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Farris Shock 3: Γ ~ 10 shock, downstream Pgas/Prad ~ 1 
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• When is relativistic MHD required? 

• Basic equations; conserved currents 

• Numerical techniques; dirty secrets 

• Beyond ideal MHD
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Feynman: 

“the first principle is that you must not fool yourself, 
and you are the easiest person to fool.” 

“I'm talking about a specific, extra type of integrity 
that is not lying, but bending over backwards to 
show how you're maybe wrong” 

In computational astrophysics:  
- test your code 
- expose failure modes.



Alfven wave 
test problem 

Gammie+ 2003 

convergence test 
vs. 
linear theory 

ℒ1(f) ≡ ∫ |f| d2x
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Kerr inflow 
(inside-out  
Parker wind) 

Gammie+ 2003 

convergence test 
vs.  
“exact” solution 

ℒ1(f) ≡ ∫ |f| d2x



Field loop advection test

harm         color shows b2      Az ~ MAX(r0 - r,0)
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Field loop advection test

athena         color shows j2      Az ~ MAX(r0 - r,0)



Field loop advection test

harm         color shows b2      Az ∼ exp(-r2/w2)



Field loop advection test

harm         color shows j2      Az ∼ exp(-r2/w2)



Komissarov’s sadistic explosion problem

color shows log density
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Beyond Ideal MHD
In low Ṁ black hole accretion flows: 

λmfp,‖  for Coulomb scattering by ions, electrons ≫ GM/c2 

λmfp,⊥  for ions, electrons ≪ GM/c2 

viscosity  𝝂 ~ vth λmfp 

⇒ anisotropic viscosity 
⇒ anisotropic conduction  
⇒ electrons and ions decouple, distinct temperatures       

covariant extended MHD  (Chandra+ 2015)                                       
electron thermodynamics (Ressler+ 2015)
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Covariant EMHD Model
Heat flux parallel to field  

qμ	=	q	bμ	

Momentum transport parallel to field 

𝜏μν	=		-ΔP	[bμ	bν	-	(1/3)	hμν	]

Chandra+ 2015

bμ	≡ unit spacelike four-vector ‖ b-field 

hμν	≡ projection tensor, ⊥	uμ 

 uμ	≡ four-velocity



Covariant EMHD Model
Heat flux parallel to field  

qμ	=	q	bμ	

Momentum transport parallel to field 

𝜏μν	=		-ΔP	[bμ	bν	-	(1/3)	hμν	]

Chandra+ 2015

Naive theory (q	~	∇T	+	T	a) unstable: 
promote q,	ΔP to dependent variables and evolve



Covariant EMHD Model

Chandra+ 2015

Covariant, causal, stable model. 

Governing equations: 
Conservation of rest-mass, energy, momentum (5) 
Induction equation (ideal)        (3) 
Relaxation equations for q, ΔP (2) 
q0	=	-ρ	χ	bμ	[∇μΘ	+	aμΘ]	
ΔP0	=	3	ρ	ν	[bμbν	∇μuν	-	(1/3)	∇μuμ]	
Closure relation for χ,ν



grim code

Chandra, Foucart, Gammie, in prep

Ideal GRMHD codes ~ solved. 

New problem: 
dq/dτ	=	-(q	-	q0)/τR	+	…	
dΔP/dτ	=	-(ΔP	-	ΔP0)/τR	+	…	

q0,ΔP0 contain both space and time derivatives 

⇒ new algorithm, implicit/explicit evolution



Chandra, Foucart, Gammie, in prep



Foucart+ 2015
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