
Why Version Control Single Developer Multiple Developers Which VCS should I use? Setting-up Shared Repositories Behistun Inscriptions

Version Control with git

Robert Lupton

26 July 2016

Why Version Control Single Developer Multiple Developers Which VCS should I use? Setting-up Shared Repositories Behistun Inscriptions

Why Version Control?

Have you ever . . .

1 Tried to add a feature to a program and broken it so badly you
wished you could abandon all your changes?

2 Left a program in an unrunnable, or uncompilable state. . . and
you needed new results for a conference now?

3 Tried to work on a program or write a document with one or
more other people?

There are solutions. You could:

1 Backup frequently, keeping all backups.

2 Only ever develop on a copy of your code

3 Appoint someone whose job it is to merge all contributions

Version Control Systems (VCSs) offer a far better solution to all
these problems. And offer many other advantages too.

Why Version Control Single Developer Multiple Developers Which VCS should I use? Setting-up Shared Repositories Behistun Inscriptions

As a single developer

If you like the backup solution, many versions of cp support the -b
flag1, so all you need do to set things up is:

$ mkdir Backups

Then
$ cp -b hello.c Backups
hack hack
$ cp -b hello.c Backups
hack hack
$ cp -b hello.c Backups

After that marathon session:
$ ls -lt Backups/
total 96
-rwxr-xr-x 1 rhl rhl 21797 Sep 21 16:01 hello.c
-rwxr-xr-x 1 rhl rhl 21734 Sep 20 06:12 hello.c.~2~
-rwxr-xr-x 1 rhl rhl 21612 Sep 19 23:57 hello.c.~1~

You’ll then have to grep the file to find the version you had in mind.
If cp -b doesn’t work you can write a simple script:

#!/bin/sh
shopt -u nullglob
for f in "$@"; do

cp $f Backups/$f~$(date +"%F-%T")~
done

1os/x is not one of them

Why Version Control Single Developer Multiple Developers Which VCS should I use? Setting-up Shared Repositories Behistun Inscriptions

Using git instead

All you need do to set things up is:
$ git init
Initialized empty Git repository in /Users/rhl/TeX/Classes/APC524/.git
$ git add .

Then
$ git commit -m "Initial version" hello.c
hack hack
$ git commit -m "Made everything global" hello.c
hack hack
$ git commit -m "Removed that confusing define" hello.c

Those -m strings are associated with the commits (also called
checkins), and you can list them with git log:

$ git log --oneline
9613186 Removed that confusing define
8187a17 Made everything global
140c443 Initial version

Thinks: "I could easily add commit messages to my little shell
script. . . " but why should you bother when Linus did the work
already?

Why Version Control Single Developer Multiple Developers Which VCS should I use? Setting-up Shared Repositories Behistun Inscriptions

Details, details, . . .

Actually,
$ git commit -m "Initial version" hello.c

generated a message:
Committer: Robert Lupton the Good <rhl@babayaga.astro.princeton.edu>
Your name and email address were configured automatically based
on your username and hostname. Please check that they are accurate.
You can suppress this message by setting them explicitly:

git config --global user.name "Your Name"
git config --global user.email you@example.com

After doing this, you may fix the identity used for this commit with:

git commit --amend --reset-author

Do what it says, and don’t worry about it; you’ll never see this
message again.
I also have the lines

[alias]
ci = commit
co = checkout

in my .gitconfig file:
$ git config --global alias.ci commit; git config --global alias.co checkout

but I’ll try not to inflict them on you.

Why Version Control Single Developer Multiple Developers Which VCS should I use? Setting-up Shared Repositories Behistun Inscriptions

git clone

I often start projects from scratch with git init, but I also often
start from someone else’s work; in that case the initial command is
something like:

$ git clone git@github.com:RobertLuptonTheGood/APC524GitLecture

rather than
$ git init
$ git add .

Even when I’m working alone, I often want to set things up so I can
clone a remote copy of my project, because I worry about what will
happen when I lose my laptop.
There are lots of ways to store git repositories; a convenient way is
to use one of the hosting sites such as bitbucket.com or
github.com (I’ll use github in this lecture).
Other options include using ssh, httpd, or the file system.
There are some slides about how to get started with github near the
end of this lecture.

Why Version Control Single Developer Multiple Developers Which VCS should I use? Setting-up Shared Repositories Behistun Inscriptions

git log

You get more information if you don’t request --oneline:
$ git log
commit 9613186caf30a2694145b298cdc02653b0a90512
Author: Robert Lupton the Good <rhl@astro.princeton.edu>
Date: Mon Sep 24 11:56:15 2012 -0400

Removed that confusing define

commit 8187a17d2785f07bf3332b590a94579ccb0ac7aa
Author: Robert Lupton the Good <rhl@astro.princeton.edu>
Date: Mon Sep 24 11:52:57 2012 -0400

Made everything global

commit 140c4431b48be9884e3586d3f1d421c5b31cd500
Author: Robert Lupton the Good <rhl@astro.princeton.edu>
Date: Mon Sep 24 11:50:38 2012 -0400

Initial version

That all makes sense, except what are those
9613186caf30a2694145b298cdc02653b0a90512
8187a17d2785f07bf3332b590a94579ccb0ac7aa
140c4431b48be9884e3586d3f1d421c5b31cd500

strings?

Why Version Control Single Developer Multiple Developers Which VCS should I use? Setting-up Shared Repositories Behistun Inscriptions

Secure Hash Algorithm

It turns out that VCSs such as git tend to store diffs between files
rather than multiple copies of files; 9613186... is a SHA-1 of that
diff. SHA is the 160-bit result of the Secure Hash Algorithm2 — for
our purposes, it’s an almost-certainly unique fingerprint for our set
of changes (our "changeset").

2SHA-0 was withdrawn by the NSA for undisclosed reasons, and there are some
signs that SHA-1 isn’t quite as strong as the spooks would like. There’s also SHA-2
which has no publicly-known problems.

Why Version Control Single Developer Multiple Developers Which VCS should I use? Setting-up Shared Repositories Behistun Inscriptions

What have we gained over cp -b?

We’ve associated a message with the saved version; that’s useful.
We have used git clone as a way to manage off-site backups (we’ll
see more about that soon); I suppose that that’s useful.
We’ve saved disk space by storing diffs rather than copies of files.
At first glance this is an implementation detail, and once upon a
time that was true. However git doesn’t think: "What does my file
look like?", it thinks: "What changesets went into the current state
of my file?". This’ll matter later.
So, what have we gained over cp?

