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1. Radiation hydrodynamics.
2. Numerical methods for radiation hydrodynamics.
• Flux-limited diffusion
• Full transport methods

3. Radiation hydrodynamics in Godunov schemes.
4. Athena++.

Lecture 2:

Why Radiation Hydrodynamics?
Example: Black hole accretion flows
Accretion powers the most luminous sources in the universe

Quasars
Active Galactic Nuclei

X-ray binaries Global simulation
Local simulation

Angular momentum transport in black hole accretion disks is driven 
by MHD turbulence produced by the magneto-rotational instability 
(MRI): Balbus & Hawley (1991)

Nonlinear saturation of MRI widely studied with both local
(“shearing-box”) and global simulations.

MHD is essential
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Radiation is essential
In black hole accretion disks, radiation pressure exceeds 
gas pressure inside

(Shakura & Sunyaev 1973).  Radiation needs to be 
included in dynamical models.

If stress                     then radiation dominated disks are 
subject to both 

– Viscous instability (Lightman & Eardley 1974)
– Thermal instability (Shakura & Sunyaev 1976)

Still not clear if such instabilities really exist with MRI.

r/RG < 170(L/LEdd)
16/21(M/M�)

2/21

⌧r� = ↵P

Foundations of Radiation 
Hydrodynamics

Numerical MHD is easy compared to radiation hydrodynamics.

Some of the reasons why radiation hydrodynamics is hard:
• Which equations (transfer equation or its moments)?
• Which frame (co-moving, Eulerian, mixed-frame)?
• Proper closure of moment equations.
• Mathematical problem changes in different regimes: hyperbolic
in streaming limit, mixed hyperbolic-parabolic in diffusion limit. 
• Wide range of timescales requires implicit methods.
• Frequency dependence adds another dimension to solution
• Non-LTE effects requires modeling level populations.

This complexity means that radiation hydrodynamics 
means different things to different people.

In some cases, only need to include energy transport via material-
radiation energy exchange term:

Optically thin cooling.
Heating by (ionizing) radiation.

Examples: diffuse ISM, HII regions.

In general (non-LTE with scattering), the emission and 
scattering terms may be complicated to evaluate.

Aside: Adding source terms.

Simple source terms usually added via operator splitting.
1. Update flux divergence terms ignoring source terms
2. Update source term.

For Godunov methods, simple operator splitting:
1. formally makes scheme first-order in time
2. can lead to stability problems

Second-order can be achieved using multi-step methods (easy using 
van Leer unsplit integrator, or RK time stepping).

Stability issues can be addressed using implicit methods, e.g. IMEX
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Simple source term: Optically-thin cooling
Adds source terms to energy equation:

Where L(T) is per-particle cooling rate, H is per particle heating rate.

Depending on cooling function, terms are usually nonlinear in T, and very stiff.  
Forward Euler differencing requires very small Dt

Better to use Crank-Nicholson (semi-implicit) differencing, where source terms 
are calculated at both current and advanced time (using En and En+1).

Not difficult to add cooling directly to integrator in Godunov methods by adding 
cooling term to calculation of every partial update.

Warning: easy to add cooling, but makes physics of MHD much more complex.  
For example, need to add thermal conduction to be able to resolve Field length to 
get correct dynamics with cooling instability.

Moral: It takes work to really understand what is going on in both the physics 
and numerics.

Example: thermal instability.  Adding heat 
conduction is crucial.

Points: numerically  measured growth rate for exact eigenmode

No conduction

With conduction

Without conduction:
• do not get growth rate correct; 
• too much small scale structure

Nonlinear saturation at 200 Myr

Ionizing radiation transport
Application: growth of HII regions in ISM.  Solve MHD equations 
for 2-fluid (ions + neutrals) medium, including heating, cooling, 
photoionization, and recombination.

Challenge: compute optical depth from 
every point source to every grid cell.

Algorithm
• Use adaptive ray-tracing method of Abel & Wandelt

(2002) and Whalen & Norman (2006) using 
HEALPix to compute ionization rate in each cell

• Limit cooling in mixed cells 
• Tests: propagation of R- and D-type I-fronts.

