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Optimizing for HPC

✔ Some trends in HPC architectures

✔ How you can optimize your code for these architectures

✔ Q&A

You want to know how
to make me compute quickly...



High-Level Optimization Science Problem

Choose Algorithms

Optimize Algorithms

Knowledge of
System Architecture

and Tools

Run high-performance code!

Implement and Test Algorithms
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High-Level Optimization

Science Problem

Choose Algorithms
For the Target Architectures

Optimize Algorithms
Knowledge of

System Architecture
and Tools

Run high-performance code!

Implement and Test Algorithms

Trade-offs between:
● Basis functions
● Resolution
● Lagrangian vs. Eulerian representations
● Renormalization and regularization schemes
● Solver techniques
● Evolved vs computed degrees of freedom
● And more…

Cannot be made by a compiler!



Computer Architecture

Traditional computers are built to:
● Move data
● Make decisions
● Compute polynomials (of relatively-low order)



Computer Architecture

$ cat /tmp/f0.c 
#include <math.h>

double foo(double a0, double a1, double a2, double a3, double a4, double x) {
  return a0 + a1*x + a2*pow(x, 2) + a3*pow(x, 3) + a4*pow(x, 4);
}

$ gcc -O3 -S -o - /tmp/f0.c
…

movsd %xmm0, 8(%rsp)
movapd %xmm5, %xmm0
movsd %xmm1, 56(%rsp)
movsd .LC0(%rip), %xmm1
movsd %xmm2, 48(%rsp)
movsd %xmm3, 40(%rsp)
movsd %xmm4, 32(%rsp)
movsd %xmm5, 24(%rsp)
call pow

…
call pow

...

These calls are expensive!

Yes, -ffast-math will fix this...

Not useful work.



Computer Architecture

$ cat /tmp/f.c 
double foo(double a0, double a1, double a2, double a3, double a4, double x) {
  return a0 + a1*x + a2*x*x + a3*x*x*x + a4*x*x*x*x;
}

$ gcc -O3 -S -o - /tmp/f.c
…

mulsd %xmm5, %xmm1
mulsd %xmm5, %xmm2
mulsd %xmm5, %xmm4
mulsd %xmm5, %xmm3
addsd %xmm1, %xmm0
mulsd %xmm5, %xmm2
mulsd %xmm5, %xmm4
mulsd %xmm5, %xmm3
addsd %xmm2, %xmm0
mulsd %xmm5, %xmm3
movapd %xmm0, %xmm2
movapd %xmm4, %xmm0
addsd %xmm3, %xmm2
mulsd %xmm5, %xmm0
mulsd %xmm0, %xmm5
addsd %xmm5, %xmm2
movapd %xmm2, %xmm0
ret

This is better, but...



Computer Architecture

$ cat /tmp/f1.c 
double foo(double a0, double a1, double a2, double a3, double a4, double x) {
  return a0 + x*(a1 + x*(a2 + x*(a3 + a4*x)));
}

$ gcc -O3 -S -o - /tmp/f1.c
…

mulsd %xmm5, %xmm4
addsd %xmm4, %xmm3
mulsd %xmm5, %xmm3
addsd %xmm3, %xmm2
mulsd %xmm5, %xmm2
addsd %xmm2, %xmm1
mulsd %xmm5, %xmm1
addsd %xmm1, %xmm0
retAnd this is better, but...



Computer Architecture

$ cat /tmp/f1.c 
double foo(double a0, double a1, double a2, double a3, double a4, double x) {
  return a0 + x*(a1 + x*(a2 + x*(a3 + a4*x)));
}

$ gcc -O3 -S -o - /tmp/f1.c
…

mulsd %xmm5, %xmm4
addsd %xmm4, %xmm3
mulsd %xmm5, %xmm3
addsd %xmm3, %xmm2
mulsd %xmm5, %xmm2
addsd %xmm2, %xmm1
mulsd %xmm5, %xmm1
addsd %xmm1, %xmm0
ret

And remember the correct target flags...

$ gcc -O3 -S -o - /tmp/f1.c -march=native
…

vfmadd231sd %xmm5, %xmm4, %xmm3
vfmadd231sd %xmm3, %xmm5, %xmm2
vfmadd231sd %xmm2, %xmm5, %xmm1
vfmadd231sd %xmm1, %xmm5, %xmm0
ret

A fused multiply-add

PowerPC, etc. uses
-mcpu= instead of

-march=



Computer Architecture

$ cat /tmp/f1.c 
double foo(double a0, ..., double x) {
  return a0 + x*(a1 + x*(a2 + x*(a3 + a4*x)));
}

t0 = fma(a4, x, a3)
t1 = fma(t0, x, a2)
t2 = fma(t1, x, a1)
t3 = fma(t2, x, a0)
return t3

But floating-point is complicated,
so each operation cannot be completed

in one clock cycle. ~6 clock
cycles are needed.



