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Astrophysical context

Planetary magnetospheres Solar corona & wind, heliosphere
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Particle acceleration processes

Magnetic energy => Particles

Flow kinetic energy => Particles




Plasma physics on computers
How PIC works
Electrostatic codes

Charge assignment and shape factors
Discretization effects

Electromagnetic codes

FDTD and Yee mesh
Particle movers: Boris’ algorithm

Conservative charge deposition
Boundary conditions

Applications and examples



Plasma: ionized gas (typically T>104K), 4th state of matter

Examples: stars, sun, ISM, solar wind, Earth magnetosphere,
fluorescent lights, lightning, thermonuclear fusion

Plasma physics: studies plasma behavior through experiment,
theory and ... simulation!

Simulation needed to study collective and kinetic effects,
especially in the nonlinear development.

Applications: reconnection, anomalous resistivity, instabilities,
transport, heating, etc.



Characteristic time and length scales
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When are collisions important?
We are interested in

Number of particles in Debye cube

Plasma is collisionless if

L> Ap, t>> wp

1 -1
’ wc

N, =nij

L>> Ap, Np>>1

Plasma Type nem” 7| T eV]wge see ' Ap em | nAp® |v.; sec™!
Interstellar gas 1 1 6x 10" [7x10° |4x10%[7x107°
Gaseous nebula 107 1 | 2x10° 20 [8x10°[6x 1077
Solar Corona 10¢ 107 | 2x10% [2x10 '|8 x 10" 60
Diffuse hot plasma | 10" | 10® | 6 x 10" |7 x 10 *[4 x 10° 40
Solar atmosphere, 10 1 6x10' |7x10" 40 2 x 107

gas discharge
Warm plasma 104 10 | 6 x 10" [2x10 *[8 x 10%| 107
Hot plasma 10 | 10 | 6x 10" |7x10 *|4x10%|4 x 10°
Thermonuclear 103 10" [ 2x 10" |2x10"7|8 x 10°| 5 x 10°
plasma
Theta pinch 10°% | 10%° | 6 x 10" |7x10 "4 x 10*| 3 x 10°
Dense hot plasma 10°% | 10% | 6x 10" |7x10 %[4x10%|2x 10"
Laser Plasma 10°° | 10° | 6x 10" [7x10°7| 40 |2x10'?

Collisionless
system has a very
large number of
particles in Debye
sphere



Collisionless plasma can be described by Vlasov-Maxwell system

of equations for distribution function f(x,v,t):
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Direct solution is 6D -- very expensive B L

Can solve along characteristics -- particles p(2) = z}"f&(“ ~ ;)

Delta functions cause collisions -- smooth them

3(@) =) e4556(% - %)
j

particle method!



PIC Approach to Viasov Equation (VE)

= 6D-VE not practical on a grid

Particle Shape
= (Re-)introduce ) computational \ o

particles for discrétizing £.(r,p,1)

= Macroscopic force <F>becomes
again granular (stochastic noise)

SF' — [I/N, /.

= Particle equations of motion (EQM):
dr, P, dp,

dt m’  dt

= VE characteristics: 1, = const.
Particle strength (charge) const.

-F

| Trajectory l
@

= Reduce operation count by
computing forces on a grid




PIC Approach to Vlasov Equation

« Lorentz-Force: F, =¢E, +—(Pp
= Solve Maxwell Equations on grld

= “Grid aliasing” (Birdsall et al.)

| |
Dual Grid Cell | | g, = yoa,q,
|
: I

®  Grid-Point Chargel
[

I
Charge Assignment

xB)
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a,, =a, (zero self-force)

E = ZOLPI ;
o (Ei’Bi)o
7”( 5,)

Force Interpolation




Momentum conservation

a, =0a, (zero self-force)

Tt - EIF, Flx) ; | : : =
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dt ”

Interpolation to and from the
grid have to be done in
AxIp,E;=0 the same way
J

For periodic system:

SO momentum is conserved



Finite-size particles
Coulomb force between point charges

short range force is responsible

F= (32 for collision effects

long range force is responsible
for collective effects

FI1G. |. Coulombd force law between particles in two and three
dimensions.