Why Version Control Single Developer Multiple Developers Which VCS should I use? Setting-up Shared Repositories Behistun Inscriptions

git diff

We can ask git to show us those diffs:
$ git diff 140c443..8187a17
diff --git a/hello.c b/hello.c
index ea0dbc7..45bba92 100644
--- a/hello.c
+++ b/hello.c
@@ -2,12 +2,14 @@

#define NITER 10

+int i; /* an integer */
+const char *str = "Hello World";
+
int
main()
{
- const char *str = "Hello World";

printf("What I tell you %d times is true\n", NITER);
- for (int i = 0; i < NITER; ++i) {
+ for (i = 0; i < NITER; ++i) {

printf("%d %s\n", i, str);
}

}

note that git allowed me to abbreviate the SHAs. But even
abbreviated and cut-and-pasted, SHAs are a nuisance.

Why Version Control Single Developer Multiple Developers Which VCS should I use? Setting-up Shared Repositories Behistun Inscriptions

git diff

Fortunately, there’s a shortcut; you could have got the same result
with git diff HEAD~~..HEAD~ (read: "What’s the diff between the
version two-commits ago to the one-commit ago?"). Or:

$ git diff HEAD~
diff --git a/hello.c b/hello.c
index 45bba92..df38fa3 100644
--- a/hello.c
+++ b/hello.c
-1,15 +1,13
#include <stdio.h>

-#define NITER 10
-
int i; /* an integer */
const char *str = "Hello World";

int
main()
{
- printf("What I tell you %d times is true\n", NITER);
- for (i = 0; i < NITER; ++i) {
+ printf("What I tell you %d times is true\n", 10);
+ for (i = 0; i < 10; ++i) {

printf("%d %s\n", i, str);
}

}

(this is an abbreviation for git diff HEAD~..HEAD).

Why Version Control Single Developer Multiple Developers Which VCS should I use? Setting-up Shared Repositories Behistun Inscriptions

Adding files; git status

We need a Makefile!
$ emacs Makefile
$ make
cc -o hello -Wall hello.c

Here’s a new git command:
$ git status
On branch master
Untracked files:
(use "git add <file>..." to include in what will be committed)
#
Makefile
hello
nothing added to commit but untracked files present (use "git add" to track)

git status is your friend; type it whenever you want to know
where you’ve got to with git.
The first thing to do is to ignore the machine-generated file hello:

$ echo hello > .gitignore
$ git status
On branch master
Untracked files:
(use "git add <file>..." to include in what will be committed)
#
.gitignore
Makefile
nothing added to commit but untracked files present (use "git add" to track)

Why Version Control Single Developer Multiple Developers Which VCS should I use? Setting-up Shared Repositories Behistun Inscriptions

Adding files; git add

Let’s do what they say:
$ git add .gitignore Makefile
$ git status
On branch master
Changes to be committed:
(use "git reset HEAD <file>..." to unstage)
#
new file: .gitignore
new file: Makefile
#

$ git commit -m "Added Makefile; ignored hello"
[master 4882a1f] Added Makefile; ignored hello
2 files changed, 3 insertions(+)
create mode 100644 .gitignore
create mode 100644 Makefile
$ git status
On branch master
nothing to commit (working directory clean)

Actually, that wasn’t a very good way to do things — it’s usually
better to split separate functionality into separate commits. You can
use git rebase --interactive to help you fix such
misjudgments, but that’s a topic a little bit too advanced to fit in
these notes. It’s also one of the few things I use a gui for. Try git
gui or sourcetree, which is free from Atlassian.

Why Version Control Single Developer Multiple Developers Which VCS should I use? Setting-up Shared Repositories Behistun Inscriptions

The Repository

What’s in my directory?
$ ls -A
.git .gitignore Makefile hello hello.c

I know about the last four of those, but what about .git? It’s git’s
secret stash of my project’s history, and is called the repository. It’s
just a directory like any other, full of more-or-less obscure files:

$ ls .git
COMMIT_EDITMSG FETCH_HEAD ORIG_HEAD config hooks
info objects
COMMIT_EDITMSG~ HEAD branches description index
logs refs
$ cat .git/refs/heads/master
4882a1fe4f5970fdb07998e77e1c7c68a5e6f047
$ git log --oneline
4882a1f Added Makefile; ignored hello
9613186 Removed that confusing define
8187a17 Made everything global
140c443 Initial version

Why Version Control Single Developer Multiple Developers Which VCS should I use? Setting-up Shared Repositories Behistun Inscriptions

git add revisited

You say hello; I say goodbye. So I edit hello.c and ask git what’s
going on:

$ git diff
diff --git a/hello.c b/hello.c
index df38fa3..182fc70 100644
--- a/hello.c
+++ b/hello.c
-1,7 +1,7
#include <stdio.h>

int i; /* an integer */
-const char *str = "Hello World";
+const char *str = "Goodbye Universe";

int
main()

Fine. Let’s commit that change:
$ git commit -m "Changed sign of greeting"
On branch master
Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git checkout -- <file>..." to discard changes in working directory)
#
modified: hello.c
#
no changes added to commit (use "git add" and/or "git commit -a")

Nothing happened. And what’s that about git add?

Why Version Control Single Developer Multiple Developers Which VCS should I use? Setting-up Shared Repositories Behistun Inscriptions

The Index

There’s another layer, called the index (or staging area or cache)

Repository

.git

git add

git commit

Files

hello.c, Makefile

Index

ce18930ad...

So to check in my changes I need to first add them to the index, and
then commit them to the repository:

$ git add hello.c
$ git commit -m "Changed sign of greeting"
[master ce18930] Changed sign of greeting
1 file changed, 1 insertion(+), 1 deletion(-)

Note that we added the changeset ce18930, not the entire file, to
the index.

Why Version Control Single Developer Multiple Developers Which VCS should I use? Setting-up Shared Repositories Behistun Inscriptions

The Index

If you’re familiar with cvs, svn, or hg you are probably thinking,
"How silly". Maybe you’ll be happy to learn that I could have said:

$ git commit -a -m "Changed sign of greeting"

and skipped the git add entirely.

Repository

.git

git add

git commit

git commit -a

Files

hello.c, Makefile

Index

ce18930ad...

If you specify a filename explicitly you can also skip the add:
$ git commit -m "Changed sign of greeting" hello.c

Why Version Control Single Developer Multiple Developers Which VCS should I use? Setting-up Shared Repositories Behistun Inscriptions

The Index

However, you usually have sets of changes to many files that
belong together and it makes sense to group them together. What’s
more, you probably have other changes that you don’t want to
commit (e.g. hacks to disable slow bits of the code that got in the
way during testing). The ability to choose what should go into the
index, and then to commit the changes all together with a helpful
message is very valuable.
You can control what goes into the index at the single-patch or -line
level (git add -p or git gui or sourcetree).

Why Version Control Single Developer Multiple Developers Which VCS should I use? Setting-up Shared Repositories Behistun Inscriptions

git push

I promised that git clone offered protection against disk crashes.
If I say

$ git push

all my local changes are pushed back to the repository whence they
were cloned.