Computer Architecture

t0 = fma(a4, x, a3)
Waiting…
Waiting…
Waiting…
Waiting…
Waiting...
t1 = fma(t0, x, a2)
...
t2 = fma(t1, x, a1)
...
t3 = fma(t2, x, a0)
…
return t3

But this is not good…

A lot of computer architecture revolves around this question:

How do we put useful work here?



Hardware Threads

t0 = fma(a4, x, a3) [thread 0]
t0 = fma(a4, x, a3) [thread 1]
t0 = fma(a4, x, a3) [thread 2]
t0 = fma(a4, x, a3) [thread 3]
t0 = fma(a4, x, a3) [thread 4]
t0 = fma(a4, x, a3) [thread 5]
t1 = fma(t0, x, a2)
...
t2 = fma(t1, x, a1)
...
t3 = fma(t2, x, a0)
…
return t3

One way is to use hardware threads...

These can be OpenMP threads, pthreads,
or, on a CPU, different processes.

How many threads do we need?
How much latency do we need to hide?



Time Scales in Computing

Latency Numbers Every Programmer Should Know: https://gist.github.com/jboner/2841832

Latency Comparison Numbers
--------------------------
L1 cache reference                           0.5 ns
Branch mispredict                            5   ns
L2 cache reference                           7   ns
Mutex lock/unlock                           25   ns
Main memory reference                      100   ns
Compress 1K bytes with Zippy             3,000   ns        3 us
Send 1K bytes over 1 Gbps network       10,000   ns       10 us
Read 4K randomly from SSD*             150,000   ns      150 us          ~1GB/sec SSD
Read 1 MB sequentially from memory     250,000   ns      250 us
Round trip within same datacenter      500,000   ns      500 us
Read 1 MB sequentially from SSD*     1,000,000   ns    1,000 us    1 ms  ~1GB/sec SSD
Disk seek                           10,000,000   ns   10,000 us   10 ms
Read 1 MB sequentially from disk    20,000,000   ns   20,000 us   20 ms   80x memory
Send packet CA->Netherlands->CA    150,000,000   ns  150,000 us  150 ms



The IBM BG/Q network is fast...

✔ Each A/B/C/D/E link bandwidth: 4 GB/s

✔ Bisection bandwidth (32 racks): 13.1 TB/s 

✔ HW latency 

✔ Best: 80 ns (nearest neighbor) 

✔ Worst: 3 µs (96-rack 20 PF system, 31 hops)

✔ MPI latency (zero-length, nearest-neighbor): 2.2 µs

MPI does add overhead
which is generally minimal.

If you're sensitive to it, you can
use PAMI (or the SPI interface) directly



Supercomputing “Swim Lanes”

http://www.nextplatform.com/2015/11/30/inside-future-knights-landing-xeon-phi-systems/

https://forum.beyond3d.com/threads/nvidia-pascal-speculation-thread.55552/page-4

“Many Core” CPUs
GPUs



Supercomputing “Swim Lanes”

“Many Core” CPUs GPUs

● 4 hardware threads per core
● To make up the rest, relies on:

● OOO processing with branch prediction
● Loop unrolling
● SIMD (vectorization)

● Lots of hardware threads
● Many hardware threads share the instruction 

stream  (SIMT)

Many threads, but SIMT minimizes the per-thread control state/logic.



Some CUDA Terminology

● Dispatched threads are organized into a grid; all threads in a grid execute the 
same kernel function

● A grid is decomposed into a 2D array of blocks (gridDim.x by gridDim.y)
● Each block is decomposed into a 3D array of threads (blockDim.x by 

blockDim.y by blockDim.z)
● The size of each block is limited to 1024 threads
● Threads in different blocks cannot synchronize (using __syncthreads() - they 

might execute in any order)

__global__ void add(int *a, int *b, int *c) {
  int index = threadIdx.x + blockIdx.x * blockDim.x;
  c[index] = a[index] + b[index];
}

Each thread has access to its coordinates
and grid/block dimensions so it can figure out

what to do.



SIMT

● Threads are divided into groups of 32, called “warps” in NVIDIA's terminology 
(AMD calls these “wavefronts” - with a size of 64)

● All threads in each warp share many instruction stream resources (i.e. they 
have the same instruction pointer)

● The size of a warp is akin to the number of vector lanes on a CPU's SIMD unit
● Beware of branch divergence...

http://cs.nyu.edu/courses/spring12/CSCI-GA.3033-012/lecture5.pdf

Pretend there are
32 arrows per line



GPU Layout

https://devblogs.nvidia.com/parallelforall/inside-pascal/

GPUs have “cores”, but NVIDIA calls them
“streaming multiprocessors” or SMs:

Kepler: 15 SMs
Maxwell: 24 SMs
Pascal: 56 SMs



GPU SM

Put “read only” data here

https://devblogs.nvidia.com/parallelforall/inside-pascal/

● Single precision / SM
● Pascal: 64
● Kepler: 192

● Double precision / SM
● Pascal: 32
● Kepler: 64

● Max 64 warps / SM
● Max blocks / SM

● Pascal: 32
● Kepler: 16



Register Pressure!