Since one simulation particle represents many point particles (Q=Ngq), the
short range force is over-estimated. So, finite-size particles are used.



The force law between finite-size particles

The finite-size particle 20
considerably red.uf:es N v sk -
the coulomb collision.

Ap = Debye Length
. Thermal Velocity
. “We
\'K e R

Qe 2 3 4 5 6 7T 8 9 nrld

Coulomb Behavior

FIG. 4. Square and Gaussian charge shapes—iwo shapes often , . . o
used for finite-sized partiches. FIG. 2. Force law between finite-size particles in two dimen-

sions for various sized particles. A Gaussian-shaped charge-
density profile was used.



Simulation Flow-Chart

Load Particle Distribution

Solve Particle EQM

F, —(x,.p, )

Model Surface Emission

I

Particle Interpolation
(E.B)—F,

=N

—

Monte-Carlo Collisions

!

Extrapolate to Grid

(x,.p, ) (p..i;)

‘ Solve Maxwell’'s Equation .

(piﬂji)%(Ei’Bi)




A bit of history:

In late 1950s John Dawson began 1D
electrostatic “charge-sheet” experiments at
Priceton, later @ UCLA.

1965 Hockney, Buneman -- introduced grids
and direct Poisson solve Key names:
J. Dawson, O. Buneman, B.

, Langdon, C. Birdsall.
1970-s theory of electrostatic PIC developed

(Langdon)
First electromagnetic codes O
USING
o PLASMA PHYSICS
1980s-90s 3D EM PIC takes off o . VIA COMPUTER

SIMULATION
“PIC bibles” come out in 1988 and 1990

Always in step with Moore’s law K 8 LinGoon




Plasma physics on computers
How PIC works
Electrostatic codes

Time stepping
Charge assignment and shape factors
Discretization effects



Timescales of the system >> light crossing time; magnetic fields

static.

Vi=—p(x)
E(x)=-V¢
F,=q,E(x,)

The number of floating
point operations for the

complete scheme scales as:

aN,+pN,InN, +yN,

if we use FFT to solve the
Poisson’s equation.

Where Ng is the mesh
number.

Load initial particle
positions and velocities

Y

Deposa;;lpmicle charge

onme
— @ scatter operation

Solve particle

equation of motion @

Y

Solve for E
on mesh

Interpolate E to particle
| pos?t?:n and compute F

— a gather operation




Four Major Criteria to Choose an Algorithm
for Integration of Equations of Motion

*Convergence — Which means that the numerical solution
converges to the exact solution of the differential equation in the
limits as A7 and Ax tend to zero.

*Accuracy — Which means the truncation error associated with
approximating derivatives with differences.

*Stability — If total errors (including truncation error and
round-off error) grows in time, then the scheme is unstable.

*Efficiency — This is a critical consideration since whatever
scheme we choose will be used for each particle at each time

step.



Other Criteria to Choose an Algorithm for
Integration of Equations of Motion

*Dissipation — The dissipation of some physical quantities
caused by the truncation error associated with approximating
derivatives with differences.

*Conservation — The deviation of the conservation law
caused by the truncation error associated with approximating
derivatives with differences.



Integration of Equations of Motion

The conventional wisdom is that the simple second order leapfrog
achieves the best balance between accuracy, stability and efficiency.
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Integration of Equations of Motion

For an electrostatic case, if At = 2, the leap frog scheme is stable.

2 2r
d X . 2 I —tdv2 ||
d_2 - wox i u"wz ......
t wennrnnn q):% ......
l g n .............
.;)haseﬂf(;; ................
) wl\t wolt ........ ',oo
sin ( 5 ) ==+ > T /S Cause pmplitude error
- 0 - M M " M !‘ 1 " i " M M " M
0 2 4 6
mpAt

Flgure 3. Angular frequency «, and numerical growth rate wy for the leapfrog scheme. Phase
error is the difference between the numenical and exact frequency ay.



