## Selected Topics in Plasma Astrophysics

Eliot Quataert (UC Berkeley)







#### Selected Topics in Plasma Astrophysics

- Range of Astrophysical Plasmas and Relevant Techniques
- Stellar Winds (Lecture I)
  - Thermal, Radiation, and Magneto-Rotational Driven Winds
  - Connections to Other Areas of Astrophysical Fluids/Plasmas
- Instabilities In Ideal Fluids and Dilute Plasmas (Lecture II)
  - Ideal Fluid theory of Convection and MRI
  - How do Anisotropic Conduction & Viscosity Modify Convection and MRI
  - Astrophysical Context: Galaxy Clusters and Accretion Disks

#### Range of Astrophysical Plasmas & Techniques

#### Relativistic

Force-Free Electrodynamics

(e.g., pulsars)

(GR)(M)HD

(e.g., BH accretion/jets)

PIC

(e.g., rel. shocks)

Dynamical Space-Time + MHD

(e.g., Compact Object Mergers)

dense

plasmas

#### Non-Relativistic

Force-Free

(e.g., solar corona)

(M)HD

(e.g, star formation disks cosmology)

Kinetic Theory

(e.g., shocks, reconnection, disks, turbulence)

#### Fluid Models

ideal (M)HD (ok first approx?)

non-ideal: resistivity, Hall, ambipolar (e.g., star formation)

multi-fluid: dust + gas/plasma (e.g., planet formation)

radiation (M)HD (e.g., star formation, disks, BH growth)

dilute plasmas non-ideal: anisotropic conduction & viscosity (e.g., galaxy clusters)

multi-fluid: pressure tensor & anisotropic conduction (e.g., solar wind, disks)

multi-fluid: plasma + cosmic rays (e.g., galaxy formation)

#### Stellar Winds

- Thermally driven winds (sun-like stars)
  - hydrodynamic theory, kinetic theory
- Magnetocentrifugically driven winds
  - rotation as energy source, tapped via B-fields
- Radiation pressure driven winds: L > L<sub>Edd</sub>
  - continuum driven: (e.g., dust,  $\kappa > \kappa_{\text{electron}}$ )
  - line-driven (e.g., Fe & other metal lines in massive stars)
- Ideas developed in the stellar context later key in other astrophysical arenas
  - thermally driven galactic winds; line and continuum driven winds from accreting black holes; magnetically driven winds from disks (ang. momentum transport); microinstabilities regulate pressure anisotropy in collisionless plasmas ...



 $\dot{M} \sim 10^{-14} \, M_{\odot} \, yr^{-1}$   $\dot{E} \sim 10^{-7} \, L_{\odot}$ 

- Corona at R ~ 2 R<sub>sun</sub>
  - $n \sim 10^6 \text{ cm}^{-3}$ ;  $B \sim 1 \text{ G}$ 
    - $\beta \leq 10^{-2}$  (magnetically dominated!)
  - Not in thermal equilibrium:
    - $T_{ion} >> T_p \sim 2 \ 10^6 \ K \gtrsim T_e \sim 10^6 \ K$
    - $T_{\perp} \gtrsim T_{||}$
  - $\ell_{\rm mfp}$  ~ few R<sub>sun</sub> ~  $10^8 \, \rho_{\rm Larmor}$  (collisionless!)

#### Spherical Wind/Accretion Solutions





 $\dot{M} \sim 10^{-14} \, M_{\odot} \, yr^{-1}$   $\dot{E} \sim 10^{-7} \, L_{\odot}$ 

- Corona at R ~ 2 R<sub>sun</sub>
  - $n \sim 10^6 \text{ cm}^{-3}$ ;  $B \sim 1 \text{ G}$ 
    - $\beta \leq 10^{-2}$  (magnetically dominated!)
  - Not in thermal equilibrium:
    - $T_{ion} >> T_p \sim 2 \ 10^6 \ K \gtrsim T_e \sim 10^6 \ K$
    - $T_{\perp} \gtrsim T_{||}$
  - $\ell_{\rm mfp}$  ~ few R<sub>sun</sub> ~  $10^8 \, \rho_{\rm Larmor}$  (collisionless!)

## MHD Wind Solutions





- Corona at R ~ 2 R<sub>sun</sub>
  - $n \sim 10^6 \text{ cm}^{-3}$ ;  $B \sim 1 \text{ G}$ 
    - $\beta \leq 10^{-2}$  (magnetically dominated!)
  - Not in thermal equilibrium:
    - $T_{ion} >> T_p \sim 2 \cdot 10^6 \text{ K} \gtrsim T_e \sim 10^6 \text{ K}$
    - $T_{\perp} \gtrsim T_{||}$
  - $\ell_{\rm mfp}$  ~ few R<sub>sun</sub> ~  $10^8 \, \rho_{\rm Larmor}$  (collisionless!)

## Why is Fluid Model 'Reasonable' for Collisionless Solar Wind?

- B-field  $\Rightarrow \rho_{Larmor} << R$ 
  - No Free Streaming in 2 Directions
- Along B: pressure is origin of acceleration; need kinetic theory in detail but perhaps not to factors ~ few
- Kinetic instabilities limit how much distribution function can deviate from Maxwellian
  - mirror, firehose, ion cyclotron, electron whistler, ...