● Each SM has a 256 KB register file
● Each thread can use up to 255 32-bit registers
● An SM running its maximum 2048 threads, however, could support 

only ~32 registers / thread!

t0 = fma(a4, x, a3)
t1 = fma(t0, x, a2)
t2 = fma(t1, x, a1)
t3 = fma(t2, x, a0)
return t3

This calculation needs ~3 registers:
one for x, one for a<n>, one for t<n>

But the compiler might use more by default!
(see docs on __launch_bounds__)

Unlike on a CPU, after the first 32, there is a significant cost to 
the incremental use of each register!



Loop Unrolling

CPUs have a fixed register file per thread, and the compiler can use that to hide latency...

for (int i = 0; i < n; ++i) {
  x = Input[i]
  t0 = fma(a4, x, a3)
  t1 = fma(t0, x, a2)
  t2 = fma(t1, x, a1)
  t3 = fma(t2, x, a0)
  Output[i] = t3
}

for (int i = 0; i < n; i += 2) {
  x = Input[i]
  y = Input[i+1]
  t0 = fma(a4, x, a3)
  u0 = fma(a4, y, a3)
  t1 = fma(t0, x, a2)
  u1 = fma(u0, y, a2)
  t2 = fma(t1, x, a1)
  u2 = fma(u1, y, a1)
  t3 = fma(t2, x, a0)
  u3 = fma(u2, y, a0)
  Output[i] = t3
  Output[i+1] = u3
}

If you need to tune this yourself, most compilers have a '#pragma unroll' feature.

unroll by 2

Showing unroll by 2 so it fits on the slide,
you need to unroll by more to fully

hide FP or L1 latency

I hope these are in cache

Each pair is independent,
so no waiting in between

dispatches



CPU Registers

You can't unroll enough to completely hide anything but “on core” latencies (e.g. L1 cache hits and from 
FP pipeline) – you just don't have enough registers!

● x86_64 has 16 general-purpose registers (GPRs) – for scalar integer data, 
pointers, etc. – and 16 floating-point/vector registers

● With AVX-512 (e.g. with Knights Landing) there are 32 floating-point/vector 
registers

● AVX-512 also adds 8 operation mask registers
● PowerPC has 32 GPRs, 32 scalar floating-point registers and 32 vector 

registers (modern cores with VSX effectively combine these into 64 floating-
point/vector registers)



OOO Execution and Loops

● CPUs, including Intel's Knights Landing, use out-of-order (OOO) 
execution to hide latency

● So to say that there are only 16 GPRs, for example, isn't the whole 
story: there are just 16 GPRs that the compiler can name

for (int i = 0; i < n; ++i) {
  x = Input[i]
  t0 = fma(a4, x, a3)
  t1 = fma(t0, x, a2)
  t2 = fma(t1, x, a1)
  t3 = fma(t2, x, a0)
  Output[i] = t3
}

Processor can predict this will be true,
and can start issuing instructions
for multiple iterations at a time!



OOO Execution

● Importing to exploiting instruction-level parallelism (ILP) – each core's 
multiple pipelines

● Combined with branch prediction, can effectively provide a kind of dynamic 
loop unrolling

● Limited by the number of “rename buffer entries” (72 on Knights Landing)
● Limited by the number of “reorder buffer entries” (72 on Knights Landing)
● Mispredicted branches can lead to wasted work!



KNL Pipeline

2 FP/vector operations,
2 memory operations,

and 2 scalar integer operations
per cycle!

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7453080

Fetch/decode 16 bytes per cycle
(i.e. two instructions per cycle)

Careful: AVX-512 instructions can
be up to 12 bytes each if they have

non-compressed displacements!



Vectorization: The Quad-Processing eXtension (QPX)

RF

MAD0 MAD3MAD2MAD1

RFRFRF

Permute

Load

A2

256

64

32 QPX registers
(and 32 general purpose

registers) per thread

Arbitrary permutations
complete in

only two cycles.

The first vector element in each
vector register is the corresponding

scalar FP register.

FP arithmetic completes in six cycles
(and is fully pipelined).

Loads/stores execute in the
XU pipeline (same as all other

load/stores).

(This is for the IBM BG/Q, but the picture is fairly generic)



SIMD: What does it mean?

Autovectorization (or manual vectorization)

https://software.intel.com/en-us/articles/ticker-tape-part-2



Vectors Have Many Types

● A 512-bit vector can hold 8 double-precision numbers, 16 single-
precision numbers, etc.