Charge Assignment and Force Interpolation

Once we introduce the grid we can no longer view the particles as
point particles, this leads naturally to the idea of a finite sized particle.

-
* £ % ¥ > % >
X Y7 X
* * * » - *> *
X X Xe x
- > -
A A
Charge Assignment by Charge Assignment by

(Nearest Grid Point) NGP in 1D. (Cloud-in-Cell) CIC in 1D.



Charge Assignment and Force Evaluation by
Cloud-in-Cell in 1D

To ensure momentum conservation, the same interpolation scheme is used to
compute the force on a particle as was used to perform the assignment of the

particles charge to the mesh.
X, — X,
g+1 i
Pe=4
g i Ax | & .
X. — X E : x‘: : x
P = 4; ‘Ax . i
Pylx;) i i
I
|
xE - X; X.—X /ax [ I
F;' = qi = : Eg + : Eg+l ' T
Ax Ax I
' ' - 4 ' ’.
i S A X
where x, < x; < X, -



Filtering Action

of Shape Functions

5,00 =),

N Sm=Emr

0

E

S (k) decays with k=)

Tw
S0 ;
1 x |
so(x)=£E ’ -O-SSESO.S E
l[O ,  otherwise - or -
so0 /|
e
! 5w
High-frequency | e~ g |
components are filtered ... b s
by a smooth shape e e
function. s E
X=0
Shape Functions
of different orders

B e

Corresponding Functions
in Fourier Space



Integration of Field Equations

Here we solve the 1D form of Poisson's equation, then computes the
electric field. L is the length of the system of interest.

0’
e 2
ox’ Fourier Transform ¢(k )= b= ZFTI
E =—.a_¢ >
x Ox ; R Ek — _ikd(k
Finite K,=kf(ﬁl(_’zl£:;£)) (k) 1¢( )
Difference 2 ;k’Ax) I Ax S 0
_, sin
b 22l = sy = Pk
Ax? g k) ="
!
Pons — P Fourier Transf - -
E, =-£ lZAx 1 ourier ransol‘H: E(k)=-ix@ (k)

In this case, differencing acts to dampen high &, modes.



Aliasing

The spurious fluctuations which appear as a result of the loss of
displacement invariance, manifest themselves in k-space as non-
physical mode couplings, known as “aliasing’.

By introducing a mesh we reduced i
our representation of p (x) from a
continuous representation p, (x) to a '{p‘ “‘::»:) D kst )
n=-1alias)

sampled representation p, (x,) .
p(k)=[" dip (x)e™

Bk =Y p.(k+nk,)

] . '
- ' : '
n=-w ' H >

The wavenumber range k,,,/2< k = k,,,/2
, called the "“principal zone" or " first Brillouin zone."

‘p,~ (k) 'p“ (k) : (:=+l alias)

-4 >
Principal Zone

The extra contributions (from |7|>0) to inside the principal zone are called aliases.




Aliasing

The spurious fluctuations of high frequency causes the
noise and error in the main lobe, which might make the
numerical system to be unstable.

The high-k components of S(k) 1s determined by the

smoothness of S(x); The high-k component of n (k) is

determined by the smoothness of n(x), i.e. the number of
particles.

The major noise exists in the particle-in-cell method
mainly comes from the aliasing effect. Two methods for
reducing the aliasing effect:

1. Increase the particle number.
2. Increase the order of the shape function.



Noise Reduction in PIC

The granularity of a particle representation inevitably
introduces short-scale fluctuations into the force field, and the
mean amplitude of these fluctuations is proportional to./,
where 7 is the particle number density.

The ratio of the mean amplitudes of the fluctuations to the
slowly varying component varies as % , the effect of these
fluctuations is greatly enhanced because our numerical model
typically uses far fewer particles than are present in reality.