Repository

.git

git add

git commit

Files

hello.c, Makefile

Index

ce18930ad...

remote repo

.git
git push

git clone

Why Version Control Single Developer Multiple Developers Which VCS should I use? Setting-up Shared Repositories Behistun Inscriptions

Commit Messages

Question: Who needs good commit messages?

Answer: Everyone.

Question: Isn’t it more efficient to save time by typing less? E.g.

$ git ci -a -m "Made misc changes"

Answer: No.

Good commit messages start with one beautifully composed line.

And then degenerate into all the embarrassing details about the
changeset that only the truly dedicated or desperate readers want
or need to know.
Remember that that desperate reader may well be you a month
before you’re hoping to earn your Nobel prize.

Why Version Control Single Developer Multiple Developers Which VCS should I use? Setting-up Shared Repositories Behistun Inscriptions

Examining old versions

What was the state of hello.c two revisions ago?
$ git show HEAD~~ hello.c

shows me the changeset, not the file. What you need is
$ git show HEAD~~:hello.c
#include <stdio.h>

int i; /* an integer */
const char *str = "Hello World";

int
main()
{

printf("What I tell you %d times is true\n", 10);
for (i = 0; i < 10; ++i) {

printf("%d %s\n", i, str);
}

}

Why Version Control Single Developer Multiple Developers Which VCS should I use? Setting-up Shared Repositories Behistun Inscriptions

Getting back old versions

I can get back an old version with:
$ git checkout 8187a17d hello.c

And return to my initial state with
$ git reset --hard

or
$ git checkout HEAD hello.c

If instead I say
$ git checkout 8187a17d

git replies:
Note: checking out ’8187a17d’.

You are in ’detached HEAD’ state. You can look around, make experimental
changes and commit them, and you can discard any commits you make in this
state without impacting any branches by performing another checkout.

i.e. "I don’t know where to store any changes you might make". The
resolution is easy (e.g. git checkout -b foo), but I’m not going to
explain it now. We’ll return to branches later.
You can get back to your initial state with:

$ git checkout master
Previous HEAD position was 8187a17... Made everything global
Switched to branch ’master’

Why Version Control Single Developer Multiple Developers Which VCS should I use? Setting-up Shared Repositories Behistun Inscriptions

Naming versions (git tag)

Referring to HEAD~3 isn’t very practical, as after I commit a change I
have to remember to say HEAD~4 instead.
So the safe thing to do is to refer to 4882a1f and write

v1.0 == 4882a1f (version I sent to Obama)

on a postit note stuck to my laptop; safe, but inconvenient.
Fortunately, git doesn’t insist on SHAs:

$ git tag v1.0 4882a1f
$ git show v1.0
commit 4882a1fe4f5970fdb07998e77e1c7c68a5e6f047
Author: Robert Lupton the Good <rhl@astro.princeton.edu>
Date: Mon Sep 24 15:40:36 2012 -0400

Added Makefile; ignored hello

diff --git a/.gitignore b/.gitignore
...

I can use v1.0 wherever I can use a SHA; e.g.
$ git log v1.0~..v1.0
commit 4882a1fe4f5970fdb07998e77e1c7c68a5e6f047
Author: Robert Lupton the Good <rhl@astro.princeton.edu>
Date: Mon Sep 24 15:40:36 2012 -0400

Added Makefile; ignored hello

Why Version Control Single Developer Multiple Developers Which VCS should I use? Setting-up Shared Repositories Behistun Inscriptions

Naming versions (git tag)

I still need that sticky note for the message, but:
$ git tag -f -m "Version I sent to Obama" v1.0 4882a1f
Updated tag ’v1.0’ (was 4882a1f)
$ git show v1.0
tag v1.0
Tagger: Robert Lupton the Good <rhl@astro.princeton.edu>
Date: Thu Sep 27 15:14:24 2012 -0400

Version I sent to Obama

commit 4882a1fe4f5970fdb07998e77e1c7c68a5e6f047
Author: Robert Lupton the Good <rhl@astro.princeton.edu>
Date: Mon Sep 24 15:40:36 2012 -0400

Added Makefile; ignored hello

diff --git a/.gitignore b/.gitignore
...

Actually, I could have created an annotated tag in the first place
with

$ git tag -a -m "Version I sent to Obama" v1.0 4882a1f

and dispensed with the note. This also works better with git
describe.

Why Version Control Single Developer Multiple Developers Which VCS should I use? Setting-up Shared Repositories Behistun Inscriptions

Naming versions (git tag)

If I worry about you masquerading as me, I can cryptographically
sign the tag:

$ git tag -s -m "Version I should have sent to Putin" v1.1 ce18930

You need a passphrase to unlock the secret key for
user: "Robert Lupton the Good <rhl@astro.princeton.edu>"
2048-bit RSA key, ID 318B6ABA, created 2012-02-02 (main key ID C630EBCB)

(that message seems to mean, "Everything shipshape, sir"); use
git tag -v v1.1 to check the signature.
I can list all my tags with:

$ git tag -n
v1.0 Version I sent to Obama
v1.1 Version I should have sent to Putin

Once you’ve acquired lots of tags, it can be useful to look at a
subset:

$ git tag -n --list ’v*0’
v1.0 Version I sent to Obama

Why Version Control Single Developer Multiple Developers Which VCS should I use? Setting-up Shared Repositories Behistun Inscriptions

git blame

Sometimes you’re reading code and ask yourself why, why, why did
they do that?

$ git blame -b -e --date=short hello.c | cat
(<rhl> 2012-09-24 1) #include <stdio.h>
(<rhl> 2012-09-24 2)

8187a17d (<rhl> 2012-09-24 3) int i; /* an integer */
ce18930a (<rhl> 2012-09-24 4) const char *str = "Goodbye Universe";
8187a17d (<rhl> 2012-09-24 5)

(<rhl> 2012-09-24 6) int
(<rhl> 2012-09-24 7) main()
(<rhl> 2012-09-24 8) {

9613186c (<rhl> 2012-09-24 9) printf("What I tell you %d times is true\n", 10);
9613186c (<rhl> 2012-09-24 10) for (i = 0; i < 10; ++i) {

(<rhl> 2012-09-24 11) printf("%d %s\n", i, str);
(<rhl> 2012-09-24 12) }
(<rhl> 2012-09-24 13) }

$ git log --oneline 9613186c~..9613186c
9613186 Removed that confusing define

Why Version Control Single Developer Multiple Developers Which VCS should I use? Setting-up Shared Repositories Behistun Inscriptions

git blame + emacs (vc-annotate)

Why Version Control Single Developer Multiple Developers Which VCS should I use? Setting-up Shared Repositories Behistun Inscriptions

git blame + emacs (vc-annotate)

Why Version Control Single Developer Multiple Developers Which VCS should I use? Setting-up Shared Repositories Behistun Inscriptions

How do I know that my code will compile?