● Different assembly instructions have different assumptions about the 
data types

● Except on the IBM BG/Q (where only FP is supported), both integer 
and FP types are supported

The same vector register
can be divided in different

ways

(This diagram is from the IBM POWER ISA manual, showing the 128-bit VSX registers)



KNL ISA



What's in AVX-512?

https://gcc.gnu.org/wiki/cauldron2014?action=AttachFile&do=get&target=Cauldron14_AVX-512_Vector_ISA_Kirill_Yukhin_20140711.pdf



KNL AVX512-CD

The compiler, not you, should do this!



AVX-512 Mask Registers

AVX-512 has 8 mask registers (64-bits each)

https://gcc.gnu.org/wiki/cauldron2014?action=AttachFile&do=get&target=Cauldron14_AVX-512_Vector_ISA_Kirill_Yukhin_20140711.pdf



Why Masking is Special...

https://gcc.gnu.org/wiki/cauldron2014?action=AttachFile&do=get&target=Cauldron14_AVX-512_Vector_ISA_Kirill_Yukhin_20140711.pdf



AVX-512 Embedded Broadcasts

https://gcc.gnu.org/wiki/cauldron2014?action=AttachFile&do=get&target=Cauldron14_AVX-512_Vector_ISA_Kirill_Yukhin_20140711.pdf



Why Masking Matters?

void foo(float * restrict x, float * restrict y, float * restrict z, float * restrict v, float * restrict out, int n) {
  for (int i = 0; i < n; ++i) {
    float r2 = x[i]*x[i] + y[i]*y[i] + z[i]*z[i];
    if (r2 > eps) {
      out[i] = f(v[i], r2);
    } else {
      out[i] = 0;
    }
  }
}

Traditionally, a compiler could not autovectorize this!
(not a pointer aliasing problem)

Why? The compiler needs to deal with this (hypothetical) situation:

What if it were the case that the array “v” was not as long as x, y, and z (i.e. < n), but the 
programmer has arranged that (r2 > eps) will be false for all indices i invalid for the array v?

With AVX-512 masking, this is not a problem (we can mask off the access we don't need).

Note: Fortran (potentially) does not have this problem, even without masking (it knows the length of 
the arrays)!

To vectorize, we essentially convert this into (m == # vector lanes):
r2[i:i+m] =  <r2_i, r2_{i+1}, ...>

out[i:i+m] = r2[i:i+m] > <eps, eps, …> ? f(v[i:i+m], r2[i:i+m]) : <0, 0, … >



Digression on “restrict”

void foo(float * restrict x, float * restrict y, float * restrict z, float * restrict v, float * restrict out, int n) {
  ...
}

“restrict” only a keyword in C. Use __restrict in C++

Not that restrict goes on the variable,
not the pointer type!
Not: restrict float *out

restrict means: Within the scope of the restrict-qualified variable, 
memory accessed through that pointer, or any pointer based on it, is not 
accessed through any pointer not based on it.



What programs do...

✔ Read data from memory

✔ Compute using that data

✔ Write results back to memory

✔ Communicate with other nodes and the outside world



Caches

● KNL cores are paired into a “tile”, which 
share an 1 MB L2 cache

● L2 cache can deliver 1 read cache line 
and 0.5 write cache lines per cycle

● Each core has its own 32 KB L1 I-cache 
and 32 KB L1 data cache

● The cache is “writeback” - the processor 
reads a cache line to write to it

● Each cache line is 64 bytes (the size of 
one 512-bit vector)

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7453080
NVIDIA Pascal

has 64 KB shared
memory per SM

(see docs on  __shared__)



Memory Requests CPU Load Pipeline

L1 Data Cache

x

L2 Cache

Memory Controller
(request coalescing buffer)

Cache line containing x

Cache line containing x

(MC)DRAM

GPUs have coalescing buffers
here too, and they can afford

to wait longer!

Always fetch whole cache lines
(arrange your data accordingly)



KNL Mesh On-Chip Network

● Tiles are arranged on a mesh
● L2 caches are coherent, so we 

need tag directories to keep track 
of which tile owns which cache 
lines

● How the cache lines are mapped 
to tag directories has three modes 
(selected at boot time): all-to-all, 
quadrant, and sub-NUMA 
clustering



KNL All-to-all mode



KNL Quadrant Mode



KNL Sub-NUMA Clustering (SNC) Mode Note, however, that
quadrants are not symmetric!

Run one MPI rank per quadrant?



HBM Modes



How Flat Mode Looks



Flat Mode Memory Management



CUDA Unified Memory

New technology!

Unified memory enables “lazy” transfer on demand – will mitigate/eliminate 
the “deep copy” problem!



CUDA UM (The Old Way)



CUDA UM (The New Way)

Pointers are “the same” everywhere!



Types of parallelism

✔ Parallelism across nodes (using MPI, etc.)

✔ Parallelism across sockets within a node [Not applicable to the BG/Q, KNL, etc.]

✔ Parallelism across cores within each socket

✔ Parallelism across pipelines within each core (i.e. instruction-level parallelism)

✔ Parallelism across vector lanes within each pipeline (i.e. SIMD)

✔ Using instructions that perform multiple operations simultaneously (e.g. FMA)
Hardware threads

tie in here too!



