Tile Tile Tile
Tile Tile Tile Tile Tile Tile
[— — — " |
Tile Tile Tile Tile Tile Tile
EQLC EDC hisc EDsC EQC
T S — o
MCDRAM MCDRAM MCORAM MCDRA

 Tiles are arranged on a mesh

e L2 caches are coherent, so we
need tag directories to keep track
of which tile owns which cache
lines

 How the cache lines are mapped
to tag directories has three modes
(selected at boot time): all-to-all,
guadrant, and sub-NUMA
clustering

-~ Argonne Leadership . G
Computing Facility SR

KNL All-to-all mode

Address uniformly hashed across all

IMCD;AMZ ZMCL}MMZ distributed directories

'MCDRAM MCDRAM

; :

EDC EDC

No affinity between Tile, Directory and
Memory

Most general mode. Lower
erformance than other modes.
P

Typical Read L2 miss

1. L2 miss encountered

2. Send request to the distributed directory

3. Miss in the directory. Forward to memciry

MCDRAM MCDRAM

Avinash Sodani CGO PPoPP HPCA Keynote 2016

—————-

-~ Argonne Leadership i o
Computing Facility N e

KNL Quadrant Mode

MCDRAM MCORAM MC DR AM MCDRAM

Chip divided into four virtual
Quadrants

Address hashed to a Directory in
the same quadrant as the Memory

Affinity between the Directory and
Memory

e Lower latency and higher BW than
5 all-to-all. SW Transparent.

'MCDRAM MCDRAM MCDRAM MCDRAM.

1) L2 miss, 2) Directory access, 3) Memory access, 4) Data return

Avinash Sodani CGO PPoPP HPCA Keynote 2016
e -

-~ Argonne Leadership i 4
Computing Facility N e

KNL Sub-NUMA Clustering (SNC) Mode

.MCTAM. .M“’;A“. ae 2 Cluster) exposed as a
EbC Ebc MA domain to OS.
|

Tile Tile

Tile Tile

s analogous to 4-Socket Xeon

Affinity between Tile, Directory and

Memory

Local communication. Lowest latency
of all modes.

EDC

—

'MCDRAM MCDRAM 'MCDRAM MCDRAM

”
=
=
D
5
Q
N
—t
o
2
C
-
>
o
©
=
3
N
o
—t+
c

benefit.
1) L2 mnss 2] Directory access, 3) Memory access, 4) Data return

ne Leadership
Computlng Facility

/
/.
s
z

HBM Modes

Three Modes. Selected at boot
Cache Mode Flat Mode Hybrid Mode

16GB
MCDRAM

8or1268™
MCDRAM

16GB
MCDRAM

4or8Ga~
MCDRAM

Physical Address
Physical Address

* SW-Transparent, Mem-side cache @+ MCDRAM as regular memory + Part cache, Part memory
* Direct mapped. 64B lines. * SW-Managed 25% or 50% cache

* Tags part of line * Same address space Benefits of both

* Covers whole DDR range

L= inash Sodani CGO PPaPP HPCA Kevnote 2016
-~ Argonne Leadership i i
Computing Facility

How Flat Mode Looks

MCDRAM exposed as a separate NUMA node

KNL with 2 NUMA nodes Xeon with 2 NUMA nodes
KNL M —~)DR Xeon Xeon
Node 0 Node 1 Node 0 Node 1

Memory allocated in DDR by default > Keeps non-critical data out of MCDRAM.

Apps explicitly allocate critical data in MCDRAM. Using two methods:
= “Fast Malloc” functions in High BW library (https://github.com/memkind/memkind)

= Built on top to existing libnuma API

» “FASTMEM” Compiler Annotation for Intel Fortran

~ Flat MCDRAM with existing NUMA support in Legacy OS

- -i_,;._.-_,.,- e

Avinash Sodani CGO PPoPP HPCA Keynote 2016

-~ Argonne Leadership i 4
Computing Facility N e

Flat Mode Memory Management

CIC‘l“l' (*https://github.com/memkind)

Intel Fortran

Allocate into DDR

float *fv;
fv = (float *)malloc(sizeof (float)*100) ;

Allocate into MCDRAM

float *fv;

fv = (float *)hbw malloc(sizeof (float) * 100);

Allocate into MCDRAM

- Declare arrays to be dynamic
REAL, ALLOCATABLE :: A(:)

'\DEC$ ATTRIBUTES, FASTMEM :: A

NSIZE=1024
c allocate array ‘A’ from MCDRAM

ALLOCATE (A(1:NSIZE))

i :Argonne Lead
Computing Facility

Avinash Sodani CGO PPoPP HPCA Keynote 2016

o . =
e i

ership e

CUDA Unified Memory

CUDA 6 Unified Memory Pascal Unified Memory

Kepler
GPU

CPU Pascal

CPU

. GPU
Unified Memory Nified Memory

(Limited to GPU Memory Size) (Limited to System Memory 5ize)

! ;

}

Unified memory enables “lazy” transfer on demand — will mitigate/eliminate
the “deep copy” problem!

-~ Argonne Leadership 2 4
Computing Facility N e

CUDA UM (The OIld Way)

CPU Code CUDA 6 Code with Unified Memory
void sortfile(FILE *fp, int N) { void sortfile(FILE *fp, 1int N) {
char *data; char *data;
data = (char *)malloc(N); cudaMal locManaged(&data, N);
fread(data, 1, N, fp); fread(data, 1, N, fp);
gsort(data, N, 1, compare); gqsort<<<...>>>(data,N,1, compare);

cudabeviceSynchronize();
use_data(data); use_data(data);

free(data); cudaFree(data);

-~ Argonne Leadership N 4
Computing Facility N e

|
CUDA UM (The New Way)

CPU Code Pascal Unified Memory*
void sortfile(FILE *fp, int N) { void sortfile(FILE *fp, int N) {
char *data; char *data;
data = (char *)malloc(N); data = (char *)malloc(N);
fread(data, 1, N, fp); fread(data, 1, N, fp);
gsort(data, N, 1, compare); qsort<<<...>>>(data,N,1, compare);

cudaDeviceSynchronize();
use_data(data); use_data(data);

free(data); free(data);
} } *with operating system support

Pointers are “the same” everywhere!

