Astrophysics of Accretion Disks

Charles F. Gammie Physics & Astronomy, University of Illinois

PiTP, July 2016

M66 / NASA, ESA, Hubble Heritage team, and S.Van Dyk+

University of Illinois at Urbana-Champaign

Blue Waters Supercomputer University of Illinois

Disk Astrophysics

- Part 1: Child's Garden of Astrophysical Disks
- Part 2: Disk Evolution
- Part 3: Turbulence in Disks
- Part 4: Current Problems in Disk Theory

Disk Astrophysics

- Part 1: Child's Garden of Astrophysical Disks
- Part 2: Disk Evolution
- Part 3: Turbulence in Disks
- Part 4: Current Problems in Disk Theory

Disks: the incomplete list

galactic disk	spiral	
	elliptical	NGC 4278
supermassive BH	Quasar	3C 273
	Seyfert	MCG -6-30-15
	LINER	NGC 4258
	LLAGN	Sgr A*
	TDE	Swift J1644+57
stellar mass BH	microquasar	GRS 1915+105
	gamma-ray burst	long bursts?
neutron star	LMXB	Aql X-1
	HMXB	Cyg X-1
	gamma-ray burst	short bursts?
white dwarf	dwarf nova	SS Cyg
	nova	RS Oph
protostar	protoplanetary	HL Tau
	debris	Fomalhaut
planet	protolunar disk	Earth/Moon
	planetary rings	Saturn

NGC 4258 (M106), NASA, ESA, Hubble Heritage, R. Gendler

NGC 4258 maser spots

0.1 < r < 0.3pc

Humphreys+ 2013

NASA / JPL-Caltech / S. Stolovy

Time in hours: 0.000

J. Dolence

HL Tau

ALMA (ESO, NAOJ, NRAO), NSF

Moon Formation

Cúk & Stewart 2012

White dwarf

Flow

of gas

International Centre for Radio Astronomy Research

Radio jet

Companion star /

Shadow of Heated face the disc of star

Credit: J. Miller-Jones (ICRAR) using software created by R. Hynes

Accretion disc

Cataclysmic Variable

$$m_v (12.8 - 6.8)$$

1000
الم من من الم من من الم
ما معاد ما ما ما ما مدين ما مد لاين ما مد الدين ما مدين ما مدين ما مدين ما مدين ما مدين ما مدين ما مد
المالية لمرتب المالية المراحية المراحية المراجعة المراجعة المراجعة المراجعة المراجعة المراجعة المراجعة المراجعة
لمان معالم المحالية المحالية المراجعة المراجعة المراجعة المراجعة المراجعة المراجعة المراجعة المراجعة المراجعة ا
Lilling Markey and in Markey Markey
1945 . در از در از
مراجعة معادية المراجعة عدامية المراجعة المراجعة المراجعة المراجعة المراجعة المراجعة المراجعة المراجعة المراجعة
AAVSO/Cannizzo

SS Cyg (27 Sep 1896-7 Apr 1992)

Disk Astrophysics

- Part 1: Child's Garden of Astrophysical Disks
- Part 2: Disk Evolution
- Part 3: Turbulence in Disks
- Part 4: Current Problems in Disk Theory

L Ekin Eth

L Ekin Eth

L Ekin Eth

Ekin Eth

 E_{th}

L E_{kin}

thin disk!

Disk Equilibrium

- dynamical equilibrium:
 $$\begin{split} \Omega &= (GM/R^3)^{1/2} + O(H/R)^2 \qquad v_z = 0 \\ \Delta t \sim \Omega^{-1} \end{split}$$
- thermal equilibrium: $Q^+ \simeq Q^ \Delta t \sim \Sigma c_s^2/Q^+ \sim (\alpha \Omega)^{-1}$
- inflow equilibrium: $\dot{M} \simeq const.$ $\Delta t \sim M_{disk}/\dot{M} \sim (\alpha \Omega)^{-1} (R/H)^2$

Disk evolution equation:

$$\partial_t \Sigma = \frac{2}{r} \partial_r \left(\frac{\Omega}{r\kappa^2} \partial_r (r^2 W_{r\phi}) - \frac{\Omega}{\kappa^2} \tau \right) + \dot{\Sigma}_{ext}$$

Disk evolution equation:

$$\partial_{t} \Sigma = \frac{2}{r} \partial_{r} \left(\frac{\Omega}{r\kappa^{2}} \partial_{r} (r^{2}W_{r\phi}) - \frac{\Omega}{\kappa^{2}} \tau \right) + \dot{\Sigma}_{ext}$$
$$\Sigma \equiv \int \rho \, dz = \text{surface density}$$