We do not need to reduce the fluctuation amplitudes to their
correct values, but merely to levels at which they no longer
dominate the forces on the particles, or influence the particles
significantly during the course of our simulation.

If Debye length is unresolved on the grid (<1cell), aliasing will heat
up the plasma until Debye length is resolved -- num. heating



Effects of particle shape factor on plasma dispersion
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Such Fourier space modifications also reduce collisions

v



I
1
L--
!

*

I
l
1

I
I
-
|
I
I
|
ﬂ
|
I
i
—_—
I
!
t

B IS T N T

PIC issues:
®*Particle discretization error

*Smoothing error (finite size particles)

® Statistical noise (granular force)

*Grid aliasing (grid assignment)
®Deterioration of quadrature in time integration
*Short-range forces (collisions) neglected

but the alternative is 6D Vlasqv... T

Extensions to 2D:

Usually, area weighting scheme is
used for charge deposition and
force interpolation

But -- can use other shape factors
as well! Particles don't have to be
squares!!!




Summary for Restrictions of simulation
parameters

Value of time step

1. Courant condition (rectangular coordinate)

1 1 c=1
dt <1 dx12+dx22 o, =1

2. @ dt<0.25

' The maximum frequency of system

3. v, dt< min(dxl,dxz)

particle move one time step < 1 cell (grid size)




Summary for Restrictions of simulation

paramefters
Resolution
1.Cell (grid) size
<™ ma6~12 WL
m k

2.Particles per cell per species : 4-9



Plasma physics on computers
How PIC works
Electrostatic codes

Charge assignment and shape factors
Discretization effects

Electromagnetic codes (TRISTAN-MP)

FDTD and Yee mesh
Particle movers: Boris’ algorithm

Conservative charge deposition
Boundary conditions

Applications and examples



OE/0t=¢(V X B)—4rJ, V.-E=4mp, V-B=0

d
OB /0t = —c(V X E) = my=g(E+~ xB)

Load Particle Distribution

!

Solve Particle EQM

Fp — (Xp’pp ) |
Model Surface Emission Monte-Carlo Collisions
1 @ 1
Particle Interpolation Extrapolate to Grid
(Ei’Bi)%Fp (Xp’pp )% (pi’ji)

L

Solve Maxwell’'s Equation
(piaji)e (EiaBi)




EMY2 = ERTV2 4 Ate(V X B") —4xJ"] 7T r_

Bn-{-l = B" — c ALY X En+1/2 . :1.’_____:;____ ----_"f, :
| : :
I 1 |
N | : :
Er B Er B \ .
\&\__/ IEM Wy Axy
-‘.j EL —a‘_)l *a
e |
P | .
x.m}'_ 1hm y .
% B o T—"’ ™7
R s e:’m ax, O
5 Yi o Y ’/Ew
{ \}_____._'/ : o =
(- th - . Fields defined on the Yee mesh. Currents, not

shown, are co-located with the corresponding
electric field components. Exploded view shows an
integration surface.

Fields are decentered both in time and in space

Finite-difference Time-Domain Maxwell solver on Yee (1966) mesh:
robust and very simple. Second order in space and time.

Decentering conserves div B to machine precision



Integration of Field Equations

The new set of field variables Jpmm———— Ty
encapsulate the mesh metrics. /" i T A
E=[Eedl D=[Deds e e S
H=[Hedl B=[Beds ye 5
T=[Jeds 15,, Oay .
—;—)l X;
Ent/2 — pr-1/2 At[e(V x B") — dnJ"] x,;i _____ LU J_
Bn+1 = B" — cAtV X En+1/2 . //t»m TBM /K’

1 | Fields defined on the Yee mesh. Currents, not
shown, are co-located with the corresponding
electric field components. Exploded view shows an
integration surface.