How fast can you go...

The speed at which you can compute is bounded by:

       (the clock rate of the cores) x (the amount of parallelism you can exploit)

BG/Q: Fixed 1.66 GHz
KNL: 1.30 GHz

(dynamically scaled)

Kepler: 0.8 GHZ
Pascal: 1.30 GHz

Your hard work goes here...



Hardware Prefetcher

● L1 hardware prefetcher monitors access patterns and generates 
requests to the L2 in advance of anticipated need

● L2 hardware prefetcher does the same, issuing requests to main 
memory

● The KNL L2 prefetcher supports 48 independent streams (that's 
shared among all running threads). Running 4 hardware threads 
per core, two cores per tile: 6 streams per thread!



AOS vs. SOA

https://software.intel.com/en-us/articles/ticker-tape-part-2

struct Particles {
  float *x;
  float *y;
  float *z;
  float *w;
};

struct Particle {
  float x;
  float y;
  float z;
  float w;
};

struct Particle *Particles;

Easy to vectorize; uses lots of prefetching streams!

Better cache locality; fewer prefetcher streams
with scatter/gather support, maybe vectorization is not so bad!



Compiling

Basic optimization flags...

✔ -O3 – Generally aggressive optimizations (try this first)

✔ -g – Always include debugging symbols (really, always! - when your run crashes at scale after 

running for hours, you want the core file to be useful)

✔ -fopenmp – Enable OpenMP (the pragmas will be ignored without this)

✔ -ffast-math (clang, gcc, etc.) – Enable “fast” math optimizations (most people don't need strict IEEE 

floating-point semantics).

If you don't use -O<n> to turn on some optimizations,
most of the previous material is irrelevant!



An example… (what tuning might look like)

void foo(double * restrict a, double * restrict b, etc.) {
#pragma omp parallel for

for (i = 0; i < n; ++i) {
a[i]  = e[i]*(b[i]*c[i] + d[i]) + f[i];

       m[i] = q[i]*(n[i]*o[i] + p[i]) + r[i]; 
}

}

void foo(double * restrict a, double * restrict b, etc.) {
#pragma omp parallel for

for (i = 0; i < n; ++i) {
a[i]  = e[i]*(b[i]*c[i] + d[i]) + f[i];

}
#pragma omp parallel for

for (i = 0; i < n; ++i) {
       m[i] = q[i]*(n[i]*o[i] + p[i]) + r[i]; 

}
}

Split the loop

We use restrict here to tell the
compiler that the arrays are

disjoint in memory.

Each statement requires 5 prefetcher streams,
on some systems this is too many...

We likely want at
least 2 threads

per core, probably 4.

We could also change the data structures
being used so that we have arrays of structures

(although that might inhibit vectorization).



An example...

void foo(double * restrict a, double * restrict b, etc.) {
#pragma omp parallel for

for (i = 0; i < n; ++i) {
a[i]  = e[i]*(b[i]*c[i] + d[i]) + f[i];

}
#pragma omp parallel for

for (i = 0; i < n; ++i) {
       m[i] = q[i]*(n[i]*o[i] + p[i]) + r[i]; 

}
}

We did a bit too much splitting here
(starting each of these parallel regions

can be expensive).

void foo(double * restrict a, double * restrict b, etc.) {
#pragma omp parallel
  {
#pragma omp for

for (i = 0; i < n; ++i) {
a[i]  = e[i]*(b[i]*c[i] + d[i]) + f[i];

}
#pragma omp for

for (i = 0; i < n; ++i) {
       m[i] = q[i]*(n[i]*o[i] + p[i]) + r[i]; 

}
  }
}

(don't actually split the parallel region)



An example...

void foo(double * restrict a, double * restrict b, etc.) {
#pragma omp parallel
  {
#pragma omp for

for (i = 0; i < n; ++i) {
a[i]  = e[i]*(b[i]*c[i] + d[i]) + f[i];

}
       ...
}

On PowerPC, the RHS expression is two
dependent FMAs requiring
at least 3 vector registers

(5 registers if we “preload” all of the
input values). On X86, with implicit memory operands,

we require fewer. The first FMA has a
6-cycle latency, and if we

run two threads/core, we have
an effective latency

of 3 cycles/thread to hide.

void foo(double * restrict a, double * restrict b, etc.) {
#pragma omp parallel
  {
#pragma omp for
#pragma unroll(3)

for (i = 0; i < n; ++i) {
a[i]  = e[i]*(b[i]*c[i] + d[i]) + f[i];

}
       ...

The compiler should do this
automatically, if profitable,

but in case it doesn't...

Unroll (interleaved) by a factor of 3.
On PowerPC, this will require up to
3*5 == 15 vector registers,
but we have 32 of them.



schedule(dynamic) can be your friend...