-~ Argonne Leadership N 4
Computing Facility N e

Types of parallelism

v Parallelism across nodes (using MPI, etc.)
v Parallelism across sockets within a node [Not applicable to the BG/Q, KNL, etc.]
v Parallelism across cores within each socket

v Parallelism across pipelines within each core (i.e. instruction-level parallelism)
v Parallelism across vector lanes within each pipeline (i.e. SIMD)

v Using instructions that perform multiple operations simultaneously (e.g. FMA)

-~ Argonne Leadership N 4
Computing Facility N e

How fast can you go...

The speed at which you can compute is bounded by:

(the clock rate of the cores) x (the amount of parallelism you can exploit)

-~ Argonne Leadership e
Computing Facility = =

Hardware Prefetcher

e L1 hardware prefetcher monitors access patterns and generates
requests to the L2 in advance of anticipated need

« L2 hardware prefetcher does the same, issuing requests to main
memory

 The KNL L2 prefetcher supports 48 independent streams (that's
shared among all running threads). Running 4 hardware threads
per core, two cores per tile: 6 streams per thread!

AOS vs. SOA
Structure of Arrays
struct Particles {
I R R = float "
float *y;
[y Iy TvJvy[-] float 2
float *w;
Lzlz2]z]=2]-] ¥
W w W w
Array of Structures struct Particle {
float x;
N - BN - oot o
float z;
https://software.intel.com/en-us/articles/ticker-tape-part-2 }.float w;

struct Particle *Particles;

-~ Argonne Leadership 2 4
Computing Facility N e

...
Compiling

Basic optimization flags...

v -O3 — Generally aggressive optimizations (try this first)

v -g —Always include debugging symbols (really, always! - when your run crashes at scale after
running for hours, you want the core file to be useful)

v -fopenmp — Enable OpenMP (the pragmas will be ignored without this)

v -ffast-math (clang, gcc, etc.) — Enable “fast” math optimizations (most people don't need strict IEEE

floating-point semantics).

-~ Argonne Leadership N 4
Computing Facility N e

An example... (what tuning might look like)

void foo(double * restrict a, double * restrict b, etc.) {
#pragma omp parallel for
for (i=0;i<n;++i){

a[i] = e[il*(b[i]*cfi] + dli]) + f[i];

m(i] = a[if*(n[iI*o[i] + p[i]) + r[i];

Split the loop

void foo(double * restrict a, double * restrict b, etc.) {
#pragma omp parallel for
for (Ii=0;1<n; ++i){

afi] = e[i*(b[iT*cfi] + d[i) + fil;
}

#pragma omp parallel for
for (i=0;1<n; ++i){

\ m[i] = q[if*(n[iT*o[i] + p{i]) + r[i];

-~ Argonne Leadership e
Computing Facility = =

An example...

void foo(double * restrict a, double * restrict b, etc.) {
#pragma omp parallel for
for(1=0;1<n;++i){

ali] = e[i]*(b{i]*c(i] + d[i]) + fi];
}

#pragma omp parallel for

for i=0;i<n;++i){

m(i] = qli(nfil*o[i] + p[il) + rfil; | | |

} void foo(double * restrict a, double * restrict b, etc.) {

} #pragma omp parallel
{

#pragma omp for

for 1=0;1<n;++i){

a[i] = e[i*(b[iT*cfi] + d[i) + fil;
}

(don't actually split the parallel region) #pragma omp for
for (I=0;i<n; ++i){

} m[i] = q[if*(n[iT*o[i] + p{il) + r[i];

}
}

-~ Argonne Leadership N 4
Computing Facility N e

An example...

void foo(double * restrict a, double * restrict b, etc.) {
#pragma omp parallel

{
#pragma omp for
for i=0;i<n;++i){

a[i] = e[i]*(b{i*c(i] + d[i]) + f];
}

} Unroll (interleaved) by a factor of 3.
On PowerPC, this will require up to
3*5 == 15 vector registers,

but we have 32 of them.

void foo(double * restrict a, double * restrict b, etc.) {
#pragma omp parallel

{
#pragma omp for
#pragma unroll(3)
for (i=0;i<n; ++i){

afi] = e[i*(b[iT*cfi] + d[i) + fil;
}

-~ Argonne Leadership e
Computing Facility = =

schedule(dynamic) can be your friend...

#pragma omp parallel for schedule(dynamic)
for(i1=0;i<n;i++){
unknown_amount_of work(i);

}

Thweadd Thread1 Thresd? Theesd 3 ThweadD Thread1 Thread?2 Theesd 3

=E =] |IE

{a) Unbalanced assignment of tasks to threads [b) Balanced assignment of tasks to threads

https://software.intel.com/en-us/articles/load-balance-and-parallel-performance

-~ Argonne Leadership 2 4
Computing Facility N e

#pragma omp simd
Starting with OpenMP 4.0, OpenMP also supports explicit vectorization...

char foo(char *A, int n) {

int i;

char x = 0;
#pragma omp simd reduction(+:x)

for (i=0; i<n; i++){ H B

X =X+ Alll;

}

return x; char foo(char *A, int n) {
} int i;

char x = 0;
#pragma omp parallel for simd reduction(+:x)
for (I=0; i<n; i++){
X =X + AJil;
}

return x;

}

https://software.intel.com/en-us/articles/enabling-simd-in-program-using-openmp40

-~ Argonne Leadership i o
Computing Facility N e

Coarse Grained vs. Fine Grained Parallelism

Preamble >
1 (1-p)
Fork()

Amdahl's law says the speedup is limied to:

‘_‘_1_‘_‘ X 1/(1 — p). So if 5% of the program remains

Worker Worker
Thread Thread

serial, then the speedup from parallelization is
Worker Worker Worker limited to 20
Thread Thread Thread Imited 1o £UX.