@ We solve the discrete Maxwell equations:

E' = exp(iwnAt+ ikjAx) ,
B! = exp(iwnAt+ ikjAx) .
@ The solution becomes:
, (wAt) At (kAx)
sn| —— = —  Sin I .
2 AXx 2

For k ~ w/Ax and At > Ax the solution adopts complex roots.

For complex roots the solution grows to infinity.

Then the scheme becomes unstable.



@ The vacuum dispersion relation for the continuum system is:

@ The vacuum dispersion relation for the discrete system becomes:

(2 () e ()

@ This means:

wAt _ ‘/(At)2 ,2(kAx)
— = aresing/(— ) sin2( —).
2 AXx 2

@ For k ~ w/Ax and At > Ax no real valued solution is possible.

+ 1



w— CAVAX = 0

- ='cAVAX=05 |  _ _ _ _ 7
0.8H vvves cAVAx = 0.8 ' N
S - ' ‘ Ar\*© =
._._:‘25§=:.2 ’ _.-;"'___ “— cos(wAt):(cE) [cos(kAx) — 1]+ 1]
33 00 v =|magicAVAX = 1.2( , 7 l
»
E

Courant-Levy Stability Criterion

- I I -1/2
| < -
£ ¢ (Z (Ax.‘)z)

/

0 0.2 04 0.6 0.8 1

Vacuum dispersion curve for leapfrog difference
scheme for wave equation.

Numerical dispersion is anisotropic (best along grid diagonal)
Phase error for short wavelengths

Causes numerical Cherenkov radiation (when relativistic particles
move faster than numerical speed of light)



Integration of Equations of Motion

Newton—Lorentz equations of motion

: t+A1/2 _  t—=At)2 t+A1/)2 4 ,,1—At)2
P ou u u +u
: = 9 (E' - X B')

At m 2y°!
+Ar _ 1+Ar /2 _
x! X : yl = (p!=A2 4 ytdi2y 3
At y:+At/.. .



Integration of Equations of Motion

Boris Scheme* (Explicit Scheme)
g AtE'

2m

— — g,
u- =u'""A2

uW=u +u" xt',

ut =u" +u X

.
- "
""""""

al
gl +At2 _ o+ qALE

with gt

0 = 2arctan(t') = 2arctan(qgBAt /2ym)

* Boris J P 1970 Relativistic plasma simulation—optimization of a hybrid code
Proc. 4th Conf. on Numerical Simulation of Plasmas (Washington, DC) pp 3-67.

Can overstep magnetic rotation without stability issues.



Charge and current deposition 8E/6t = c(V X B) —A4rnJ |

What to do about the Poisson equation? O0B/0t = —c(V X E),

Should we solve an elliptic equation in addition to hyperbolic
Ampere’s and Faraday’s laws?

Turns out we can avoid solving Poisson equation if charge is
conserved.

Take divergence of Ampere’s law:

ava'tE=cV—6vaB§—4nV-J
P__v.g
ot

If charge is conserved, Poisson equation is just an initial condition.
Like divB=0, if Poisson is true at t=0, it will remain satisfied.



Charge and current deposition

Charge-conservative current deposition method
If just use volume-weighting, charge is not conserved.

Villasenor & Buneman (92):

Count what is the “volume current”
through appropriate faces.

Also, need to know if the particle

crosses four or 7 boundaries (2d).




Weighting Charge to the Grids

A single particle is weighted to
surrounding nodes

Qj,k =q(1-w)(1-w,)

Qs =qw(1-wy)

Qj,kvl =q(1-w)w, Ax2

The charge density is calculated using

_ Qi
Pix (Ax, x Ax,)




Weighting Current to the Grids

, N Charge Conserving Current Weighting
L= X w1 w)

Lisin kel Lisa2ael
kel O -— <

q, -
I .=, -Aww
lJ :-k 1 ZA‘ ' 2

A

g, —
12,,-,::.; = ZEsz(l -w)

.'.’Jol.lol/.’ ’.‘Jo.'.hl/.‘ 1

q; o
Iz,m,b; = ZEAWZWI

* > v,
1j+124 sl 1y jeara jo2
w=x; — Xji
x; : refers to the position of the Aw = w*dt _ Lt
ilh partiCIe
X;: the position of the nearest L etHAr

W =
lower mesh node 2



Charge and current deposition

Subroutine o
Seposd currenis
on co¥ faces

Current deposition can take as much time as the mover
(sometimes more). More optimized deposits exist (Umeda 2003).