Krumholz, Stone, & Gardiner (2007) 

Test of growth of R-type front with no recombinations
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In some cases, may “only” need to include momentum exchange 
terms.

e.g. line-driven winds (assuming gas is isothermal).

Of course, computing g can be extremely difficult!

In some cases, need to include both energy and momentum exchange 
terms.

All of these problems could be called “radiation hydrodynamics”.

Obviously, the numerical methods required in each regime are very 
different.

Examples: 
radiation-dominated disks
core-collapse SN

Transfer equation. 
Fundamental description of the radiation field is the frequency-
dependent transfer equation

Can be thought of as the “collisionless Boltzmann equation for 
photons”, so that I is the “photon distribution function”.

Only in LTE are emission coefficient jn and scattering term knIn
simple.

Just like the fluid equations, can take moments over phase space 
(angles) and frequency to derive a set of moment equations.

Why?  Reduces dimensions of problem, making it easier to solve.

Grid-based method versus particles for 
radiation transfer

Even though we use a grid for the MHD, we could still choose to 
use either a grid or particles (Monte Carlo) to solve the transfer 
equation.

Grid:
More accurate and less noise
Difficult to extend to include scattering, and line-transport 
Very expensive

Particles (Monte Carlo):
Very flexible, easy to extend to frequency-dependent transport, etc.
Embarassingly parallel
Noisy, especially in optically thick regions
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The noise in MC is a problem.

Density

Eddington factor fz = Pzz/E.         MC method was 100x slower!

FLD

SC; 24 angles SC; 168 angles MC; 107 photons 

Davis, Stone, & Jiang 2012 But MC is great for GR-RT

Images of Sgr A* at 1.3mm computed using grmonty from HARM 
simulation (Dolence et al)
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Euler equations + Maxwell’s equations + moment equations.

Er, Fr, Pr are radiation energy density, flux, pressure in Eulerian frame.
Source terms are O(v/c) expansion of material-radiation interaction terms in fluid 
frame (Lowrie et al 1999).  Or can simply use Lorentz boost to transfer Eulerian 
frame quantities to fluid frame to compute source terms.

Radiation Moment equations Numerical Methods: radiation transport (RT)
• Crucial issue: need a closure relation P = f E
• Various approximations commonly used

(1) Flux-limited diffusion.  
Assume radiation flux given by Ficks’s Law

Reduces equations to two-temperature diffusion approximation.

(2) M1 closure.
Assume Eddington tensor given by:
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Include scattering and non-LTE effects using accelerated lambda iteration (ALI).

(3) Variable Eddington Tensor (VET)
For non-relativistic flows, the light-crossing time is much shorter than an MHD 
time step.   In this case, solve the time-independent transfer equation using the 
method of short characteristics along Nr rays per cell.

Olson & Kunasz 1987;  Stone, Mihalas, & Norman 1992; Trujillo Bueno & Fabiani
Bendicho 1995; Davis, Stone, & Jiang 2012
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Then compute f directly from moments of I.

Solving the closure problem: Flux-limited diffusion
Adopt the diffusion approximation everywhere 
Superluminal transport in optically thin regions, unless flux is limited:

These reduces the RMHD equations to a two-temperature diffusion problem.
Turner & Stone 2001D⇢
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Pros: easy to solve
Cons: lost information about direction of flux

magnitude of flux in optically thin regions is ad-hoc
no radiation inertia (superluminal wave speeds)
no radiation shear viscosity

l=l(E) is limiter
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Arbitrary function of E.  Most popular form is due to 
Levermore & Pomraning (1981)

Main purpose of limiter is to give correct flux in optically thin and 
thick limits

Optically thin limit, F  ~ cE

Optically thick limit, F ~ Grad(E)

Test of FLD: subcritical shock

Parameters same as in Sincell, Gehmeyr & Mihalas (1999)

X = Minerbo limiter
= Levermore &     

Pomraning limiter

Solid line = approx
analytic solution from 
Zel’dovich & Raizer
(1967)
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Implicit differencing.
Material-radiation interaction and radiation transport terms have a 
very restrictive time step limit, and must be solved implicitly.  
Equations are nonlinear in unknowns, so must use Newton-
Raphson iteration.  Requires solving large sparse-banded matrix 
for every NR iteration.

