Black Hole

Magnetospheres

Alexander

Einstein Fellow UC Berkeley

(Sasha) Tchekhovskoy

Black Holes Power in the Universe

Dwarfs; $M \sim M_{\odot}$

PiTP'I6

Black Holes Power in the Universe

PiTP'16

Black Holes Power in the Universe Supermassive Intermediate Stellar-mass $M \sim 10^{6-10} M_{\odot}$ $M \sim 10^{2-5} M_{\odot}$ $M \sim \text{few}-10 M_{\odot}$ NASACXCM. Weiss Let the to be the top be the formula of the top be top be the top be the top be the top be top

Black

Hole

Binaries

neutron stars

Intermediace mass

black holes/ultra-

luminous X-ray

Stapelfeldt, J. Krist, Burrows

launch jets

Quasars/AGN

sources?

Stars

Neutron Stars, White Dwarfs; $M \sim M_{\odot}$

Daniel Price and Stephan Rosswog

Gamma-ray bursts

Black hole or Neutron star

PiTP'I6

Black Holes Power in the Universe – Stellar-mass Intermediate **Supermassive** $M \sim 10^{6-10} M_{\odot}$ $M \sim 10^{2-5} M_{\odot}$ $M \sim \text{few} - 10 M_{\odot}$ NASA/CXC/M.Weiss ESA Chandra XRC (AT 2015) devour stars, turn out to be launch jets neutron stars Intermediace mass Quasars/AGN black holes/ultraluminous X-ray Black factories of Stapelfeldt. sources? Hole J. Krist. heavy elements, "kilonovae" **Burrows Binaries** bursts NASA Black hole or Neutron star ESA Neutron Stars, White Stars Dwarfs; $M \sim M_{\odot}$

PiTP'16

Black Holes Power in the Universe Stellar-mass Intermediate **Supermassive** $M \sim 10^{6-10} M_{\odot}$ $M \sim 10^{2-5} M_{\odot}$ $M \sim \text{few} - 10 M_{\odot}$ NASA/CXC/M.Weiss ESA Chandra XRC (AT 2015) devour stars, turn out to be launch jets neutron stars Intermediace mass Quasars/AGN black holes/ultraluminous X-ray Black factories of Stapelfeldt, sources? Hole J. Krist. heavy elements, "kilonovae" **Burrows Binaries** explode stars magnetically, "superlumi-nous SNe" bursts Neutron star ESA Neutron Stars, White Stars Dwarfs; $M \sim M_{\odot}$ PiTP'16

 $v \approx 0.997 \ c$

3C279

 $v \approx 0.997 \ c$

Jets Enable Multimessenger Astronomy with Black Holes

Gravitational Waves

Jets Affect Galaxies/Clusters

Jets Affect Galaxies/Clusters

Jets Affect Galaxies/Clusters

Jets Affect Galaxies/Clusters "M-sigma" relation: BH mass and stellar velocity dispersion are correlated

- Growth of the central BHs and their host galaxies are inter-connected
- Jet feedback?
- Radiative feedback?

AGN Radio Loud/Quiet Dichotomy

- Factor of 1000 difference in radio luminosity.
- There must be at least one other parameter in addition to M and \dot{M} :

 $P_{\rm jet}(M, \dot{M}; ??)$

Magnetic flux?
 Ambient medium? (Broderick & Fender 2012)
 BH spin? (Blandford 1990, Tchekhovskoy et al. 2010)

Jets: Beautiful and Challenging

FRI/FRII dichotomy (Fanaroff & Riley, 1974)

Event Horizon Telescope (EHT): VLBI images of Black Holes

- Two largest black holes on the sky
- Data is interpretation limited!

What Powers Outflow?

 \vec{B} NS

Light cylinder (LC): $R_{\rm L} = c/\Omega$ $B_{\rm L} = \Phi/2\pi R_{\rm L}$

- Flow separates from NS at LC
- Spindown power

 $P \sim \frac{c}{4\pi} (\vec{E} \times \vec{B}) \times 4\pi R_{\rm L}^2 = c B_{\rm L}^2 R_{\rm L}^2$

 $P \sim \frac{1}{6 \pi^2 c} \Phi^2 \Omega^2$

What Powers Outflow?

Light cylinder (LC): $R_{\rm L} = c/\Omega$ $B_{\rm L} = \Phi/2\pi R_{\rm L}$

- Flow separates from NS at LC
- Spindown power

 $P \sim \frac{c}{4\pi} (\vec{E} \times \vec{B}) \times 4\pi R_{\rm L}^2 = c B_{\rm L}^2 R_{\rm L}^2$

 $P \sim \frac{1}{6 \pi^2 c} \Phi^2 \Omega^2$

Split-monopole

 \otimes

 $\otimes \otimes$

NS

 \vec{B}

What Powers Outflow?