Higher order schemes possible (Esirkepov 2001, Umeda 2004)
Charge conservation makes the whole Maxwell solver local and
hyperbolic (like nature intended!). Static fields can be established
dynamically.



Special sauce

Particle shape should be smoothed to reduce noise. We use
current filtering after deposition to reduce high frequency aliases.

Higher order FDTD schemes (4th spatial order) work better at
reducing unphysical Cherenkov instability.

Boundary conditions

Periodic is simple -- just copy ghost zones and loop particles.
Should not forget particle charge on the other side of the grid!

Conducting BCs: set E field parallel to boundary to 0. Boundary
has to lie along the grid.

Outgoing BCs: match an outgoing wave to E, B fields at boundary
(Lindman 1975).



Field boundary conditions: a few examples

Periodic

F«'is’l --------- l -------- I -------- I_I -------- [ -------- I -------- ]:’ié(m-p(o)
it e AL TR

Tangential E (0)=E(L)=0

Perpendicular B,(0)=B,(1.)=0
Absorbing layer ] l [ [
(open boundary)
Absorbing layer

XB—4 — —
SotOErcVxB-4xs O @ cVXE )

Multi-D generalization : Perfectly Matched Layer (see Bérenger 1994-1996)



Boundary conditions

Perfectly matched layer (Berenger 1994) -- works like absorbing
material with different conductivity for E and B fields)

Moving window: simulation can fly at c to follow a fast beam.
Outgoing plasma requires no conditions.

Injection: particles can be injected from boundary, or created in
pairs throughout the domain. We implemented moving injectors
and expanding domains for shock problems.

Parallelization

We use domain decomposition with ghost zones that are communicated via MPI.
In 3D we decompose in slabs in y-z plane, so all x-s are on each processor
(useful for shocks).



Parallelization: Domain decomposition

PIC code are really demanding in computing resources => Need to parallelize the code!

A common practice is to use the Message Passing Interface (MPI) library and the
domain decomposition technique.

Example: Consider a 2D mesh 9x9 cells and 9 CPUs.

1D decomposition 2D decomposition
#1 4 |#5 | 46 | #7| #8
| ] #9
L]
Il
[ ] #6
L
[l
N #1 #2 #3
i

Applicable to an arbitrary number of CPUs
Choice decomposition depends on the problem

26



Parallelization: Domain decomposition

1D: Upto2/CPU

Example: 2D decomposition
Communications of CPU #5

MPI Communications
2D: Upto 8/ CPU

3D: Up to 26 / CPU

#9

#6

#3

27



Speedup

PIC codes scale well to large number of CPUs

The era of High-Performance Computing! Today ~> 10° CPUs
See http:/ |www.top500.0rg /

OSIRIS Code Zeltron Code
100 Zeltron 3D on Mira, first 50 steps
, | |Efficiency @
O Weak scaling o 1.&:\,00‘05 ————— —__E ———
.CfS"ono’swmo v 3 4 'r-,_;_.w-———-—"f g
o
102
’ ? 3 1 MPI rank/core
v
8 «—« cells/core = 7°
| e cells/core = 10°
. E= cells/core = 13’
o 1 — cells/core = 16*
(@] 3
O +»— cells/core = 20
0 - N Al N
10° 10! 10° 10° 10" 10° 10°

100 104 10° 10%
# Cores Number of cores

28



Load balancing issues

Computing time (without communications): ~ 90% particles, ~10% fields

- Few particles
— Processor #9 is
Many particles #9 waiting for all the
Processor #5 is others
slowing down all
the others 4

A

#6

L

#3

A

29



A specific example: a reconnecting layer

Density contrast ~>10!