Matrix solved for each NR iteration is 
very sparse, so use iterative methods 
like GMRES or ICCG.

Schematic of matrix in 2D

In 3D, matrix to be solved in each NR step is N3 x N3 where N is 
number of grid points along each dimension.

Equivalent to 
entire matrix in 
2D problem

Reduced speed of light methods

• To avoid implicit differencing, simply 
assume c is larger than sound speed, but 
smaller than the true value.

• Can derive constraints on slowest speed 
allowed that gives correct dynamics, e.g. 
Skinner & Ostriker (2013)

FLD doesn’t give correct values even in 
optically thin regions

Density

Eddington factor fz = Pzz/E

FLD

SC; 24 angles SC; 168 angles MC; 107 photons 

Davis, Stone, & Jiang 2012
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M1 closure
To avoid problems with FLD, new local closures have been tried
Most popular currently is M1 (Gonzalez et al  2007)
• Keeps flux as separate variable
• Uses local information to construct direction of flux

M1 fixes one problem (lack of shadows with FLD), but replaces it 
with another (photons collide and merge with M1)

Radiation energy density from two radiating spheres:

Formal soln.                       M1                                   FLD

Method includes scattering and non-LTE effects using accelerated 
lambda iteration (ALI).

Variable Eddington Tensor
Compute using short characteristics to solve time-independent transfer equation 
along Nr rays per cell. Olson & Kunasz 1987; 

Stone, Mihalas, & Norman 1992
Davis, Stone, & Jiang 2012

Trujillo Bueno & Fabiani Bendicho 1995

@I/@s = (S � I)

f =
Pr

Er
=

R
n̂n̂Id!R
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Then compute f directly from moments of I.

Short characteristics (Kunasz & Auer 1988): solve along ray 
segments that cross a single zone, and interpolate I to start of next 
ray segment, O(N3) in 3D

Long characteristics: for each cell, solve along rays that cross entire 
grid, O(N4) in 3D.

Short characteristics are much faster, but can have problems in 
treating point sources.

Short versus long characteristics

Er

Tests of Transfer Solver

Shadow Test
Optically thick, spherical cloud 
irradiated by two beams.

Beam Test
Two “flashlight” beams in optically 
thin, periodic domain.

Davis, Stone, & Jiang 2012
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Modified Godunov method

@⇢

@t
+r · (⇢v) = 0

@(⇢v)

@t
+r · (⇢vv + P +B2/2�BB) = �PSM

@E

@t
+r · [(E + P +B2/2)v �B(B · v)] = �PCSE

@B

@t
�r⇥ (v ⇥B) = 0

Miniati & Colella 2007
Sekora & Stone 2010

Stable, 2nd order accurate scheme for handling stiff source terms.

Uses modified wave speeds and eigenvectors to compute fluxes.

Semi-implicit (Picard iteration) scheme ensures stability.

Implicit solution of moment equations.

@Er

@t
+ Cr · Fr = CSE

@Fr

@t
+ Cr · Pr = CSM

Method must be implicit to allow dt > dx/c.
Solving entire system of equations implicitly is expensive and 
inaccurate.

Instead, split fully-implicit solution of radiation moment equations 
from modified Godunov method for MHD equations.

Requires inverting large sparse matrix every time step.  This is 
usually the slowest step in the entire algorithm.

Test of Full Code: Linear Waves
Quantitative measure of error and convergence rate.

Phase 
Velocity

Damping 
Rate

Stars are measured phase velocity and 
damping rate from 1D code. Jiang et al. 2012

P = ratio of radiation to gas pressure Convergence rate in 3D

Optical depth per wavelength

Radiation Shock Tests
• 1D steady shock with pure absorption opacity
• Semi-analytic solution possible in nonequilibrium

diffusion limit (Eddington approximation, f=1/3)
Lowrie & Edwards (2008)

Shock structure changes with different Mach numbers.