- Heating ↔ Pressure ↔ Accel. of Solar Wind
  - Early models invoked  $e^-$  conduction but  $T_{ion} \gtrsim T_e$  in fast wind
  - Ion Heating Key: Kinetic Physics
  - Htg at all radii:  $\sim 1-10^4 R_{\odot}$
- Heating: Alfven wave turbulence
  - observed in situ & least damped MHD mode in collisionless plasmas
     e.g., Belcher & Davis 1971; Barnes 1956



## Whence Alfven Waves?





- State of the Art Global Models:
  - ID w/ detailed microphysics (or multi-D w/ less microphysics)
  - Multi-Fluid Closure Models: p, e, alpha, minor ions
    - separate  $T_{\perp}$ ,  $T_{||}$  evolution w/ heat fluxes &  $\perp$ , || htg
  - Waves/Turbulence Evolved w/ Model Eqns





kinetic models of htg and heat flux used in global fluid models

#### Stellar Winds

- Thermally driven winds (sun-like stars)
  - hydrodynamic theory, kinetic theory
- Magnetocentrifugically driven winds
  - rotation as energy source, tapped via B-fields
- Radiation pressure driven winds: L > L<sub>Edd</sub>
  - continuum driven: (e.g., dust,  $\kappa > \kappa_{\text{electron}}$ )
  - line-driven (e.g., Fe & other metal lines in massive stars)
- Ideas developed in the stellar context later key in other astrophysical arenas
  - thermally driven galactic winds; line driven winds from accreting black holes; magnetically driven winds from disks (ang. momentum transport); microinstabilities regulate pressure anisotropy in collisionless plasmas ...

# Radiation Pressure Driven Winds

- RGB and AGB Stars
  - Dust Driven. At low  $T_{eff}$  dust forms in stellar atmosphere (above photosphere)  $\leq 10^3$  K.
  - $\kappa_{\text{dust}} >> \kappa_{\text{electron}} \Rightarrow L > L_{\text{Edd}} \text{ on dust } \Rightarrow \text{Wind}$



#### Massive Stars

• L >  $L_{Edd}$  on metal lines  $\Rightarrow$  Wind (acceleration can be inside or outside photosphere)



## Radiation Pressure Driven Winds

ullet Thermally Driven Winds:  $\dot{E} \sim rac{1}{2} \dot{M} v_{\infty}^2 \sim rac{5}{2} \dot{M} c_s^2$ 

Radiation Pressure Driven Winds:

$$\dot{P} \simeq \dot{M} v_{\infty} \sim L/c$$
  $v_{\infty} \sim v_{\rm esc}$ 

- AGB:  $L \sim 10^4 L_{\odot} \ v_{\infty} \sim 10 \ \text{km/s} \ \dot{M} \sim 3 \ 10^{-5} \ \text{M}_{\odot} \ \text{yr}^{-1}$
- 30  $M_{\odot}$  star: L ~  $10^{5.5}$  L $_{\odot}$  v $_{\infty}$  ~  $10^3$  km/s  $\dot{M}$  ~  $10^{-5}$  M $_{\odot}$  yr<sup>-1</sup>

#### Line-Driven Winds

(Lucy & Solomon 1970; Castor, Abott, Klein 1975)

- scattering and absorption by metal lines  $\Rightarrow$  opacity  $\uparrow$  and  $L_{Edd} \downarrow$
- acceleration  $\Rightarrow$  v  $\uparrow$   $\Rightarrow$  lines broader bec. of Doppler shift  $\Rightarrow$  absorb more flux  $\Rightarrow$  acceleration  $\Rightarrow$  v  $\uparrow$  ...
- $v_{wind} \sim v_{esc}(R*)$   $\dot{M}v_{esc} \sim L/c$
- most well studied model for mass loss in massive stars but probably not the dominant source of mass loss

### Line-Driven Winds



$$F_{
m rad} \equiv rac{\kappa_e F'}{c} M(t)$$
 effectively, L >> L<sub>Edd</sub> for t << 1

assumes optically thin, i.e., acceleration outside the photosphere

#### Stellar Winds

- Thermally driven winds (sun-like stars)
  - hydrodynamic theory, kinetic theory
- Magnetocentrifugically driven winds
  - rotation as energy source, tapped via B-fields
- Radiation pressure driven winds: L > L<sub>Edd</sub>
  - continuum driven: (e.g., dust,  $\kappa > \kappa_{\text{electron}}$ )
  - line-driven (e.g., Fe & other metal lines in massive stars)
- Ideas developed in the stellar context later key in other astrophysical arenas
  - thermally driven galactic winds; line driven winds from accreting black holes; magnetically driven winds from disks (ang. momentum transport); microinstabilities regulate pressure anisotropy in collisionless plasmas ...

#### Thermally Driven Galactic Winds

- Energy Injection by Supernovae ⇒ Hot Gas ⇒ Galactic Wind
  - Analytic theory (Chevalier & Clegg 1985) ~ Parker solar wind
  - Key source of 'feedback' in galaxy formation; sets stellar masses of lower mass galaxies





# Line Driven Winds from Accreting Black Holes

- Broad Absorption Line Quasar winds
  - Seen in ~ 40% of quasars (IR-selected)
  - $\dot{P} \sim \text{few L}_{AGN}/c$ ;  $v \sim 10^4 \text{ km/s}$ ;  $\dot{E} \sim 0.02 \text{ L}_{AGN}$
  - Can have a large impact on ISM of host galaxy



Wind theory (Murray+ 1995) generalization of CAK line driven stellar winds to accretion disks



# Magnetized Winds From Accretion Disks



Blandford & Payne 1982 analytic theory explicitly motivated by Weber-Davis theory of the magnetized solar wind



Tchekhovskoy+: BH Accretion with Large-scale B-field

One of the major uncertainties in accretion disk theory is the relative role of angular momentum transport by local instabilities (MRI) and large-scale magnetic torques

#### Kinetic instabilities limit how much distribution function can deviate from Maxwellian

mirror, firehose, ion cyclotron, electron whistler, ...