"Robert, when discussing the index, you told us to pick-and-choose
the changes that actually get committed to the repository. Doesn’t
that mean that I can’t be sure that my code will work when I go back
to that version later?"
Good question. Fortunately, there’s a good answer. Enter git
stash:

$ git status
On branch master
Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git checkout -- <file>..." to discard changes in working directory)
#
modified: hello.c
#
no changes added to commit (use "git add" and/or "git commit -a")
$ git stash
Saved working directory and index state WIP on master: ce18930 Changed sign of greeting
HEAD is now at ce18930 Changed sign of greeting
$ git status
On branch master
nothing to commit (working directory clean)
$ make
cc -o hello -Wall hello.c
$

Why Version Control Single Developer Multiple Developers Which VCS should I use? Setting-up Shared Repositories Behistun Inscriptions

git stash

OK, it compiled. Let’s get that change back. . .
$ git stash pop
On branch master
Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git checkout -- <file>..." to discard changes in working directory)
#
modified: hello.c
#
no changes added to commit (use "git add" and/or "git commit -a")
Dropped refs/stash@{0} (d767b49c389d80cca437d2b18dd25d41da70c0cb)
$ make
cc -o hello -Wall hello.c
hello.c:11:32: error: expected ’;’ after expression

printf("%d %s\n", i, str)
^
;

1 error generated.
make: *** [hello] Error 1

In this case, I think we’ll forget that that proto-version ever existed:
$ git reset --hard
HEAD is now at ce18930 Changed sign of greeting

git won’t actually forget for around a month. For example:
$ git fsck --no-reflog | awk ’/dangling commit/ {print $3}’ | xargs git show
...

$ git stash apply d767b49c389d80cca437d2b18dd25d41da70c0cb

Why Version Control Single Developer Multiple Developers Which VCS should I use? Setting-up Shared Repositories Behistun Inscriptions

git branch

Inspired by PITP you start to wonder if all your software is quite as
well written as you once believed. You’d like to experiment, starting
with the initial version of the code; what should you do?
Rather than making a copy of one of your backups, you say:

$ git branch refactor 140c443
$ git checkout refactor
Switched to branch ’refactor’
$ ls -A
.git hello.c
$ head -7 hello.c
#include <stdio.h>

#define NITER 10

int
main()
{

Miraculous! That’s the initial version (as git log would have told
you if you’d asked). An alternative way to create the branch would
have been:

$ git checkout -b refactor 140c443

Why Version Control Single Developer Multiple Developers Which VCS should I use? Setting-up Shared Repositories Behistun Inscriptions

git branch v. git tag

How’s that different from a tag?

A tag is a label for the SHA of a particular changeset

A branch starts out as a label for the SHA of a particular
changeset, but when you commit a change the label moves.

Remember, both tags and branches are labels for changesets, not
files. When you want to talk about files, you’re talking about a set of
changesets, starting at the tag/branch and stretching back in time.

Why Version Control Single Developer Multiple Developers Which VCS should I use? Setting-up Shared Repositories Behistun Inscriptions

git cherry-pick

My branch starts further back in pre-history than the Makefile. What
should I do?

$ git log --grep=Makefile master
commit 4882a1fe4f5970fdb07998e77e1c7c68a5e6f047
Author: Robert Lupton the Good <rhl@astro.princeton.edu>
Date: Mon Sep 24 15:40:36 2012 -0400

Added Makefile; ignored hello
$ git cherry-pick 4882a1f
[refactor bbbe1d7] Added Makefile; ignored hello
2 files changed, 3 insertions(+)
create mode 100644 .gitignore
create mode 100644 Makefile
$ ls -A
.git .gitignore Makefile hello.c
$ git status
On branch refactor
nothing to commit (working directory clean)

Why Version Control Single Developer Multiple Developers Which VCS should I use? Setting-up Shared Repositories Behistun Inscriptions

The Philosophy of Git

There’s a tool gitk that comes with git and I can ask it to show me
my repository (and select View -> All Branches from the menu):

(there are other available tools, e.g. sourcetree).
The yellow labels are tags. Each blue or yellow circle is a changeset
with associated SHA — my entire project is a DAG of changesets.
I never ask for a version of a file; I ask git to apply the changesets
that would generate that version.

Why Version Control Single Developer Multiple Developers Which VCS should I use? Setting-up Shared Repositories Behistun Inscriptions

Sharing Repositories

We learnt to clone a repository:
$ git clone git@github.com:RobertLuptonTheGood/APC524GitLecture

Question: What happens if someone else issues the same command
on their laptop?
Answer: They get their own copy of my code.
That’s OK. But what happens if

they make changes and git push the results;

I make different changes, and git push the results

Which version of the modified file should git accept?
Actually, that’s the wrong question. git doesn’t think in files, it
thinks in changesets. A file in your directory is just the result of
applying a set of changesets — so you meant to ask, Which
changesets should be applied? Answer: all of them.

Why Version Control Single Developer Multiple Developers Which VCS should I use? Setting-up Shared Repositories Behistun Inscriptions

git push (Developer A)

Developer A finds a potential bug, and fixes it:
$ emacs hello.c
$ git diff
diff --git a/hello.c b/hello.c
index 182fc70..1ad9c72 100644
--- a/hello.c
+++ b/hello.c
-1,6 +1,6
#include <stdio.h>

-int i; /* an integer */
+unsigned int i; /* an unsigned integer */
const char *str = "Goodbye Universe";

int
$ git commit -m "Worried about i overflowing" hello.c
[master c61f64c] Worried about i overflowing
1 file changed, 1 insertion(+), 1 deletion(-)

$ git push
Counting objects: 5, done.
Delta compression using up to 8 threads.
Compressing objects: 100% (3/3), done.
Writing objects: 100% (3/3), 317 bytes, done.
Total 3 (delta 2), reused 0 (delta 0)
To git@github.com:RobertLuptonTheGood/APC524GitLecture

ce18930..c61f64c master -> master

If you want to push your tags too, say git push --tags

Why Version Control Single Developer Multiple Developers Which VCS should I use? Setting-up Shared Repositories Behistun Inscriptions

git push (Developer B)

OK, that was easy. What has Developer B been up to?
$ git status
On branch master
Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git checkout -- <file>..." to discard changes in working directory)
#
modified: hello.c
#
no changes added to commit (use "git add" and/or "git commit -a")
$ git diff
diff --git a/hello.c b/hello.c
index 182fc70..b98fe1a 100644
--- a/hello.c
+++ b/hello.c
@@ -6,7 +6,7 @@ const char *str = "Goodbye Universe";
int
main()
{
- printf("What I tell you %d times is true\n", 10);
+ printf("What I mention %d times is true\n", 10);

for (i = 0; i < 10; ++i) {
printf("%d %s\n", i, str);