#pragma omp parallel for schedule(dynamic)
  for (i = 0; i < n; i++) {
    unknown_amount_of_work(i);
  }

https://software.intel.com/en-us/articles/load-balance-and-parallel-performance

You can use schedule(dynamic, <n>)
to distribute in chunks of size n.



#pragma omp simd

Starting with OpenMP 4.0, OpenMP also supports explicit vectorization...

https://software.intel.com/en-us/articles/enabling-simd-in-program-using-openmp40

char foo(char *A, int n) {
  int i;
  char x = 0;
#pragma omp simd reduction(+:x)
  for (i=0; i<n; i++){
    x = x + A[i];
  }
  return x;
}

Can combine with threading...

char foo(char *A, int n) {
  int i;
  char x = 0;
#pragma omp parallel for simd reduction(+:x)
  for (i=0; i<n; i++){
    x = x + A[i];
  }
  return x;
}



Coarse Grained vs. Fine Grained Parallelism

https://blogs.msdn.microsoft.com/ddperf/2009/04/29/parallel-scalability-isnt-childs-play-part-2-amdahls-law-vs-gunthers-law/

This is expensive
(many thousands of cycles)

This is expensive too!

Amdahl's law says the speedup is limied to:
1/(1 – p). So if 5% of the program remains 
serial, then the speedup from parallelization is 
limited to 20x.

https://en.wikipedia.org/wiki/Amdahl
%27s_law



C++17 Parallel Algorithms

● Parallel versions, and parallel+vectorized versions, of almost all standard 
algorithms (plus a few new ones)



C++17 Parallel Algorithms

vector<float> a;

…

for_each(par_seq, a.begin(), a.end(), [&](float &f) {

  f += 2.0;

});

Coming soon to a compiler near you!



OpenMP Evolving Toward Accelerators

http://llvm-hpc2-workshop.github.io/slides/Tian.pdf

New in OpenMP 4



OpenMP Accelerator Support – An Example (SAXPY)

http://llvm-hpc2-workshop.github.io/slides/Wong.pdf



OpenMP Accelerator Support – An Example (SAXPY)

http://llvm-hpc2-workshop.github.io/slides/Wong.pdf

Memory transfer
if necessary.

Traditional CPU-targeted
OpenMP might

only need this directive!



OpenMP and UVM?

How does OpenMP accelerator support interact with unified memory?
     We don't yet know!



MKL, cuBLAS, ESSL, etc.

Vendors provide optimized math libraries for each system (BLAS for linear algebra, FFTs, and more). 

✔ MKL on Intel systems, ESSL on IBM systems, cuBLAS (and others) for NVIDIA GPUs

✔ For FFTs, there is often an optional FFTW-compatible interface.



Memory partitioning

Using threads vs. multiple MPI ranks per node: it's about...

✔ Memory

✔ Sending data between ranks on the same node often involves “unnecessary” copying (unless using 

MPI-3 shared memory windows)

✔ Similarly, your application may need to manage “unnecessary” ghost regions

✔ MPI (and underlying components) have data structures that grow linearly (at best) with the total 

number of ranks

✔ And Memory

✔ When threads can work together they can share resources instead of competing (cache, memory 

bandwidth, etc.)

✔ Each process only gets a modest amount of memory per core

✔ And parallelism

✔ You'll likely see the best overall results from the scheme that exposes the most parallelism



And finally, be kind to the file system...

✔ Use MPI I/O - use collective I/O if the amounts being written are small

✔ Give each rank its own place within the file to store its data (avoid lock contention)

✔ Make sure you can validate your data (use CRCs, etc.), and then actually validate it when you read it

  (We've open-sourced a library for computing CRCs: http://trac.alcf.anl.gov/projects/hpcrc64/)

And use load + broadcast instead of reading the same thing from every rank...

✔ Static linking is the default for all IBM BG/Q compilers for good reason... loading shared libraries from 

tens of thousands of ranks may not be fast

✔ The same is true for programs using embedded scripting languages... loading lots of small script files 

from tens of thousands of ranks is even worse

You probably want to design your files to be write optimized, not read optimized! Why?
You generally write more checkpoints than you read (and time reading from smaller jobs is “free”).

And writing is slower than reading.



ALCF Systems

https://www.alcf.anl.gov/files/alcfscibro2015.pdf



Mira by Domain

https://www.alcf.anl.gov/files/alcfscibro2015.pdf



Common Algorithm Classes in HPC

http://crd.lbl.gov/assets/pubs_presos/CDS/ATG/WassermanSOTON.pdf



Common Algorithm Classes in HPC – What do they need?

http://crd.lbl.gov/assets/pubs_presos/CDS/ATG/WassermanSOTON.pdf



Performance Limited By...

Memory-Latency Bound
(Pipeline better)

Memory-Bandwidth Bound
(Use a more-compressed representation)

U
si

ng
 m

or
e 

re
gi

st
er

s

U
sing m

ore cache (increase cache locality)

Compute Bound
(Use a better algorithm)



HPC Languages

https://benchmarksgame.alioth.debian.org/u64q/performance.php?test=nbody&sort=elapsed

These top four
all use

vector intrinsics!