https://en.wikipedia.org/wiki/Amdahl

|_I_l_|_| %27s_law

Join) | e [Thisis expensive ool

1 (1-p)”

(Post-processing)

https://blogs.msdn.microsoft.com/ddperf/2009/04/29/parallel-scalability-isnt-childs-play-part-2-amdahls-law-vs-gunthers-law/

-~ Argonne Leadership i o
Computing Facility N e

C++17 Parallel Algorithms

® Parallel versions, and parallel+vectorized versions, of almost all standard
algorithms (plus a few new ones)

Table 2 — Table of paralle] algorithms

adjacent difference adjacent find all of any of

copy copy_1f copy_n count

count_1f equal exclusive_scan fill

fill_n find find_end find first of
find_1f find 1f not for_each for_each_n
generate generate n includes inclusive scan
inner_ product inplace merge 1s_heap 15 _heap until
1s_partitioned 1s_sorted 1s_sorted until lexicographical compare
max_element merge min_element minmax_element
mismatch move none_of nth_element
partial_sort partial_sort_copy partition partition_copy
reduce remove remove_copy remove_copy_1f
remove 1T replace replace_copy replace_copy_1f
replace 1f reverse reverse_copy rotate

rotate copy search search_n set_difference
set_1ntersection set_symmetric_difference set union sort

stable partition stable sort swap_ranges transform
transform exclusive scan transform inclusive scan transform reduce uninitialized copy
uninitialized copy_n uninitialized fill uninitialized fill _n unique

unique_copy

[Note: Mot all algorithms in the Standard Library have counterparts in Table 2. — end note]

= g = ~

- Argonne Leadm\ \ o
Computing Facility

C++17 Parallel Algorithms

vector<float> a;

for_each(par_seq, a.begin(), a.end(), [&](float &f) {
f+=2.0;

D;

-~ Argonne Leadership e
Computing Facility = =

OpenMP Evolving Toward Accelerators

Shared memory

-EE EE-

Threads have access to a shared memory

Memory

http://livm-hpc2-workshop.github.io/slides/Tian.pdf

Distributed memory

Memory X

-Ea

Memory Y

~N

-~ Argonne Leadership 2 4
Computing Facility N e

OpenMP Accelerator Support - An Example (SAXPY)

int mainf{int argc, const char®* argvii) 1
float *x = (float?*) malloci(n * sizecf({float)) ;
float *y = (float*) malloc(n * sizeof(float)):
// Define scalars n, a, b & initialize x, ¥y

For {(int 3 O; i < n; ++1i) {
vii] = a*x[i] + wli]:
}

free (x); free(y):; return 0;

http://llvm-hpc2-workshop.github.io/slides/Wong.pdf

-~ Argonne Leadership N 4
Computing Facility N e

OpenMP Accelerator Support - An Example (SAXPY)

int main{(int argc, con=at char* argwvili) {1
£float *x = (float*) malloci(n * sizecf{float)):
float *y = (float*) malloc(n * sizecof(float)):

// Define scalars n, a, b & initialize x,

#pragma omp target data map (to:x[0:n])
{
#pragma omp target map(tofrom:y)

ragma omp teams num_ teams (num blocks) num threads (bsize)
E RN IIIll“IIIII'IIIII
all do the same = | |H” H‘H
heeaad bonad s

#pragma omp distribute
for int 1 = 0; i < n; i += num blocks

i A BEABEN NN NN NN m |
workshare (w/o barrier)
l ||H-Hr | “W“W"itul

#pragma omp parallel for

for ilnt 1 4 <« 4 =4 nu bBlocies = S5 {
FENEDR lllllllllllllllllllllr

workshare (w/ barrier)

I“_“"'II"““II*"‘"II““"II

y[3J]l] = a*x[j] + yl[J]1~

___ 3 free(x), free(y):; return 0; }

= Dl St -

: i;rgonne . dm::\\ http://llvm-hpc2-workshop.github.io/slides/Wong.pdf

Computing Facility

OpenMP and UVM?

How does OpenMP accelerator support interact with unified memory?
We don't yet know!

-~ Argonne Leadership i i
Computing Facility =

-
MKL, cuBLAS, ESSL, etc.

Vendors provide optimized math libraries for each system (BLAS for linear algebra, FFTs, and more).

v MKL on Intel systems, ESSL on IBM systems, cuBLAS (and others) for NVIDIA GPUs
v For FFTs, there is often an optional FFTW-compatible interface.

-~ Argonne Leadership i i
Computing Facility =

Memory partitioning

Using threads vs. multiple MPI ranks per node: it's about...

v Memory
v Sending data between ranks on the same node often involves “unnecessary” copying (unless using
MPI-3 shared memory windows)
v Similarly, your application may need to manage “unnecessary” ghost regions
v MPI (and underlying components) have data structures that grow linearly (at best) with the total
number of ranks
v And Memory
v When threads can work together they can share resources instead of competing (cache, memory
bandwidth, etc.)
v Each process only gets a modest amount of memory per core
v And parallelism

~» You'll'likely see the best overall results from the scheme that exposes the most parallelism

Argonne Leadm : X
Computing Facility

And finally, be kind to the file system...

v Use MPI I/O - use collective I/O if the amounts being written are small
v Give each rank its own place within the file to store its data (avoid lock contention)
v Make sure you can validate your data (use CRCs, etc.), and then actually validate it when you read it

(We've open-sourced a library for computing CRCs: http://trac.alcf.anl.gov/projects/hpcrc64/)

And use load + broadcast instead of reading the same thing from every rank...

v Static linking is the default for all IBM BG/Q compilers for good reason... loading shared libraries from

tens of thousands of ranks may not be fast
v The same is true for programs using embedded scripting languages... loading lots of small script files

from tens of thousands of ranks is even worse

-~ Argonne Leadership N 4
Computing Facility N e

ALCF Systems

How They
Compare

Peak Performance

Compute Nodes
Processor

System Memory

Mira
10 PF

49152

Theta

>8.5 PF

>2,500

PowerPC A2
1600 MHz

2nd Generation
Intel Xeon Phi

768 TB

=480 TB

Aurora

180 PF

>50,000

3rd Generation
Intel Xeon Phi

>7PB

File System Capacity 26 PB >150 PB

File System Throughput 300 GB/s >1TB/s

Intel Architecture (x86-64)

Compatibility No

Peak Power Cunsumptiuﬂ. .