7/27/16

10

Structure of shock changes with Mach number

Solid = semi-analytic solution
Points = numerical solution

Jiang et al. 2012

Structure of Mach 3 shock without 
Eddington approximation

“Zeldovich spike”

Red line=reference sol’n
Points=numerical sol’n

Eddington
tensor

Computational challenges
• Cost of 3D radiation MHD simulations using explicit 

differencing scale as:  NxNyNzNmNn

Efficient mixed parallelization possible.
• Adaptive angles and frequencies could prove extremely 

powerful
• Implicit differencing also requires inversion of 4NxNyNz

matrix every time step, parallelization is more difficult.
• Either way, access to petascale resources crucial

Number of angles

Number of frequencies

Edge on Face on
Global simulation of super-Eddington accretion

Jiang, Stone, 
& Davis 2015
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Density and Radiation Energy Density

Very super-Eddington accretion; M/Medd ~ 20 
.    .

Spectral fit to ULXs
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matthewmiddleton  9−Mar−2016 14:53

Holmberg II X-1NGC1313 X-1

Monte Carlo + XSPEC used to compute synthetic spectra from 
global simulations (preliminary work by S. Davis & M. Middleton)

• Model fits hard X-ray spectra remarkably well
• Only free parameter is normalization (since M and M not known)
• Additional soft component from material at large distances (not 

included in the model) is required

Data from XMM-Newton (black) and NuSTAR (colored points)

.

Athena++: A new framework
• Project goals:

– Rewrite in C++ to make it more modular
– Implement new capabilities (non-uniform mesh, 

AMR, GRMHD)
– Try to improve performance on vector (SIMD) 

processors
– Implement mixed parallelization (OpenMP and MPI) 

with overlapping computation/communication
– Use common framework so that same code can 

implement hydro, MHD, hybrid PIC, RT, etc.

44

K. Tomida (PU)
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Athena++: non-uniform and curvilinear meshes

Non-uniform grid in spherical 
polar coordinates allows large 
dynamic range in radius. 

Nested grid in polar angle allows de-refinement 
towards pole, avoiding very small cells there.
Polar boundary condition allows free-flow over
poles

GRMHD
• Both SR and GR hydro and MHD have been implemented 
• GRMHD algorithm significantly different than, e.g. HARM

– Uses more advanced Riemann solvers (HLLC, HLLD)
– Staggered-grid CT

Linear wave test in 
GRMHD shows less 
diffusion with more 
advanced solvers

C. White (PU)

Single Core Performance

Recent results for full code on 2.6Ghz Intel Haswell
Hydro, HLLC, 2nd order PLM, with intel v15:

– 2.5M zone-cycles/sec per core
– 3.2 Gflops in 2.5GHz Intel IvyBridge [15% of theoretical peak]
– 25% of FP operations are vectorized, 75% are SIMD (0.7% are scalar)

MHD, HLLD, 2nd order PLM, with intel v15:
– 1.3M zone-cycles/sec per core

Mixed Parallelization

48

1.  Distributed memory parallelization using domain decomposition 
and MPI.  Athena++ uses new MPI communication patterns, and Z-
ordering for load balancing. 

2.  Shared memory parallelization within a mesh block using 
OpenMP.  Allows use of multi-core architectures (Intel Xeon Phi)

Athena4.2 Athena++
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Weak scaling.
Athena++ shows excellent efficiency (better than Athena4.2), 
achieving 98.6% efficiency on up to 256,000 physical cores.

IBM Blue Gene Q
(Mira) at ALCF

First application using Athena++
3D structure of spiral density waves launched by 

disk-planet interaction

50

Dong+ 2015
Zhu+ 2015

Synthetic scattered-light image 
computed using MC MWC 758

Summary
• Finite volume methods for MHD are now mature.

• They are workhorse methods for many problems in astrophysics

• Such methods can scale extremely well to 105-6 cores, even with 
mesh refinement.

• Higher-order methods are becomingly increasingly important

• High-order FV methods on compact stencils

• DG methods

• Methods for radiation hydrodynamics are still under active 
development