Low-particle density

High-particle density

Some solutions: - Appropriate domain decomposition
- Dynamical changes of the decomposition
- Varying particle weights
- Hybrid code: MPI-OpenMP



http://ptsg.egr.msu.edu/

Download the software now. , QL -
o XES1

- XPDP1
> XPDC1 : /Y
o XPDS1 §

o XPDP2
o XOOPIC

o XGRAFIX e o ———

Y or 1Y L 8 c
—)— W |
Our most recent, popular and well kept up codes are on bounded plasma, plasma device codes XPDP1,
XPDC1, XPDS1, and XPDP2. The P, C, and S mean planar, cylindrical, or spherical bounding
electrodes; the 1 means 1d 3v and the 2 means 2d 3v. These are electrostatic, may have an applied
magnetic field, use many particles (like hundreds to millions), particle-in-cell (PIC), and allow for
collisions between the charged particles (electrons and ions, + or -) and the background neutrals
(PCC-MCC). The electrodes are connected by an external series R, L, C, source circuit, solved by
Kirchhoff's laws simultaneously with the internal plasma solution (Poisson's equation), The source may

be V(t) or I(t), may include a ramp-up (in time). XPDP2 is planar in x, periodic in y or fully bounded in
(x,y), driven by one or two sources.(For detailed information, thk_hm_)




XOOPIC (2D RPIC, free unix version, Mac and Windows are paid through Tech-X);
VORPAL (1,2,3D RPIC, hybrid, sold by Tech-X)

TRISTAN (public serial version), 3D RPIC (also have 2D), becoming public now
OSIRIS (UCLA) 3D RPIC, mainly used for plasma accelerator research

Apar-T, Zeltron.

P1C-on-GPU — open source

LSP -- commercial PIC and hybrid code, used at national labs

VLPL -- laser-plasma code (Pukhov ~2000)

Reconnection research code (UMD, UDelaware)

Every national lab has PIC codes.

All are tuned for different problems, and sometimes use different formulations (e.g.
vector potential vs fields, etc). Direct comparison is rarely done.



Plasma physics on computers
How PIC works
Electrostatic codes

Charge assignment and shape factors
Discretization effects

Electromagnetic codes

FDTD and Yee mesh
Particle movers: Boris’ algorithm

Conservative charge deposition
Boundary conditions

Applications and examples



No “subscale” physics — resolve the smallest scales! Converse is
expense

Usually deal with non-clumped flows, hence AMR is not needed.
Some exceptions -- reconnection simulations.

FDTD conserves divergence of B to machine precision.

PIC issues:

®*Particle discretization error

*Smoothing error (finite size particles)
*Statistical noise (granular force)

*Grid aliasing (grid assignment)

®Deterioration of quadrature in time integration
*Short-range forces (collisions) neglected

®Analysis of large-scale simulations is nontrivial

but the alternative is 6D Vlasov integration...




PIC is a versatile robust tool for self-consistent solution of plasma physics.

* Electrostatic method is well understood, and analytical theory of numerical
plasma exists.

» Electromagnetic model is more diverse, and many alternative formulations
exist. Multidimensional theory of the simulation is not as well developed.

 Implicit methods are now common for large timestep solutions.
* Long term stability is an issue for largest runs.

* In astrophysics PIC has the potential to answer the most fundamental
theoretical questions: particle acceleration, viability of two-temperature
plasmas, dissipation of turbulence.



Laser-plasma interaction and plasma based accelerators
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Engineering:
Gas discharges, plasma processing, film deposition. PIC with
Monte-Carlo collisions and external circuit driving.

Lightning-oil tank interaction!
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current o —
‘ MV/m

time 8 us

ghtning
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Astrophysics:
Collisionless shocks (solar wind, interstellar medium, relativistic
jets), wind-magnetosphere interactions, pulsar magnetospheres.