GFLOPS/watt

https://www.alcf.anl.gov/files/alcfscibro2015.pdf

-~ Argonne Leadership
Computing Facili

Mira by Domain BIOLOGICAL SCIENCES 5%

CHEMISTRY 8%
COMPUTER SCIENCE 2%

PHYSICS 28%

EARTH SCIENCE 13%

2015 INCITE

BY DOMAIN
3.57 BILLION
CORE-HOURS

MATERIALS SCIENCE 29% ENGINEERING 15%
BIOLOGICAL SCIENCES 6%
CHEMISTRY 11%

COMPUTER SCIENCE 6%

PHYSICS 31%
2015 ALCC

BY DOMAIN
174 BILLION EARTH SCIENCE 7%
CORE-HOURS
MATERIALS SCIENCE 19% ENGINEERING 20%

https://lwww.alcf.anl.gov/files/alcfscibro2015.pdf

-~ Argonne Leadership i 4
Computing Facility N e

Common Algorithm Classes in HPC

: Algorithm Dense Sparse Spectral | Particle | o . . | Unstructured Dith
Scienc linear linear Methods Grids or AMR hterisive
areas algebra algebra (FFTs) Methods Grids

Accelerator
Science X X X X X
Astrophysics X X X X X X X
Chemistry X X X X X
Climate X X X X
Combustion X X X
Fusion X X X X X X
Lattice Gauge X X X X
Material
Science X X X X

http://crd.Ibl.gov/assets/pubs_presos/CDS/ATG/WassermanSOTON. pdf

-~ Argonne Leadership e Tl
Computing Facility =

Common Algorithm Classes in HPC - What do they need?

' Algorithm Dense Sparse Spectral | Particle | o, . . | Unstructured Dats
Scienc linear linear Methods Grids or AMR e i
areas algebra algebra (FFT)s Methods Grids

Accelerator T -
Science o a —
= I 'j L]

Astrophysics 9 Q - 2 @
= o d = o
- o o —+ Q) ©
Chemist o = —- o i % — Q
id = 3 & 3 & 3 0

Q O = Q
Climate L S = o 5 B < &
T 4] = o = f—]-_% 2

. —— ==
Combustion E 3 S % h ® 3 =
® 539 = =. ® —
Fusion o = = g = =n
= = o L - Q
o 2 2 x =
Lattice Gauge =2 = 3 n =5 c
@ e % g
Material @ o ®
Science = 3

-~ Argonne Leadership e Tl
Computing Facility = =

http://crd.Ibl.gov/assets/pubs_presos/CDS/ATG/WassermanSOTON. pdf

Performance Limited By...

Compute Bound
(Use a better algorithm)

%
&
S
Q)«‘Z’
N
S
<
§Q
S
2.
Memory-Latency Bound Memory-Bandwidth Bound —
(Pipeline better) (Use a more-compressed representation)

-~ Argonne Leadership e
Computing Facility = =

HPC Languages

»

1.0
1.0
1.0
1.0

1.1

1.3
1.6
1.9

2.1
2.1
2.1
2.1

n-body

source code
C++ g++ #3

C++ g++ #8
Cgcc#4

C++ g++ #7
Fortran Intel #5
C++ g++ #5
Rust #2

Ada 2005 GNAT #5
C++ g++ #6

C++ g++
Fortran Intel #2

Fortran Intel
https://benchmarksgame.alioth.debian.org/u64q/performance.php?test=nbody&sort=elapsed

secs

9.30
9.35
9.56
9.64
9.79
11.76
14.60
18.02
19.21
19.36
19.84
19.96

KB
1,768
1,084
1,008
1,028

516
1,728
6,336
1,956

984
1,056

508

512

program source code, command-line and
measurements

gz
1763

1544
1490
1545
1659
1749
1799
2436
1668
1659
1496
1389

cpu
9.30
9.34
9.56
9.64
9.78
11.75
14.59
18.02
19.20
19.35
19.83
19.95

0% 1% 100% 0%

1% 0% 0% 100%

100% 1% 0% 1%

1% 0% 1% 100%

100% 1% 0% 1%

0% 1% 100% 0%

1% 100% 0% 1%

0% 1% 100% 0%

0% 100% 1% 1%

1% 0% 1% 100%

0% 1% 0% 100%

ership e
LY .

Computing Facility

-~ Argonne Lead

How do we express parallelism?

Programming Models Used at NERSC 2015
(Taken from allocation request form. Sums to >100% because codes use multiple languages)

—
-
.

OpenMP

Posix Threads

PGAS

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Percent of Codes

Courtesy of Yun (Helen) He, Alice Koniges, et. al., (NERSC) at OpenMPCon'2015

o http://livm-hpc2-workshop.github.io/slides/Tian.pdf

-~ Argonne Leadership e
Computing Facility = =

How do we express parallelism - MPI+X?

v' OpenMP is about 50%, out of all choices of X
@ OpenMP

@ CUDA

¢ pThreads

@ Other

@ CUDA Fortran
@® OpenACC

@® OpenCL

@ Coarray Fortran
® UPC

@ Intel TBB

@® Intel Cilk

@ Thrust

Courtesy of Yun (Helen) He, Alice Koniges, et. al,, (NERSC) at OpenMPCon'2015

-~ Argonne Leadership 2 4
Computing Facility N e

http://llvm-hpc2-workshop.github.io/slides/Tian.pdf

Eur. Phys. J. A (2015) 51: 163

The Challenge of the Future: Power

6
P) Cost to move data 1 mm on-chip

20 mm
64-bit DP
20 p -/I 26pj | 256pf 16nj [Typical cost of a single floating point
2 i operation
256-bit 17|
buses -7 ED . 500 nj o
74 B Gl
it Cost to move data 20 mm on chip
8kB SRAM 1nj
28 nm Cost to move off-chip, but stay within
() Bl Dally the package (SMP)
2000 PJ Cost to move data off chip into
DRAM
Cost to move data off chip to a
neighboring node
The DOE wants 1 exaflop at < 20 MW http://www.socforhpc.org/wp-content/uploads/2015/07/0OpenSoC_Pres_15min.pptx
 mgome Leadership~_

About Using HPC Systems...