}
$ git commit -m "Changed wording to be less assertive" hello.c
[master 858d33e] Changed wording to be less assertive
1 file changed, 1 insertion(+), 1 deletion(-)

Why Version Control Single Developer Multiple Developers Which VCS should I use? Setting-up Shared Repositories Behistun Inscriptions

git push (Developer B)

$ git status
On branch master
Your branch is ahead of ’origin/master’ by 1 commit.
#
nothing to commit (working directory clean)
$ git log --oneline
858d33e Changed wording to be less assertive
ce18930 Changed sign of greeting
4882a1f Added Makefile; ignored hello
9613186 Removed that confusing define
8187a17 Made everything global
140c443 Initial version

$ git push
To git@github.com:RobertLuptonTheGood/APC524GitLecture.git
! [rejected] master -> master (non-fast-forward)
error: failed to push some refs to ’git@github.com:RobertLuptonTheGood/APC524GitLecture.git’
To prevent you from losing history, non-fast-forward updates were rejected
Merge the remote changes (e.g. ’git pull’) before pushing again. See the
’Note about fast-forwards’ section of ’git push --help’ for details.

Hmmm. Note that the complaints aren’t about files, they’re about
refs and updates — that is, changesets.

Why Version Control Single Developer Multiple Developers Which VCS should I use? Setting-up Shared Repositories Behistun Inscriptions

git pull (Developer B)

We’ll do what they say:
$ git pull
remote: Counting objects: 5, done.
remote: Compressing objects: 100% (1/1), done.
remote: Total 3 (delta 2), reused 3 (delta 2)
Unpacking objects: 100% (3/3), done.
From github.com:RobertLuptonTheGood/APC524GitLecture

ce18930..c61f64c master -> origin/master
Auto-merging hello.c
Merge made by the ’recursive’ strategy.
hello.c | 2 +-
1 file changed, 1 insertion(+), 1 deletion(-)
$ git status
On branch master
Your branch is ahead of ’origin/master’ by 2 commits.
#
nothing to commit (working directory clean)

No complaints, so let’s try again:
$ git push
Counting objects: 10, done.
Delta compression using up to 8 threads.
Compressing objects: 100% (6/6), done.
Writing objects: 100% (6/6), 648 bytes, done.
Total 6 (delta 4), reused 0 (delta 0)
To gitgithub.com:RobertLuptonTheGood/APC524GitLecture.gitc61f64c..da65de9 master
-> master

Hurrah!

Why Version Control Single Developer Multiple Developers Which VCS should I use? Setting-up Shared Repositories Behistun Inscriptions

Developer A and Developer B

What does Developer B have?
$ git log --oneline
da65de9 Merged branch ’master’ of github.com:RobertLuptonTheGood/APC524GitLecture
c61f64c Worried about i overflowing
858d33e Changed wording to be less assertive
ce18930 Changed sign of greeting
4882a1f Added Makefile; ignored hello
9613186 Removed that confusing define
8187a17 Made everything global
140c443 Initial version

Switching back to Developer A:
$ git status
On branch master
nothing to commit (working directory clean)
$ git pull
remote: Counting objects: 10, done.
remote: Compressing objects: 100% (2/2), done.
remote: Total 6 (delta 4), reused 6 (delta 4)
Unpacking objects: 100% (6/6), done.
From github.com:RobertLuptonTheGood/APC524GitLecture

c61f64c..da65de9 master -> origin/master
Updating c61f64c..da65de9
Fast-forward
hello.c | 2 +-
1 file changed, 1 insertion(+), 1 deletion(-)

The output from git log is now identical to Developer B’s.

Why Version Control Single Developer Multiple Developers Which VCS should I use? Setting-up Shared Repositories Behistun Inscriptions

git push and git fetch

Repository

.git

git add

git commit

Files

hello.c, Makefile

Index

ce18930ad...

remote repo

.git

git fetch

git push

git pull
git clone

i.e. git fetch just updates my repository, while git pull first
fetches and then updates my working files.

Why Version Control Single Developer Multiple Developers Which VCS should I use? Setting-up Shared Repositories Behistun Inscriptions

git remote

There are commands to tell you about your repositories
$ git remote show origin
* remote origin
Fetch URL: git@github.com:PrincetonUniversity/APC524
Push URL: git@github.com:PrincetonUniversity/APC524
HEAD branch: master
Remote branches:
master tracked
no-class-registry tracked
registry tracked

Local branch configured for ’git pull’:
master merges with remote master

Local ref configured for ’git push’:
master pushes to master (fast-forwardable)

I have an git alias to make this sort of thing easier:
[alias]

rem = !"git remote -v ; echo ’ current branch:’ \
$(git for-each-ref --format=’%(upstream:short)’ $(git symbolic-ref -q HEAD))"

rso = remote show origin

$ git rem
origin git@github.com:PrincetonUniversity/APC524 (fetch)
origin git@github.com:PrincetonUniversity/APC524 (push)

current branch: origin/master

Why Version Control Single Developer Multiple Developers Which VCS should I use? Setting-up Shared Repositories Behistun Inscriptions

git fetch

Why is git fetch interesting?
$ git fetch
$ git diff origin/master
diff --git a/hello.c b/hello.c
index 8be616d..228d88e 100644
--- a/hello.c
+++ b/hello.c
@@ -1,6 +1,6 @@
#include <stdio.h>

-unsigned short int i; /* counter */
+unsigned int i; /* an unsigned integer */
const char *str = "Goodbye Universe";

int

In other words, "what’s the difference between the master branch
at origin and HEAD?" I.e. what would be pushed if I typed git
push. The origin is my remote repository:

$ git remote -v
origin git@github.com:RobertLuptonTheGood/APC524GitLecture (fetch)
origin git@github.com:RobertLuptonTheGood/APC524GitLecture (push)

If I just wanted the log messages, I’d say
$ git log origin/master..HEAD

Why Version Control Single Developer Multiple Developers Which VCS should I use? Setting-up Shared Repositories Behistun Inscriptions

git merge

I can merge those changes into my working copy with:
$ git merge
fatal: No commit specified and merge.defaultToUpstream not set.

Oh no I can’t. I should have typed
git merge origin/master

or I can set that configuration option:
$ git config merge.defaultToUpstream true
$ git merge
Updating da65de9..e07f6c6
Fast-forward
hello.c | 2 +-
1 file changed, 1 insertion(+), 1 deletion(-)

Why Version Control Single Developer Multiple Developers Which VCS should I use? Setting-up Shared Repositories Behistun Inscriptions

git merge and git rebase

Repository

.git

git add

git commit

Files

hello.c, Makefile

Index

ce18930ad...

remote repo

.git

git fetch

git push

git pull
git clone

git merge

git rebase

I’ll come back to rebase later.