HPC is dominated
by C, C++ and Fortran

for good reason!



How do we express parallelism?

http://llvm-hpc2-workshop.github.io/slides/Tian.pdf



How do we express parallelism - MPI+X?

http://llvm-hpc2-workshop.github.io/slides/Tian.pdf



The Challenge of the Future: Power

The DOE wants 1 exaflop at < 20 MW

120 pJ

2000 pJ

250 pJ

~2500 pJ

100 pJ

6 pJ

Cost to move data off chip to a 
neighboring node

Cost to move data off chip into 
DRAM

Cost to move off-chip, but stay within 
the package (SMP)

Cost to move data 20 mm on chip

Typical cost of a single floating point 
operation

Cost to move data 1 mm on-chip

http://www.socforhpc.org/wp-content/uploads/2015/07/OpenSoC_Pres_15min.pptx



About Using HPC Systems...

● Why is HPC Hard?

● What can you do about it?



You need to share

Your job won't run right away...

These were on hold
for a while...

I hope

These big jobs
have been waiting

for days



You have a limited amount of time

● A large allocation on Mira (ALCF's production resource) is a few hundred million core hours

● 100 M core hours / (16 (cores per node) * 1024 (nodes per rack) * 48 (racks)) == 127 hours

● 127 hours is 5.3 days

● Running on the whole machine (48 racks) for 24 hours is the largest possible job

● Thus, with 5 jobs (plus some test runs), a 100-M-core-hour allocation could be gone



Supercomputers are not commodity machines

● Even when built from commodity parts, the configuration and scale are different

● The probability that you'll try to do something in your application that has never been tested before is high

● The system software will have bugs, and the hardware might too.

● The libraries on which your code depends might not be available.



Your jobs will fail

● The probability that a node will die, its DRAM will silently corrupt your data (including those in the storage 

subsystem), etc. is very low.

● However, if you spend a large fraction of your life running on large machines, you'll see these kinds of 

problems.



Your jobs will fail (cont.)

From the introduction of Fiala, et al. 2012:

● Servers tend to crash twice per year (2-4% failure rate) (Schroeder, et al. 2009). HPC node hardware is 

designed to be somewhat more reliable, but...

● 1-5% of disk drives die per year (Pinheiro, et al. 2007). HPC storage systems use RAID, but... (also, many 

hardware RAID controllers don't do proper error checking, see Krioukov, et al. 2009 – older paper, but 

personal experience says this is still true today)

● DRAM errors occur in 2% of all DIMMs per year (Schroeder, et al. 2009)

● ECC alone fails to detect a significant number of failures (Hwang, et al. 2012)



Your jobs will fail (cont.)

Jiang, et al. 2008

Most storage subsystem
failures are not from disk

failures (although many are)



Your jobs will fail (sometimes worse)

Rozier, et al. 2009 – UDE == Undetected Disk Error. 
They assume 4 KB per I/O request

So you should expect to see silent data corruption once in every (even with RAID):
1/(2 x 10^-13) * 4*1024 == 2 x 10^16 bytes (20 PB)

Mira's file system is ~28 PB, so this is not an unthinkable number
(and, from personal experience, the rate is somewhat higher than that)



Debugging is hard

Your favorite debugger is great, but probably won't run at scale...

Can you type in
10,000 terminals at once?



Debugging is hard (cont.)

 Allinea DDT

HPCToolkit

Tools for debugging, profiling, etc. at scale are available, but they won't be what 
you're used to, and they might fail as well.



Everything is fast, but too slow...

● The network is fast, but likely slower than you'd like

● The same is true for the memory subsystem

● The same is true for the storage subsystem

Mira's file system can provide 240 GB/s – but you need to use the whole machine 
to get that rate. In addition, writing is slower than reading.

If you had the whole machine, and were the only one using the file system, then 
reading in enough to fill all 768 TB of DRAM would take:

(768*1024 / 240)/60 == 55 minutes



Everything is fast, but too slow... (cont.)

Also remember that:

● There is a big difference between latency and bandwidth

● I/O performance tends to be quirky (memory performance does too, to a lesser extent)

● Load balancing can be tricky



So, now what do you do?



Experiment in parallel

Some of these
(time,size) combinations

are better than others

This guy has the right idea



Don't wait until the last minute...

Jobs can be in the queue for more than a week!

Your allocation probably ends along with many others, and many users procrastinate,
don't be one of them!



Make your code exit!

“Begin at the beginning,” the King said, very gravely, “and go on till you come to the 
end: then stop.”
 - Lewis Carroll, Alice in Wonderland

On Mira, 1 minute on the whole machine is 13,107 core hours!

➔ Take the time to figure out how long your code takes to run, and make it exit 

(don't always run your jobs until the system kills them).