 Why is HPC Hard?

« What can you do about it?

-~ Argonne Leadership N 4
Computing Facility N e

You need to share

Your job won't run right away...

dachine State - x \ _

Bl
2

r 1Y status.alcf.anl.gov/mira/activity

Rumnning Jobs I Queued Jobs

Total Queued Jobs: 123

=

Job Id

519072
517415
414425
414428
514789
514677
514806
514817
514746
514724
514813
514734
514695
520037
507429

=

-~ Argonne Lead

erShip\\ \\ : o~
Computing Facility R

.
o

Project

SoPE
petasimnano
LatticeQCD_2
LatticeQCD_2
LatticeQCD_2
LatticeQCD_2
LatticeQCD_2
LatticeQCD_2
LatticeQCD_2
LatticeQCD_2
LatticeQCD_2
LatticeQCD_2
LatticeQCD_2
EnergyFEC
LatticeQCD_2

~

Reservations

W Score T

25907.6
9377.5
7382.2
7092.8
6884.9
6761.5
6760.5
6693.5
6638.2
6637.1
6636.9
6636.9
6635.7
57459.2
5566.6

Walltime

Queued Time gggiueue

3d 07:18:47
4d 21:48:22
159d 05:05:59
159d 05:05:31
8Bd 22:50:06
9d 03:31:05
8d 21:54:01
8d 20:01:15
8d 23:46:23
9d 01:38:29
8d 20:57:24
9d 00:42:49
9d 02:33:53
2d 06:45:42
22d 08:00:24

prod-capability
prod-capability
prod-capability
prod-capability
prod-capability
prod-capability
prod-capability
prod-capability
prod-capability
prod-capability
prod-capability
prod-capability
prod-capability
prod-capability
prod-capability

MNodes <

49152
49152
12288
12288
12288
12288
12288
12288
12288
12288
12288
12288
12288
32768
12288

Mode
script
script
script
script
script
script
script
script
script
script
script
script
script
script
script

4

You have a limited amount of time

A large allocation on Mira (ALCF's production resource) is a few hundred million core hours

100 M core hours / (16 (cores per node) * 1024 (nodes per rack) * 48 (racks)) == 127 hours

127 hours is 5.3 days

Running on the whole machine (48 racks) for 24 hours is the largest possible job

Thus, with 5 jobs (plus some test runs), a 100-M-core-hour allocation could be gone

-~ Argonne Leadership . T
Computing Facility Nt

Supercomputers are not commodity machines

Even when built from commodity parts, the configuration and scale are different

The probability that you'll try to do something in your application that has never been tested before is high

The system software will have bugs, and the hardware might too.

The libraries on which your code depends might not be available.

-~ Argonne Leadership 2 4
Computing Facility N e

Your jobs will fail

* The probability that a node will die, its DRAM will silently corrupt your data (including those in the storage

subsystem), etc. is very low.

« However, if you spend a large fraction of your life running on large machines, you'll see these kinds of

problems.

i Argonne Leadm\ \ .
Computing Facility =

Your jobs will fail (cont.)

From the introduction of Fiala, et al. 2012:

« Servers tend to crash twice per year (2-4% failure rate) (Schroeder, et al. 2009). HPC node hardware is
designed to be somewhat more reliable, but...

« 1-5% of disk drives die per year (Pinheiro, et al. 2007). HPC storage systems use RAID, but... (also, many
hardware RAID controllers don't do proper error checking, see Krioukov, et al. 2009 — older paper, but
personal experience says this is still true today)

 DRAM errors occur in 2% of all DIMMs per year (Schroeder, et al. 2009)

« ECC alone fails to detect a significant number of failures (Hwang, et al. 2012)

i Argonne Leadm\ \ .
Computing Facility =

Your jobs will fail (cont.)

5.0
OPerformance Failure OPerformance Failure
4.5 OProtocol Failure OProtocol Failure —
4.0 B Physical Interconnects Failure —— 4.0 - M Physical Interconnects Failure ——
a5 @ Disk Failure 35 . B Disk Failure -
— 3.0 — 3.0
£ 2
o 2.5 - o 2.5
LL L [|
< 2.0 - < a2 |
1.5 - 1.5 -
1.0 - 1.0 -
0.5 - 0.5
ﬂ.ﬂ - T ﬂ.l.'l - T
Single Path Dual Paths Single Path Dual Paths
(a) Mid-range systems (b) High-end systems

o Jiang, et al. 2008
:// ;r;c:nne Leadm:: X
Computing Facility R

Your jobs will fail (sometimes worse)

Table 2. Estimated rates of UDEs in %.

Estimated Rate
UDE Type Nearline | Enterprise
Dropped 1/0 9-10- [9.107™
Near-off Track /0 | 10~ W=
Far-off Track 1/0 T 10~

Rozier, et al. 2009 — UDE == Undetected Disk Error.
They assume 4 KB per I/O request

So you should expect to see silent data corruption once in every (even with RAID):
1/(2 x 10"-13) * 4*1024 == 2 x 10™16 bytes (20 PB)

Mira's file system is ~28 PB, so this is not an unthinkable number
(and, from personal experience, the rate is somewhat higher than that)

Argonne Leadm : X
Computing Facility

Debugging is hard

Your favorite debugger is great, but probably won't run at scale...

