

Lecture 2:

- 1. Radiation hydrodynamics.
- 2. Numerical methods for radiation hydrodynamics.
 - Flux-limited diffusion
 - Full transport methods
- 3. Radiation hydrodynamics in Godunov schemes.
- 4. Athena++.

Why Radiation Hydrodynamics?

Example: Black hole accretion flows Accretion powers the most luminous sources in the universe

Quasars Active Galactic Nuclei

Radiation is essential

In black hole accretion disks, radiation pressure exceeds gas pressure inside

 $r/R_G < 170 (L/L_{\rm Edd})^{16/21} (M/M_{\odot})^{2/21}$

(Shakura & Sunyaev 1973). Radiation needs to be included in dynamical models.

If stress $\tau_{r\phi} = \alpha P$ then radiation dominated disks are subject to both

- Viscous instability (Lightman & Eardley 1974)

- Thermal instability (Shakura & Sunyaev 1976)

Still not clear if such instabilities really exist with MRI.

Foundations of Radiation **Hydrodynamics**

Numerical MHD is easy compared to radiation hydrodynamics.

Some of the reasons why radiation hydrodynamics is hard: • Which equations (transfer equation or its moments)?

- Which frame (co-moving, Eulerian, mixed-frame)?
- · Proper closure of moment equations.
- Mathematical problem changes in different regimes: hyperbolic
- in streaming limit, mixed hyperbolic-parabolic in diffusion limit.
- · Wide range of timescales requires implicit methods.
- Frequency dependence adds another dimension to solution
- Non-LTE effects requires modeling level populations.

Aside: Adding source terms. Simple source terms usually added via operator splitting. 1. Update flux divergence terms ignoring source terms 2. Update source term. For Godunov methods, simple operator splitting:

- 1. formally makes scheme first-order in time
- 2. can lead to stability problems

Second-order can be achieved using multi-step methods (easy using van Leer unsplit integrator, or RK time stepping).

Stability issues can be addressed using implicit methods, e.g. IMEX

In general (non-LTE with scattering), the emission and scattering terms may be complicated to evaluate.

Ionizing radiation transport

Application: growth of HII regions in ISM. Solve MHD equations for 2-fluid (ions + neutrals) medium, including heating, cooling, photoionization, and recombination.

In some cases, may "only" need to include momentum exchange terms.

$$\begin{aligned} \frac{\partial \rho}{\partial t} + \nabla \cdot [\rho v] &= 0\\ \frac{\partial (\rho \mathbf{v})}{\partial t} + \nabla \cdot [\rho \mathbf{v} \mathbf{v} + P] &= -\mathbf{g}\\ \mathbf{g} &= \frac{1}{c} \int d\nu \int_{4\pi} d\Omega \mathbf{n} (j_{\nu} - \kappa_{\nu} k_{\nu}) \end{aligned}$$

e.g. line-driven winds (assuming gas is isothermal). Of course, computing **g** can be extremely difficult!

Obviously, the numerical methods required in each regime are very different.

Transfer equation.

Fundamental description of the radiation field is the frequencydependent transfer equation

$$\frac{1}{c}\frac{\partial I_{\nu}}{\partial t} + \nabla \cdot (\mathbf{n}I_{\nu}) = j_{\nu} - \kappa_{\nu}I_{\nu}$$

Can be thought of as the "collisionless Boltzmann equation for photons", so that I is the "photon distribution function".

Only in LTE are emission coefficient j_ν and scattering term $\kappa_\nu I_\nu$ simple.

Just like the fluid equations, can take moments over phase space (angles) and frequency to derive a set of moment equations.

Why? Reduces dimensions of problem, making it easier to solve.

Grid-based method versus particles for radiation transfer

Even though we use a grid for the MHD, we could still choose to use either a grid or particles (Monte Carlo) to solve the transfer equation.

Grid:

More accurate and less noise Difficult to extend to include scattering, and line-transport Very expensive

Particles (Monte Carlo):

Very flexible, easy to extend to frequency-dependent transport, etc. Embarassingly parallel Noisy, especially in optically thick regions

Equivalent to

entire matrix in 2D problem

Method must be implicit to allow $\delta t > dx/c$. Solving entire system of equations implicitly is expensive and inaccurate.

Instead, split fully-implicit solution of radiation moment equations from modified Godunov method for MHD equations.

$$\frac{\partial E_r}{\partial t} + \mathbb{C}\nabla \cdot \mathbf{F}_r = \mathbb{C}S_E$$
$$\frac{\partial \mathbf{F}_r}{\partial t} + \mathbb{C}\nabla \cdot \mathbf{P}_r = \mathbb{C}\mathbf{S}_{\mathbf{M}}$$

Requires inverting large sparse matrix every time step. *This is usually the slowest step in the entire algorithm*.

Computational challenges • Cost of 3D radiation MHD simulations using explicit differencing scale as: $N_x N_y N_z N_m N_n$ Number of angles Number of frequencies

Efficient mixed parallelization possible.

- Adaptive angles and frequencies could prove extremely powerful
- Implicit differencing also requires inversion of $4N_xN_yN_z$ matrix every time step, parallelization is more difficult.
- Either way, access to petascale resources crucial

Athena++: A new framework

- Project goals:
 - Rewrite in C++ to make it more modular
 - Implement new capabilities (non-uniform mesh, AMR, GRMHD)
 - Try to improve performance on vector (SIMD) processors
 - Implement mixed parallelization (OpenMP and MPI) with overlapping computation/communication
 - Use common framework so that same code can implement hydro, MHD, hybrid PIC, RT, etc.

Single Core Performance

Recent results for full code on 2.6Ghz Intel Haswell Hydro, HLLC, 2nd order PLM, with intel v15:

- 2.5M zone-cycles/sec per core
- 3.2 Gflops in 2.5GHz Intel IvyBridge [15% of theoretical peak]
- 25% of FP operations are vectorized, 75% are SIMD (0.7% are scalar)
- MHD, HLLD, 2nd order PLM, with intel v15:
 - 1.3M zone-cycles/sec per core

Summary

- Finite volume methods for MHD are now mature.
- They are workhorse methods for many problems in astrophysics
- \bullet Such methods can scale extremely well to $10^{5.6}$ cores, even with mesh refinement.
- Higher-order methods are becomingly increasingly important
 - High-order FV methods on compact stencils
 - DG methods

• Methods for radiation hydrodynamics are still under active development