➔ Exiting cleanly (using an exit code of 0), is often necessary for dependency 

chaining to work.



Save your work

➔ Save all of your configuration files for any experiments you do.

➔ Save your log files.

➔ Document how to run your code and process the results, what you've actually run, 

and where the data lives.

Store the run configuration in every output file
(as comments, metadata, etc.)

Seriously, just do it...



Optimize your code

Always compile with -g (debugging symbols)
Essential for debugging if your code crashes,

but also useful for profiling, etc.

➔ Read some documentation on the system, compiler, etc.

➔ Do you need strict IEEE floating point semantics? If not, turn them off.

➔ Profile your code

➔ Then optimize (using better algorithms first)



Contact support

If something is wrong, or you need help for any other reason,
contact the facility's support service:

These people are not scary!(system reservations for debugging
are often possible, just ask!)



On using libraries

Taking the road
less traveled is often

not a good idea

https://en.wikipedia.org/wiki/File:Two_Paths_Diverged_in_a_wood.JPG

Using libraries written by experts 
is really important, but remember 
that if you're using something 
obscure, you'll “own” that 
dependency.

Some popular libraries:
✔ Trilinos
✔ PETSc
✔ HDF5
✔ FFTW
✔ BLAS/LAPACK



Programming-Language Features

● Be careful when using the latest-and-greatest programming-language features

● We're just getting C++11 and Fortran 2008 support in compilers now (not counting 

co-arrays)

Yeah, not so fast...

(the facilities try their best to support these things using open-source compilers, etc.
but, as a user, you'll likely want the option of using the vendor's compilers)



Validation

● Have test problems, hopefully both small and large ones, and run them on the 

system, with the same binary you plan to use for production, before starting your 

production science.

● Make sure all of the data files have checksums (CRCs) so that you can validate that 

the data you wrote is the same as the data you read in.

● Build physical diagnostics into your simulations (conservation of energy, power 

spectrum calculations, etc.) and actually check them.

Compute
Data

Compute
CRC

Write
Data and CRC

Read
Data and CRC

Validate
CRC



Save your build settings

➔ Make your code print out or save its configuration when it starts, and also:

➔ The compilers and build flags used

➔ The version control revision information for the source being built

If you don't know what version control is, learn about git.

There is no general automatic
way to do these things:
You'll need to hack your

build system. It will be worth it.



Some thoughts on testing

➔ Make as much of your code testable at small scale as possible.

➔ Unit testing is trendy for a good reason.

➔ Learn how to use Valgrind, and run your code at small scale with it.

➔ Add print statements in your code for anomalous situations: lots of them.

➔ Make sure you actually check for error return codes on routines that have them (for 

MPI, communication failures will kill your application by default, file I/O errors won't).



Avoid the network

● Network bandwidth, relative to FLOPS, is decreasing

● Choose, to the extent possible, communication-avoiding algorithms

● If your problem has multiple physical time/length scales, try to separate out the 

shorter/faster ones and keep them rank-local (local sub-cycling).

● More generally, learn about split-operator methods.

Short-scale
force

Short-scale
force

Short-scale
force

Long-scale
force



Avoid central coordinators

Central Coordinator
to hand out work

Worker ... Worker

Worker
Worker

A scheme like this is highly unlikely to scale!



Load Balancing

● Keep "work units" being distributed between ranks as large as possible, but try hard to 

keep everything load balanced.

● Think about load balancing early in your application design: it is the largest impediment 

to scaling on large systems.

Rank 0 Rank 1

This is not good; rank 0 has much more work.



Memory Bandwidth

● Memory bandwidth will be low compared to the compute capability of the machine.

● To get the most out of the machine, you'll need to use FMA instructions (these 

machines were built to evaluate polynomials, many of them in parallel, so try to cast 

what you're doing in those terms).

● Try to do as much as possible with every data value you load, and remember that 

gathering data from all over memory is expensive.

FMA = Fused Multiply Add = (a * b) + c [with no intermediate rounding]



Expensive Algorithms

● Don't dismiss seemingly-expensive algorithms without benchmarking them (higher-order 

solvers, forward uncertainty propagation, etc. all might have high data reuse so the extra 

computational expense might be “free”).

● If you're using an iterative solver, the number of iterations you use will often dominate over 

the expense of each iteration.



More on I/O

● Make your files “write optimized”.

● Don't use one file per rank, but don't have all ranks necessarily write to the same file 

either: make the number of files configurable.

● The optimal mapping between ranks and files will be system specific (ask the 

system experts what this is).

● There is often lock contention on blocks, files, directories, etc.

● Pre-allocate your file extents when possible.

● Use collective MPI I/O when the amount of data per rank is small (a few MB or less 

per rank).

This is a pain,
I know.



Some final advice...

Don't guess! Profile! Your performance bottlenecks might be very different on different systems.

And don't be afraid to ask questions... ? Any questions?

Come to the focus session tonight!