File Edit View Terminal Tabs Help

GNU gdb (GDB) Fedora 7.6.1-46.fcl9
Copyright (C) 2013 Free Software Foundation,
License GPLw3+
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law. Type
and "show warranty" for details

This GDB was configured as "x86_64-redhat-linux-gnu"

For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>. .

Reading symbols from /fusr/bin/ls...Reading symbols from /fusr/bin/ls...
ing symbols found)...done.

(no debugging symbols found)..
Missing separate debuginfos, use:
4

Inc.

.done.

(gdb) r
Starting program: /bin/ls /dev
[Thread debugging using libthread_db enabled]

GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>

"show copying”

{no debugg

debuginfo-install coreutils-8.21-13.fcl9.x86_6

Using host libthread_db library "/1ib64/libthread_db.so.1"
autofs kvm sdaz2 tty20 tty47 ush
block log sda3 tty2l tty48 usbmon@
hsg loop-control sdad tty22 tty49 usbmonl
btrfs-control 1p0 sdas tty23 ttys ushmon2
bus 1pl sdab tty24 tty50 usbmon3
char 1p2 sda7 tty25 ttys51 usbmon4d
PremEne ==t hsg Loop-control sdad tty22 tty49
4 btrfs-control 1p0 sda5 tty23 ttys
égg?ii;g orogPls 1p1 sda6 tty24 ttyse
[Thread debuch?: ey ._-_“.}ffi_- v sda7 tty25 ttysl
Using host libthread_db library "/1ib64/1libthread_db.so.1".
autofs kvm sda2 tty20 tty47 ush
block log sda3 tty2l tty48 usbmon@
bsg loop-control sdad tty22 tty49 usbmonl
btrfs-control 1p0 sda5 tty23 ttys ushmon2
bus 1pl sdab tty24 tty50 ushmon3
char 1p2 sda7 tty25 tty51 usbmon4
STarting program. /pingLs jaewv
[Thread debugging using libthread_db enabled]
Using host libthread_db library "/lib64/libthread_db.so.1"
autofs kvm sda2 tty20 tty47
block log sda3 tty2l tty48
bsg loop-control sdad tty22 tty49
btrfs-control 1p0 sda5 tty23 ttys
bus 1pl sdab tty24 tty50
char 1p2 sda7 tty25 ttys51
e e char

n

File Edit View Terminal

GNU gdb (GDE) Fedora 7.6.1-46.fcl9
Copyrlght (C) 2013 Free Software Foundation, Inc.

es/gpl.html>

Icopying"

. (no debugg

1-13.fcl9.x86_6

b
bmon@
ushmonl
ushmon2
ushmon3
ushmond

. (no debugg

. fcl9. x86_6

ush

ushmon®
ushmonl
ushmon2
ushmon3
usbmon4

1p2

Lv3+:

ree software:

Tabs

GNU GPL version 3 or later <http:/
you are free to change a
NO WARRANTY, to the extent permitted
warranty” for detalls

Help

L

gnu.org/licenses/gpl.html>
edistribute it.
w. Type

=

ebugg

x86_6

sda’
sda3
sdad
sdas

sdab
sda7

sr/bing/ls. ..

ush

usbmon®
] usbmonl
ushmon2
ushmon3
L usbmon4

read_db.so.1".
tty20 ttya7
tty2l tty4s
tty2z tty4o
tty23 ttys
tty24 ttyso
tty25 ttysl

"show copying”

{no debugg

1l5-8.21-13.fc19.x86_6

t-1in

.(no debugg

install coreutils-8.21-13.fcl9.x86_6

usb

ushmon@
ushmonl
ushmon2
ushmon3
ushmond

debugg

btrfs-control

bus
char

€8 Istarting progra
NO Wit Thread debugglng using libthread_db enabled]

r/bin/ls. ..

coreutils-8.21-13.fcl19.x86_6

Warljsing host libthread db library "/lib64/libthread db.so.1"
was kvm sda2 tty20 tty47 ush
EPOThlock log sda3 tty2l tty4s usbmon®
WW. Glhsg loop-control sdad tty22 tty49 usbmon 1
Ymholht rfs control 1p0 sda5 tty23 ttys usbmon2
Ls fipys 1pl sdab tty24 ttys50 usbmon3
1p2 sda7 tty25 ttys51 usbmon4d

T T e L = T s e
program: /bin/1ls /dev
ebugging using libthread_db enabled]
t libthread_db library "/1ib64/1libthread_db.so.1".

kvm sda2 tty20 tty47 ush

log sda3 tty2l tty48 usbmon®

loop-control sdad tty22 tty49 usbmonl

1po sda5 tty23 ttys usbmon2

1pl sdab tty24 ttys0 ushmon3

1p2 sda7 tty25 ttys51 ushmond

. Z = %

-~ Argonne Leadership N 4
Computing Facility N e

{no debugg

.|
Debugging is hard (cont.)

Tools for debugging, profiling, etc. at scale are available, but they won't be what
you're used to, and they might fail as well.