Why Version Control Single Developer Multiple Developers Which VCS should I use? Setting-up Shared Repositories Behistun Inscriptions

git push for branches

I can make my branch visible to my colleagues with
$ git push -u origin refactor
Counting objects: 5, done.
Delta compression using up to 8 threads.
Compressing objects: 100% (2/2), done.
Writing objects: 100% (4/4), 392 bytes, done.
Total 4 (delta 0), reused 2 (delta 0)
To git@github.com:RobertLuptonTheGood/APC524GitLecture
* [new branch] refactor -> refactor
Branch refactor set up to track remote branch refactor from origin.

Now, your developers can say:
git checkout refactor

N.b. older versions of git required them to say:
git checkout -t origin/refactor

but you should be OK with the simpler version.

Why Version Control Single Developer Multiple Developers Which VCS should I use? Setting-up Shared Repositories Behistun Inscriptions

The great git push gotcha

Until moderately recently (git 1.7.10?), git pull and git push
were asymmetric:

git pull pulled only the current branch

git push pushed all branches.

This is very confusing when pushing a branch you’re not working on
fails — the symptoms are that you can’t push your work as the
other branch (which you’ve forgotten all about) needs to be pulled
before it can be pushed.
You can change this behaviour with:

$ git config --global push.default = upstream

i.e. only push my current branch, mirroring pull’s behavior.
For git versions before 1.7.6, you needed to set push.default =
tracking instead. upstream became the default behaviour of git
push sometime in 2012.

Why Version Control Single Developer Multiple Developers Which VCS should I use? Setting-up Shared Repositories Behistun Inscriptions

When git merge fails

As soon as your fellow developers start making changes, you just
know that they’ll make overlapping changes. In the dark ages, we
dealt with this by forbidding more than one person to work
simultaneously on the same file. But not only was waiting for
permission to work unproductive, it didn’t solve the problem — in
general, you’d need to lock all files that #include the file you’re
working on. So we declared open-season on editing; the corollary is
that there will be conflicts.

Why Version Control Single Developer Multiple Developers Which VCS should I use? Setting-up Shared Repositories Behistun Inscriptions

Conflicting changes

Developer A has no problems:
$ emacs hello.c
$ git diff
diff --git a/hello.c b/hello.c
index 8be616d..d336329 100644
--- a/hello.c
+++ b/hello.c
@@ -10,4 +10,6 @@ main()

for (i = 0; i < 10; ++i) {
printf("%d %s\n", i, str);

}
+
+ return 0;
}
$ git commit -m "Returned success code to the shell" hello.c
[master 19d6562] Returned success code to the shell
1 file changed, 2 insertions(+)
$ git push
Counting objects: 5, done.
Delta compression using up to 8 threads.
Compressing objects: 100% (3/3), done.
Writing objects: 100% (3/3), 320 bytes, done.
Total 3 (delta 2), reused 0 (delta 0)
To git@github.com:RobertLuptonTheGood/APC524GitLecture.git

e07f6c6..19d6562 master -> master

Why Version Control Single Developer Multiple Developers Which VCS should I use? Setting-up Shared Repositories Behistun Inscriptions

Conflicting changes

Developer B’s happy too:
$ emacs hello.c
$ git diff
diff --git a/hello.c b/hello.c
index 8be616d..caff08b 100644
--- a/hello.c
+++ b/hello.c
@@ -10,4 +10,6 @@ main()

for (i = 0; i < 10; ++i) {
printf("%d %s\n", i, str);

}
+
+ exit(0);
}
$ git commit -m "Returned success code to the shell" hello.c
[master d52182f] Returned success code to the shell
1 file changed, 2 insertions(+)

At first.
$ git push
To git@github.com:RobertLuptonTheGood/APC524GitLecture
! [rejected] master -> master (non-fast-forward)
error: failed to push some refs to ’git@github.com:RobertLuptonTheGood/APC524GitLecture’
To prevent you from losing history, non-fast-forward updates were rejected
Merge the remote changes (e.g. ’git pull’) before pushing again. See the
’Note about fast-forwards’ section of ’git push --help’ for details.

Why Version Control Single Developer Multiple Developers Which VCS should I use? Setting-up Shared Repositories Behistun Inscriptions

Conflicting changes

If developer B is cautious, she can figure out what’s going on:
$ git fetch
remote: Counting objects: 5, done.
remote: Compressing objects: 100% (1/1), done.
remote: Total 3 (delta 2), reused 3 (delta 2)
Unpacking objects: 100% (3/3), done.
From github.com:RobertLuptonTheGood/APC524GitLecture

e07f6c6..19d6562 master -> origin/master
$ git diff origin/master..HEAD
diff --git a/hello.c b/hello.c
index d336329..caff08b 100644
--- a/hello.c
+++ b/hello.c
@@ -11,5 +11,5 @@ main()

printf("%d %s\n", i, str);
}

- return 0;
+ exit(0);
}

The two of them have made the same change too different ways.
No merge tool can sort that out automatically.

Why Version Control Single Developer Multiple Developers Which VCS should I use? Setting-up Shared Repositories Behistun Inscriptions

git merge

What does git do?
$ git pull
Auto-merging hello.c
CONFLICT (content): Merge conflict in hello.c
Automatic merge failed; fix conflicts and then commit the result.

$ cat hello.c
#include <stdio.h>

unsigned short int i; /* counter */
const char *str = "Goodbye Universe";

int
main()
{

printf("What I mention %d times is probably true\n", 10);
for (i = 0; i < 10; ++i) {

printf("%d %s\n", i, str);
}

«««< HEAD
exit(0);

=======
return 0;

»»»> 19d656221992b96eb3a05927572765908a963e74
}

That’s helpful; git marked the conflict and left it up to the humans.

Why Version Control Single Developer Multiple Developers Which VCS should I use? Setting-up Shared Repositories Behistun Inscriptions

Resolving conflicts

Developer B knows how to resolve that:
$ emacs hello.c
$ git add hello.c
$ git commit -m "Kept my version of the change"
[master 70f0225] Kept my version of the change

And now:
$ git push
Counting objects: 8, done.
Delta compression using up to 8 threads.
Compressing objects: 100% (4/4), done.
Writing objects: 100% (4/4), 458 bytes, done.
Total 4 (delta 3), reused 0 (delta 0)
To git@github.com:RobertLuptonTheGood/APC524GitLecture

19d6562..70f0225 master -> master

Why Version Control Single Developer Multiple Developers Which VCS should I use? Setting-up Shared Repositories Behistun Inscriptions

Resolving conflicts

What about Developer A; does he have to resolve the conflict too?
$ git pull
remote: Counting objects: 8, done.
remote: Compressing objects: 100% (1/1), done.
remote: Total 4 (delta 3), reused 4 (delta 3)
Unpacking objects: 100% (4/4), done.
From github.com:RobertLuptonTheGood/APC524GitLecture

19d6562..70f0225 master -> origin/master
Updating 19d6562..70f0225
Fast-forward
hello.c | 2 +-
1 file changed, 1 insertion(+), 1 deletion(-)
$ git status
On branch master
nothing to commit (working directory clean)

And there was much rejoicing.