Rapid reconnection, particle acceleration.

Case study: Wind-magnetosphere interaction in double pulsar
binary JO737. Attempt to simulate macroscopic system with PIC.
Possible if the size of the system is > 50 skindepths.




I\Hl Ill“n..h

. No “dayside” reconnection ‘ With “dayside” reconnection

Similar to the interaction between Earth magnetosphere and solar wind.



Shock modulated at 2Q
Reconnection once per period
Cusp filling on downwind side

Density asymmetries

R_~50000 km
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Simulations of Relativistic Shocks
Anatoly Spitkovsky (Princeton)



_al simulation of collisionles_

E (] ° Particle-in-cell method:
o® P  Collect currents at the cell edges
—.1 .—.—f » Solve fields on the mesh (Maxwell’s eqs)
® o o * Interpolate fields to particles positions
® ® » Move patrticles under Lorentz force

Code “TRISTAN-MP’:
* 3D (and 2D) cartesian electromagnetic particle-in-cell code

 Radiation BCs; moving window Large simulations needed
- Charge-conservative current deposition (no Poisson eq) for interesting steady
e states!!!
Filtering of CL.II’I’enl‘ data | - In 3D grids are up to
 Fully parallelized (612proc+) domain decomposition 10000x1024x1024 cells
» Routinely work with upto 10 billion+ particles In 2D grids are up to
150000x4000 cells

Simulation setup:
Relativistic e= or e~ ion wind (y =15) with B field (o = w.? /0,2 =B%/(4rxnymc?) = 0-10)
Reflecting wall (particles and fields)

Upstream c/mp=10 cells, c/v >5 cells;




=15 —
Y . < v =15
upstream downstream
e

c/3 --¢c/2 c/3 -- ¢/2
“Shock” is a jump in density & velocity

> Use reflecting wall to initialize a shock

Simulation is in the downstream frame. If we understand how shocks work
in this simple frame, we can boost the result to any frame to construct
astrophysically interesting models. Disadvantage -- upstream flow has to
move over the grid -- potential long term instabilities.



Why does a shock exist?

Particles are slowed down either by instability (two-stream-like) or by magnetic reflection.
Electrostatic reflection is important for nonrelativistic shocks and when ions are present.
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Weibel instability (weibel 1959)

Spatial growth scale c/oop; timescale 10/oop
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Magnetic Energy
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Secondary Weibel instability stops the bulk of the plasma. Pinching leads to randomization.
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Steady state counterstreaming leads to self-replicating shock structure
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Applications

Astrophysics:

Nonneutral plasma physics in pulsar
magnetospheres SRR RRER RN

Electric field on the
/ ~~ surface
// - extracts charges. Does
1/<,\ magnetosphere form?
™
Expect to see this:

LIGHT CYLINDER .
-\
) ELECTRONS

_-/‘-
LINE wIN [Af-':[
)""
/
, -
e ——— | PROTON
- - . by I"‘
- ' T — —
. / N\ Moo e ool
CO-ROTATING | . - .
MAGNETOSPMERE | | .- . *\ N\ fﬁn
L LN LS |




Applications

Astrophysics:

Nonneutral plasma physics in pulsar
magnetospheres. Diocotron instability




Applications

Astrophysics:

Nonneutral plasma physics in pulsar
magnetospheres. Diocotron instability




PIC is a versatile robust tool for self-consistent solution of plasma physics.

* Electrostatic method is well understood, and analytical theory of numerical
plasma exists.

» Electromagnetic model is more diverse, and many alternative formulations
exist. Multidimensional theory of the simulation is not as well developed.

 Implicit methods are now common for large timestep solutions.
* Long term stability is an issue for largest runs.

* In astrophysics PIC has the potential to answer the most fundamental
theoretical questions: particle acceleration, viability of two-temperature
plasmas, dissipation of turbulence.