800 + Allinea DDT 4.2-34404
hp_c.\..-'iewer: FLASH/white dwarf: IBM BG/P, weak 256->8192 — I (=5} {?} Be 20 Ef 2| Ef | ﬂ, 2 .
= mpi_amr_comm_setup.F90 23 | -0 Current Group: [Al 3 | Focus on current: (3) Group () Process () Throad | | | Step Throads Togather :
418 itemp = max(sum{commatrix_send), sum{commatrix_recv)) All EEEEEE
419 Call MPI_ALLREDUCE (itemp, &
420 max_blks_sent, & Project Fiks o0 Locals [[CURERELREEN Curent Stack |
421 1, & = Current Lina(s) 00
J":j :::i_INTEGER, : :lsamh L Variable Name Value
42 _MAX, v & Application Code
424 MPI_COMM_WORLD, & > @/
425 ierror) v [Sources
426
+) bar(int arg) : void
- = = = 2] foo : void
"% Calling Context View |-§. Callers View &3 | e, Flat View =0 [z main(int argc, char *arg:
— L » & External Code
& & 2 6RVJ|M|§A’ A
‘Scope 8102/WALLCLOCK (us) () 8192/WALLCLOCK (us) (E) ~
Experiment Aggregate Metrics 6.71e+08 6.71e+08 100 % taarge, sargv) ;
¥ DCMF::Protocol::MultiSend:: TreeAllreduceShortRecvPostM 1.07e+08 1.07e+08 16.0% X i fret cEss)
¥ 48 436: DCMF::Queueing::Tree::Device:: postRecv(DCMF 1.07e+08 1.07e+08 16.0% . priate (otdezz, Tttt ()
¥ 48 517 DCMF_GClobalAllreduce 1.07e+08 1.07e+08 16.0% 53 o
54
¥ 48 37: MPIDO_Alireduce_global_tree 1.05e+08 1.05e+08 15.7% » o o s saes
¥ 48 196: MPIDO_Allreduce 1.05e+08 1.05e+08 15.7% Ciput... | Brosk.. | Waih... [e = — kLng;xka = - o =
v 48678 PMPI_Allreduce 1.05e+08 1.05e+08 15.7% i e - wiid
5 ession ue
¥ &l 126: pmpi_allreduce 1.05e+08 1.05e+08 15.7% A — ‘ T
» ¢8 419: mpi_amr_comm_setup 9.51e+07 9.51e+07 14.2%] main {hellompi.c:40)
> 48 177: amr_refine_derefine 5.04e+06 5.04e+06 0.8%
» 48 358: driver_computedt 2.08e+06 2.08e+06 0.3%
» 48 119: mpi_morton_bnd 1.58e+06 1.58e+06 0.2%
» 48 150: driver_verifyinitdt 9.70e+05 9.70e+05 0.1%
Ready Connected to: rloy@cetus.alcf.anl.gov y

HPCTool

kit

Allinea DDT

-~ Argonne Leadership i 4
Computing Facility N e

Everything is fast, but too slow...

* The network is fast, but likely slower than you'd like
 The same is true for the memory subsystem

 The same is true for the storage subsystem

Mira's file system can provide 240 GB/s — but you need to use the whole machine
to get that rate. In addition, writing is slower than reading.

If you had the whole machine, and were the only one using the file system, then
reading in enough to fill all 768 TB of DRAM would take: ~9‘

« D

(768*1024 / 240)/60 == 55 minutes _L
A

Argonne Leadm : X
Computing Facility

Everything is fast, but too slow... (cont.)

Also remember that:
» There is a big difference between latency and bandwidth

 |/O performance tends to be quirky (memory performance does too, to a lesser extent)

» Load balancing can be tricky

-~ Argonne Leadership e
Computing Facility = =

So, now what do you do?

-~ Argonne Leadership N 4
Computing Facility N e

Experiment in parallel

dachine State - x \

3 flj status.alcf.anl.gov/mira/activity

=

=

-~ Argonne Lead

~

erShip\\ \\ : o~
Computing Facility R

Rumnning Jobs I Queued Jobs Reservations
Total Queued Jobs: 123
Job Id ¢ Project Score ¥ Walltime Queued Time ¥ Queue ¢ Nodes ¢ Mode ¢
519072 SoPE 25907.6 00:45:00 3d 07:18:47 prod-capability 49152 script
517415 petasimnano 9377.5 1d 00:00:00 4d 21:48:22 prod-capability 49152 script
414425 LatticeQCD_2 7382.2 18:00:00 159d 05:05:59 prod-capability 12288 script
414428 LatticeQCD_2 7092.8 18:00:00 159d 05:05:31 prod-capability 12288 script
514789 LatticeQCD_2 6884.9 18:00:00 8d 22:50:06 prod-capability 12288 script
514677 LatticeQCD_2 6761.5 18:00:00 9d 03:31:05 prod-capability 12288 script
514806 LatticeQCD_2 6760.5 18:00:00 8d 21:54:01 prod-capability 12288 script
514817 LatticeQCD_2 6693.5 18:00:00 8d 20:01:15 prod-capability 12288 script
514746 LatticeQCD_2 6638.2 18:00:00 8d 23:46:23 prod-capability 12288 script
514724 LatticeQCD_2 6637.1 18:00:00 9d 01:38:29 prod-capability 12288 script
514813 LatticeQCD_2 6636.9 18:00:00 8d 20:57:24 prod-capability 12288 script
514734 LatticeQCD_2 6636.9 18:00:00 9d 00:42:49 prod-capability 12288 script
514695 LatticeQCD_2 6635.7 18:00:00 9d 02:33:53 prod-capability 12288 script
520037 EnergyFEC 5749.2 01:00:00 2d 06:45:42 prod-capability 32768 script
507429 LatticeQCD_2 5566.6 18:00:00 22d 08:00:24 prod-capability 12288 script

Don't wait until the last minute...

Your allocation probably ends along with many others, and many users procrastinate,
don't be one of them!

Rumnning Jobs Queued Jobs Reservations
Total Queued Jobs: 123
Job Id ¢ Project s Walltime Queued Time ¥ Queue ¢ Nodes ¢ Mode ¢
519072 SoPE 00:45:00 3d 07:18:47 prod-capability 49152 script
517415 petasimnano 9377.5 C0:00:00 4d 21:48:22 prod-capability 49152 script
414425 LatticeQCD_2 7382.2 8:00:00 159d 05:05:59 prod-capability 12288 script
414428 LatticeQCD_2 7092.8 8:00:00 159d 05:05:31 prod-capability 12288 script
514789 LatticeQCD_2 6884.9 8d 22:50:06 prod-capability 12288 script
514677 LatticeQCD_2 6761.5 9d 03:31:05 prod-capability 12288 script
514806 LatticeQCD_2 6760.5 8d 21:54:01 prod-capability 12288 script
514817 LatticeQCD_2 6693.5 8d 20:01:15 prod-capability 12288 script
514746 LatticeQCD_2 6638.2 8d 23:46:23 prod-capability 12288 script
514724 LatticeQCD_2 6637.1 18:00:00 9d 01:38:29 prod-capability 12288 script
514813 LatticeQCD_2 6636.9 18:00:00 8d 20:57:24 prod-capability 12288 script
514734 LatticeQCD_2 6636.9 18:00:00 9d 00:42:49 prod-capability 12288 script
514695 LatticeQCD_2 6635.7 18:00:00 9d 02:33:53 prod-capability 12288 script
520037 EnergyFEC 5749.2 01:00:00 2d 06:45:42 prod-capability 32768 script
507429 LatticeQCD_2 5566.6 18:00:00 22d 08:00:24 prod-capability 12288 script

= = T
- = s
=

-~ Argonne Leadership N 4
Computing Facility N e

Make your code exit!