Disk evolution equation:

$$\partial_{t} \Sigma = \frac{2}{r} \partial_{r} \left(\frac{\Omega}{r\kappa^{2}} \partial_{r} (r^{2}W_{r\phi}) - \frac{\Omega}{\kappa^{2}} \tau \right) + \dot{\Sigma}_{ext}$$

$$\Sigma \equiv \int \rho \, dz = \text{surface density}$$

$$\Omega = \text{ orbital frequency}, \, \kappa = \text{epicyclic frequency}$$

Disk evolution equation:

$$\partial_t \Sigma = \frac{2}{r} \partial_r \left(\frac{\Omega}{r\kappa^2} \partial_r (r^2 W_{r\phi}) - \frac{\Omega}{\kappa^2} \tau \right) + \dot{\Sigma}_{ext}$$

 $\Sigma \equiv \int \rho dz$ = surface density

 Ω = orbital frequency, κ = epicyclic frequency

$$W_{r\phi}$$
 = shear stress

Disk evolution equation:

$$\partial_t \Sigma = \frac{2}{r} \partial_r \left(\frac{\Omega}{r\kappa^2} \partial_r (r^2 W_{r\phi}) - \frac{\Omega}{\kappa^2} \tau \right) + \dot{\Sigma}_{ext}$$

- $\Sigma \equiv \int \rho dz = \text{surface density}$
- Ω = orbital frequency, κ = epicyclic frequency

 $W_{r\phi}$ = shear stress

 $\tau \propto \text{external torque/area}$

Disk evolution equation:

$$\partial_t \Sigma = \frac{2}{r} \partial_r \left(\frac{\Omega}{r\kappa^2} \partial_r (r^2 W_{r\phi}) - \frac{\Omega}{\kappa^2} \tau \right) + \dot{\Sigma}_{ext}$$

 $\Sigma \equiv \int \rho dz$ = surface density

 Ω = orbital frequency, κ = epicyclic frequency

 $W_{r\phi}$ = shear stress

 $\tau \propto$ external torque/area

$$\dot{\Sigma}_{ext} = \text{infall/wind}$$

Disk evolution equation:

$$\partial_{t} \Sigma = \frac{2}{r} \partial_{r} \left(\frac{\Omega}{r\kappa^{2}} \partial_{r} (r^{2} W_{r\phi}) - \frac{\Omega}{\kappa^{2}} \tau \right) + \dot{\Sigma}_{ext}$$

- $\Sigma \equiv \int \rho dz$ = surface density
- Ω = orbital frequency, κ = epicyclic frequency

 $W_{r\phi}$ = shear stress

 $\tau \propto$ external torque/area

 $\dot{\Sigma}_{ext} = \text{infall/wind}$

Disk evolution equation:

$$\partial_t \Sigma = \frac{2}{r} \partial_r \left(\frac{\Omega}{r\kappa^2} \partial_r (r^2 W_{r\phi}) - \frac{\Omega}{\kappa^2} \tau \right) + \dot{\Sigma}_{ext}$$

full derivation: exercise for student.

hint: d(specific angular mom.)/dr = $r\kappa^2/(2\Omega)$

hint: vertical, azimuthal integration of mass and angular momentum conservation equation.

a Disks

Shakura & Sunyaev 1973 Lynden-Bell & Pringle 1974

adopt simple scaling argument for diffusion of angular moment by turbulence.

model: turbulent viscosity $\boldsymbol{\nu} \simeq \alpha c_s H$

ignore external torques, infall/winds, variation in α .

Disk evolution equation becomes:

$$\partial_t \Sigma = \frac{2}{r} \partial_r \left(\frac{\Omega}{r\kappa^2} \partial_r (r^2 W_{r\phi}) \right) = 0$$

a Disks

thin, Keplerian disk: $\Omega \cong (G M/r^3)^{1/2}$ vertical equilibrium: $H \simeq c_s / \Omega$ opacity: $\kappa \simeq \kappa_0 \rho^a T^b$ turbulent viscosity: $\mathbf{v} \simeq \alpha \mathbf{c}_{s} \mathbf{H}$ vertical integration: $\Sigma \simeq 2 \rho H$ optical depth: $\tau \simeq \Sigma \kappa / 2$ surface temperature: $F = \sigma T_{eff}^4 \simeq (9/8) \Sigma \nu \Omega^2$ radiative equilibrium: $T_{eff}^4 \simeq (8/3) \sigma T^4/\tau$ steady state: $\dot{M} = 3 \pi \Sigma v$