Why Version Control Single Developer Multiple Developers Which VCS should I use? Setting-up Shared Repositories Behistun Inscriptions

State of repository

After all these operations, what does git’s DAG look like?

Note that the non-overlapping changesets Changed wording to be
less assertive and Worried about i overflowing have resulted in a
diverge-and-merge which doesn’t really tell us anything about the
history of the project.

Why Version Control Single Developer Multiple Developers Which VCS should I use? Setting-up Shared Repositories Behistun Inscriptions

git merge v. git rebase

Developers A and B are both working on the refactor branch.
Developer A:

$ git checkout refactor
$ git add hello.c
$ git commit -m "Set the number of iterations on the command line"
$ git push

Developer B makes a different change:
$ git diff
diff --git a/hello.c b/hello.c
index ea0dbc7..0d1c76d 100644
--- a/hello.c
+++ b/hello.c
-10,4 +10,6 main()

for (int i = 0; i < NITER; ++i) {
printf("%d %s\n", i, str);

}
+
+ return 0;
}
$ git commit -m "Set proper return code" hello.c

Why Version Control Single Developer Multiple Developers Which VCS should I use? Setting-up Shared Repositories Behistun Inscriptions

git merge v. git rebase

B would like to avoid that extra merge, so:
$ git pull --rebase
From github.com:RobertLuptonTheGood/APC524GitLecture

bbbe1d7..696a322 refactor -> origin/refactor
First, rewinding head to replay your work on top of it...
Applying: Set proper return code
Using index info to reconstruct a base tree...
Falling back to patching base and 3-way merge...
Auto-merging hello.c

Ah! A nice linear history.

Why Version Control Single Developer Multiple Developers Which VCS should I use? Setting-up Shared Repositories Behistun Inscriptions

git merge v. svn update

Some of you may be yearning for svn’s simple view of the world:

remote repo

Files

svn commit

svn checkout

svn update

hello.c, Makefile
.svn

Maybe you’ll feel better if I remind you that that innocuous
$ svn update

corresponds to
$ git stash; git pull --rebase; git stash pop

There’s a reason why seasoned svn hands often tar up their
repositories before major updates, or (horrors) merges.

Why Version Control Single Developer Multiple Developers Which VCS should I use? Setting-up Shared Repositories Behistun Inscriptions

Other git commands

There are many other git commands, and options to the
commands you’ve seen, which you’ll see when you start googling
for help. You’ll see git bisect when we talk about debugging.

Why Version Control Single Developer Multiple Developers Which VCS should I use? Setting-up Shared Repositories Behistun Inscriptions

Binary File Support

git doesn’t handle large binary files well. In fact, a common error is
to check in a binary or shared object file by accident; you remove it
immediately, but your repository remains bloated. The problem is
that git remembers that you once added that file, so it needs to
keep a copy in case you want it back.
The official solution is to use git filter-branch (you’ll probably
need to consult stackoverflow). The recommended solution is to use
Roberto Tyley’s bfg instead.

https://rtyley.github.io/bfg-repo-cleaner

Why Version Control Single Developer Multiple Developers Which VCS should I use? Setting-up Shared Repositories Behistun Inscriptions

git-lfs

If you really did mean to add those files (maybe they’re images
used in unittests), a good option is git lfs. The trick is that the
contents of the file are replaced with some sort of text pointer to an
external ‘cloud’ location (e.g. github).

$ brew install git-lfs
#
$ git lfs install
#
$ git lfs track "*.fits"
$ git commit -m "Use lfs for FITS files" .gitattributes
"There is no step three. Just commit and push to GitHub as you normally would"
$ git add M31.fits
$ git commit -m "Add image of comet"
$ git push origin master

The downside is:
Every user and organization on GitHub.com with Git LFS

enabled will begin with 1 GB of free file storage and a
monthly bandwidth quota of 1 GB. You can buy more data
packs (50GB + 50GB/month) for 5$/month.

Other sites (e.g. bitbucket, gitlab) are gearing up to support git
lfs; e.g. it’s free for up to 1Gb on bitbucket during their beta
period.

Why Version Control Single Developer Multiple Developers Which VCS should I use? Setting-up Shared Repositories Behistun Inscriptions

Tracking down where a bug was introduced

We all know how frustrating it is to sit at a desk thinking, "I know
this used to work. . . ". I haven’t had a chance to teach you about
unit testing, so I don’t know when it slipped in. How do I go about
finding a bug in a large code?
It turns out that I broke the python lecture when I fixed some
problems after I gave it. How should I find what went wrong?

$ git log --oneline HEAD~5..HEAD
96b7e75 Renamed L03-C to L-C
801b2c1 Added xkcd about pointers
c11d1fa Fixes post-lecture
98688b7 Started to update debuggingII
029216b It’s more than a week now

In this case, it was pretty clear which commit caused the problem,
but let’s be formal and use git bisect:

$ git bisect start
$ git bisect bad
$ git bisect good 029216b
Bisecting: 1 revision left to test after this (roughly 1 step)
[c11d1fa8affe900779a800d0c3a7065c17436204] Fixes post-lecture

Why Version Control Single Developer Multiple Developers Which VCS should I use? Setting-up Shared Repositories Behistun Inscriptions

git bisect continued

$ make
...
! Package Listings Error: File ‘src/example_matplotlib.py(.makeArtist.snip)’ not found.
...
make: *** [L-python.pdf] Error 1
$ git bisect bad
Bisecting: 0 revisions left to test after this (roughly 0 steps)
[98688b7cd519144c3ac3035c6ed20c89ed7a5d68] Started to update debuggingII

$ make
$ git bisect good
c11d1fa8affe900779a800d0c3a7065c17436204 is the first bad commit
commit c11d1fa8affe900779a800d0c3a7065c17436204
Author: Robert Lupton the Good <rhl@astro.princeton.edu>
Date: Thu Oct 11 15:36:16 2012 -0400

Fixes post-lecture

:100644 100644 583c08ff68f62e91daa3100f103c2f9060268419 176cbbf4d8ccad5b7bc2afe8ea678349199e9880 M
.gitignore
:100644 100644 2d721db7f9612ac1529fd2819e0ce72cea8ad891 780c8032df7f5542287cbb53a5c49f2ab22f41c3 M
L-python.org
:040000 040000 728ff8e40915f78a4192cd89fbb939198eeefa5a 11aeebd7880eb20c489c736882b2fcda30098b47 M
src

git leaves us at this commit (as git status will tell you). git
bisect reset will get you back to where you started.