“Begin at the beginning,” the King said, very gravely, “and go on till you come to the
end: then stop.”
- Lewis Carroll, Alice in Wonderland

On Mira, 1 minute on the whole machine is 13,107 core hours!

> Take the time to figure out how long your code takes to run, and make it exit
(don't always run your jobs until the system kills them).
> EXiting cleanly (using an exit code of 0), is often necessary for dependency

chaining to work.

* Argonne Leadm : X
Computing Facility

Save your work

> Save all of your configuration files for any experiments you do.
> Save your log files.

> Document how to run your code and process the results, what you've actually run,

and where the data lives.

-~ Argonne Leadership e
Computing Facility = =

Optimize your code

> Read some documentation on the system, compiler, etc.

> Do you need strict IEEE floating point semantics? If not, turn them off.

> Profile your code

> Then optimize (using better algorithms first)

-~ Argonne Leadership e
Computing Facility = =

Contact support

If something is wrong, or you need help for any other reason,
contact the facility's support service:

Our people set us apart “e

(system reservations for debugging
are often possible, just ask!)

-~ Argonne Leadership 2 4
Computing Facility N e

On using libraries

Using libraries written by experts
IS really important, but remember
that if you're using something
obscure, you'll “own” that
dependency.

Some popular libraries:
v Trilinos

PETSc

HDF5

FFTW
BLAS/LAPACK

- ht\tps://en.wikid|.orgik|/e.o_Pat_ivain_é_wood.J PG

= =

-~ Argonne Leadership N 4
Computing Facility N e

Programming-Language Features

» Be careful when using the latest-and-greatest programming-language features
« We're just getting C++11 and Fortran 2008 support in compilers now (not counting

co-arrays)

S/ C++14: new expressive power

auto size = [](const autu:uE.m} { return m.size(); };

(the facilities try their best to support these things using open-source compilers, etc.
~but, as a user, you'll likely want the option of using the vendor's compilers)

-~ Argonne Leadership N 4
Computing Facility N e

Validation

* Have test problems, hopefully both small and large ones, and run them on the
system, with the same binary you plan to use for production, before starting your

production science.
« Make sure all of the data files have checksums (CRCs) so that you can validate that

the data you wrote is the same as the data you read in.
« Build physical diagnostics into your simulations (conservation of energy, power

spectrum calculations, etc.) and actually check them.

Leadershlp
Computlng Facility

Save your build settings

> Make your code print out or save its configuration when it starts, and also:
> The compilers and build flags used

> The version control revision information for the source being built

@@ |fyou don't know what version control is, learn about git.

git

-~ Argonne Leadership N 4
Computing Facility N e

Some thoughts on testing

> Make as much of your code testable at small scale as possible.

> Unit testing is trendy for a good reason.

> Learn how to use Valgrind, and run your code at small scale with it.

> Add print statements in your code for anomalous situations: lots of them.

> Make sure you actually check for error return codes on routines that have them (for

MPI, communication failures will kill your application by default, file I/O errors won't).

-~ Argonne Leadership R i
Computing Facility =

Avoid the network

Network bandwidth, relative to FLOPS, is decreasing

Choose, to the extent possible, communication-avoiding algorithms

If your problem has multiple physical time/length scales, try to separate out the

shorter/faster ones and keep them rank-local (local sub-cycling).

More generally, learn about split-operator methods.

-~ Argonne Leadership N 4
Computing Facility N e

Avoid central coordinators

A scheme like this is highly unlikely to scale!

-~ Argonne Leadership e
Computing Facility = =

Load Balancing

» Keep "work units" being distributed between ranks as large as possible, but try hard to
keep everything load balanced.
« Think about load balancing early in your application design: it is the largest impediment

to scaling on large systems.

This is not good; rank 0 has much more work.

-~ Argonne Leadership e
Computing Facility = =

Memory Bandwidth

« Memory bandwidth will be low compared to the compute capability of the machine.

* To get the most out of the machine, you'll need to use FMA instructions (these
machines were built to evaluate polynomials, many of them in parallel, so try to cast
what you're doing in those terms).

* Try to do as much as possible with every data value you load, and remember that

Nathering data from all over memory is expensive.

FMA = Fused Multiply Add = (a * b) + ¢ [with no intermediate rounding]

* Argonne Leadm : X
Computing Facility

Expensive Algorithms
* Don't dismiss seemingly-expensive algorithms without benchmarking them (higher-order
solvers, forward uncertainty propagation, etc. all might have high data reuse so the extra

computational expense might be “free”).

e If you're using an iterative solver, the number of iterations you use will often dominate over

the expense of each iteration.

-~ Argonne Leadership i i
Computing Facility =

|
More on |/O

« Make your files “write optimized”. - o G

* Don't use one file per rank, but don't have all ranks necessarily write to the same file
either: make the number of files configurable.

* The optimal mapping between ranks and files will be system specific (ask the
system experts what this is).

» There is often lock contention on blocks, files, directories, etc.

* Pre-allocate your file extents when possible.

« Use collective MPI I/O when the amount of data per rank is small (a few MB or less

~ perrank).

-~ Argonne Leadership i o
Computing Facility N e

Some final advice...

Don't guess! Profile! Your performance bottlenecks might be very different on different systems.

And don't be afraid to ask questions... > Any questions?
m

Come to the focus session tonight!

-~ Argonne Leadership i i
Computing Facility =