a Disks

Example: steady state disk, stellar mass black hole inner zone: radiation pressure » gas pressure electron scattering opacity dominates

find:

$$T \simeq 4.3 \times 10^7 \alpha^{-1/4} m^{-1/4} x^{-3/8} [K]$$

$$\Sigma \simeq 0.4 \text{ x}^{3/2} \alpha^{-1} \dot{m}^{-1} [\text{g cm}^{-2}]$$

 $H/r \simeq 10 \text{ m} \text{ x}^{-1}$ etc.

see alpha_disk.ma mathematica script for details

Disk evolution equation:

$$\partial_t \Sigma = \frac{2}{r} \partial_r \left(\frac{\Omega}{r\kappa^2} \partial_r (r^2 W_{r\phi}) - \frac{\Omega}{\kappa^2} \tau \right) + \dot{\Sigma}_{ext}$$

What are $W_{r\phi}$, τ , Σ_{ext} ?

Disk Astrophysics

- Part 1: Child's Garden of Astrophysical Disks
- Part 2: Disk Evolution
- Part 3: Turbulence in Disks
- Part 4: Current Problems in Disk Theory

Turbulence in Disks

a disk model posits turbulent diffusion of AM

what generates turbulence?

possibilities:

- magnetorotational instability
- gravitational instability
- zombie vortex instability
- subcritical baroclinic instability
- vertical shear instability

Turbulence in Disks

a disk model posits turbulent diffusion of AM

what generates turbulence?

possibilities:

- magnetorotational instability
- gravitational instability
- zombie vortex instability
- subcritical baroclinic instability
- vertical shear instability

Turbulence in Disks

magnetorotational instability (MRI)

Balbus & Hawley (1991)

local, linear instability of weakly magnetized disks driven by exchange of angular momentum.

start with mechanical analogy: two masses in orbit on a spring

MRI linear theory facts

- Ideal fluid instability requires $d\Omega^2/dr < 0$
- Maximum growth rate (Keplerian): $(3/4) \Omega$
- Fastest growing mode: $(\mathbf{k} \cdot \mathbf{V}_A)^2 = (15/16)\Omega^2$
- Local instability for vertical field
- Local instability for azimuthal field

MRI simulations

- local or global
- stratified or unstratified
- explicit dissipation or ILES
- isothermal or energetically self-consistent

MRI simulations

- local or global
- stratified or unstratified
- explicit dissipation or ILES
- isothermal or energetically self-consistent

Time=1920

H. Shiokawa

MRI simulations

- local or global
- stratified or unstratified
- explicit dissipation or ILES
- isothermal or energetically self-consistent

G. Lesur

MRI simulation facts

- In 2D MRI leads to turbulence and $\boldsymbol{\alpha}$
- In 2D MRI does not converge
- In 3D MRI leads to turbulence and $\boldsymbol{\alpha}$
- Sometimes, 3D MRI simulations converge
- $\alpha = \alpha(z, \langle B_z \rangle, Re_M, Pr_M, ...)$

MRI simulation facts

- In 2D MRI leads to turbulence and $\boldsymbol{\alpha}$
- In 2D MRI does not converge
- In 3D MRI leads to turbulence and $\boldsymbol{\alpha}$
- Sometimes, 3D MRI simulations converge
- $\alpha = \alpha(z, \langle B_z \rangle, Re_M, Pr_M, ...)$

Disk Astrophysics

- Part 1: Child's Garden of Astrophysical Disks
- Part 2: Disk Evolution
- Part 3: Turbulence in Disks
- Part 4: Current Problems in Disk Theory

Problems in Disk Theory

- structure of radiation dominated disks
- structure of low collisionality, low \dot{M} flows
- magnetic flux problem
- *ab initio* dwarf nova evolution
- ILES problem

Homework

- Derive the disk evolution equation
- Download, compile, and run iharm2d <u>https://github.com/AFD-Illinois/iharm2d_v3</u> on a torus problem. See README in the home directory for a typical workflow.
- Run current loop advection problem with a sharp edge and with a smooth distribution. What can you conclude about harm's performance?
- Download, compile, and run ibothros2d <u>https://github.com/AFD-Illinois/ibothros2d</u> and make 1mm images of your torus run.