Why Version Control Single Developer Multiple Developers Which VCS should I use? Setting-up Shared Repositories Behistun Inscriptions

git bisect with a script

Back to the size bug.
If you have a command that reveals the problem you can make git
work harder.
If we have a script myTest:

#!/bin/sh
make bug1 || exit 125 # skip this revision
valgrind bug1 2>&1 |
perl -ne ’if(/definitely lost:\s*(\d+)/ && $1 > 0) {

warn "Leaked $1 bytes\n"; exit 1;
}’
exit 0

we can say:
$ git bisect start
$ git bisect bad
$ git bisect good 9a45fc0
$ git bisect run myTest

which will print the first bad commit’s SHA. As before, use git
bisect reset to return to your initial state.

Why Version Control Single Developer Multiple Developers Which VCS should I use? Setting-up Shared Repositories Behistun Inscriptions

rcs or cvs or svn or hg or git or bzr?

There are lots of source code managers to choose from. On unix the
original options were sccs and rcs, but both were essentially
superceded 20 years ago by cvs. svn was meant to be a better cvs,
with an 1.0 release in 2004. Starting around the same time three
other options appeared, bzr, git, and hg.
Which should you use?

Use cvs if you have legacy code in a cvs repository. But you
might want to migrate to svn

Use svn if you have legacy code in an svn repository, or you
know cvs and want to learn as little as possible.

Otherwise use git (or hg (Mercurial) if you insist). I think that
bzr is slowly dying.

Why Version Control Single Developer Multiple Developers Which VCS should I use? Setting-up Shared Repositories Behistun Inscriptions

rcs or cvs or svn or hg or git or bzr?

The oracle reported:

Wiki:git

The Eclipse Foundation reported in its annual community survey
that as of May 2014, Git is now the most widely used source code
management tool, with 42.9% of professional software developers
reporting that they use Git as their primary source control system
compared with 36.3% in 2013, 32% in 2012; or for Git responses
excluding use of GitHub: 33.3% in 2014, 30.3% in 2013, 27.6% in
2012 and 12.8% in 2011. Open source directory Black Duck Open
Hub reports a similar uptake among open source projects

Black Duck (née Ohloh) says that the git fraction’s 39% in 2016

Why Version Control Single Developer Multiple Developers Which VCS should I use? Setting-up Shared Repositories Behistun Inscriptions

rcs or cvs or svn or hg or git or bzr?

2014

2016

Why Version Control Single Developer Multiple Developers Which VCS should I use? Setting-up Shared Repositories Behistun Inscriptions

Should you use svn?

Email on the gdb mailing list

From: Jim Blandy <jimb@red-bean.com>
Date: December 20, 2010 10:46:18 pm EST
Subject: Re: time to be serious about dropping CVS

As one of the original designers of SVN, I really recommend
switching to either git or Mercurial. It takes some getting used to,
but any GDB hacker can handle that challenge. Once you switch,
you will love the speed so much you’ll cry when you have to use
CVS (or SVN).

They moved to git.

Why Version Control Single Developer Multiple Developers Which VCS should I use? Setting-up Shared Repositories Behistun Inscriptions

Sharing using github

I already have a github account (RobertLuptonTheGood) so I
connected and created a new repository called APC524GitLecture.
Then all I needed to do to share the test repository that this
lecture’s built around was:

$ git remote add origin git@github.com:RobertLuptonTheGood/APC524GitLecture.git

$ git push -u origin master
Counting objects: 16, done.
Delta compression using up to 8 threads.
Compressing objects: 100% (11/11), done.
Writing objects: 100% (16/16), 1.53 KiB, done.
Total 16 (delta 5), reused 0 (delta 0)
To git@github.com:RobertLuptonTheGood/APC524GitLecture.git
* [new branch] master -> master
Branch master set up to track remote branch master from origin.

And that’s all that there is to it; there’s a copy of my repository at
https://github.com/RobertLuptonTheGood/APC524GitLecture

Furthermore, anyone can say:
$ git clone git@github.com:RobertLuptonTheGood/APC524GitLecture.git

and get their own clone on their own machine.
All these clones are equivalent — anyone can look at the history,
commit changes, add files, or anything else we’ve learned to do.

Why Version Control Single Developer Multiple Developers Which VCS should I use? Setting-up Shared Repositories Behistun Inscriptions

Private github repos

You may not like the idea that just anyone can read your carefully
written code on github. Fear not; it’s also possible to have private
repositories if you pay. Alternatively, bitbucket offers free hosting
for five or fewer participants and github for education (see e.g.
github private repos article). It’s also perfectly possible to run your
own git server — if you’re interested google gitolite and maybe
gitlab.

http://www.infoworld.com/article/3069275/application-development/github-ushers-in-unlimited-private-repositories.html

Why Version Control Single Developer Multiple Developers Which VCS should I use? Setting-up Shared Repositories Behistun Inscriptions

Behistun Inscriptions

The Behistun Inscription, written in cuneiform in three languages:
Old Persian, Elamite, and Babylonian.

Why Version Control Single Developer Multiple Developers Which VCS should I use? Setting-up Shared Repositories Behistun Inscriptions

git for English and American speakers
git init Start a new project
git clone url Get a copy of someone’s repository
git add file Prepare to save changes to file
git commit [-a] -m . . . Save those [all] changes (locally)
git push Tell a remote site about my changes
git pull [–rebase] Synchronize my local copy with a remote
git fetch Synchronize my local repo with a remote
git rebase -i Rewrite history
git status What’s up? (locally)
git log [–oneline] What have I been doing?
git blame [FILE] Who did what to FILE?
git checkout -b ABC Make a branch called ABC
git push -u REMOTE ABC Push branch ABC to a REMOTE
git tag -a XYZ Make a tag named XYZ
git checkout FILE [REV] Reset a FILE to REV
git rm FILE Remove a FILE
git mv FILE NEW Rename FILE to NEW
git show rev:FILE Show an old version of FILE

Why Version Control Single Developer Multiple Developers Which VCS should I use? Setting-up Shared Repositories Behistun Inscriptions

svn for git users

git clone url svn checkout url
git pull –rebase svn update
git status svn status
git -f checkout path svn revert path
git add file svn add file
git rm file svn rm file
git mv file svn mv file
git commit -a svn commit
git log svn log
git show rev:fileName svn cat url
git show rev:dirName svn list url
git show rev svn log -rrev url
git branch B svn copy ^/svn/trunk ^/svn/branches/B
git merge –no-commit B svn merge -r 20:HEAD ^/svn/branches/B
git tag -a T svn copy ^/svn/trunk ^/svn/tags/T