Light cylinder (LC): $R_{\rm L} = c/\Omega$ $B_{\rm L} = \Phi/2\pi R_{\rm L}$

- Flow separates from NS at LC
- Spindown power

 $P \sim \frac{c}{4\pi} (\vec{E} \times \vec{B}) \times 4\pi R_{\rm L}^2 = c B_{\rm L}^2 R_{\rm L}^2$

 $P \sim \frac{1}{6 \pi^2 c} \Phi^2 \Omega^2$

- Split-monopole
- What about black holes?

Alexander (Sasha) Tchekhovskoy

 \otimes

 $\otimes \otimes$

NS

 \vec{B}

Slide: R. A Black Hole is Narayan VERY Simple Mass: M Spin: a (J=a GM²/c) Charge: Q

A Black Hole has no Hair! (No Hair Theorem) To be precise, a BH has 2 (at most 3) hairs

Slide: R. Narayan

Black Hole has 3 hairs!

Einstein had a lot of hair!

Slide: R. Narayan

A Black Hole has only 2 hairs

Einstein had a lot of hair!

Slide: R. Narayan

Einstein had a lot of hair!

A Black Hole

Μ

 $\boldsymbol{\mathcal{O}}$

has only 2 hairs

What about Black Holes?

- Black hole drags space-time at
 - $\omega \simeq \Omega_{\rm H} (r/r_{\rm H})^{-3}, \quad \Omega_{\rm H} = ac/2r_{\rm H}$
- At the event horizon $\omega = \Omega_{
 m H}$
- At infinity $\omega = 0$
- Field line tries to please both:

 $\Omega_{\rm F} = \Omega_{\rm H}/2$

• Otherwise, behaves almost like a NS!

$$P \sim \frac{1}{6^{\cancel{H}}\pi^2 c} \Phi^2 \Omega_{\rm F}^2 \sim \frac{1}{24^{\cancel{H}}6\pi^2 c} \Phi^2 \Omega_{\rm H}^2$$

(~10% corrections for other field geometries, AT+10, AT15)

Where Does Φ Come from?

- Accretion disk:
 - either drags *B* from large scales
 - or generates B in situ
 - presently unsolved problem
- Black hole must be accreting in order to form magnetosphere and produce jets

How do Jets Accelerate?

PiTP'I6

How do Jets Accelerate?

PiTP '16
How do Jets Accelerate?

PiTP '16

How do Jets Accelerate?

Conserved quantities along jets = ratios of conserved fluxes:

 $F_B = B_p$

 $F_M = \gamma \rho v_p$

Conserved quantities along jets = ratios of conserved fluxes:

 $F_B = B_p$

 $F_M = \gamma \rho v_p$

$$F_B = B_p \qquad \Rightarrow \eta = \frac{F_M}{F_B} = \frac{\gamma \rho v_p}{B_p} = \text{const}$$
$$F_M = \gamma \rho v_p \qquad \Rightarrow \eta = \frac{F_M}{F_B} = \frac{\gamma \rho v_p}{B_p} = \frac{\gamma$$

Conserved quantities along jets = ratios of conserved fluxes:

$$F_B = B_p$$

$$\Rightarrow \eta = \frac{F_M}{F_B} = \frac{\gamma \rho v_p}{B_p} = \text{const}$$

$$F_M = \gamma \rho v_p$$

 $F_E = F_{EM} + F_{KE}$

$$F_B = B_p$$

$$\Rightarrow \eta = \frac{F_M}{F_B} = \frac{\gamma \rho v_p}{B_p} = \text{const}$$

$$F_M = \gamma \rho v_p$$

$$F_E = F_{EM} + F_{KE}$$
$$\frac{||}{cEB_{\varphi}}$$
$$4\pi$$

$$F_B = B_p$$

$$\Rightarrow \eta = \frac{F_M}{F_B} = \frac{\gamma \rho v_p}{B_p} = \text{const}$$

$$F_M = \gamma \rho v_p$$

$$F_E = F_{EM} + F_{KE}$$
$$\parallel \qquad \parallel$$
$$\frac{cEB_{\varphi}}{4\pi} \quad \gamma F_M$$

Conserved quantities along jets = ratios of conserved fluxes:

Alexander (Sasha) Tchekhovskoy

$$F_{B} = B_{p} \Rightarrow \eta = \frac{F_{M}}{F_{B}} = \frac{\gamma \rho v_{p}}{B_{p}} = \text{const}$$

$$F_{M} = \gamma \rho v_{p} \Rightarrow \mu = \frac{F_{E}}{F_{M}} = \gamma \frac{F_{EM}}{F_{KE}} + \gamma = \gamma(\sigma + 1)$$

$$\mu \text{ sets the max Lorentz factor: } \gamma \leq \mu$$

$$\sigma \text{ sets the speed of fast waves:} \gamma_{F} \equiv \sigma^{1/2}$$

$$\ln \text{ force-free, } \sigma = \infty, \text{ and fast waves travel at light speed.}$$
So, force-free breaks down when $\gamma = \gamma_{F} \equiv \sigma^{1/2}$

$$F_{B} = B_{p} \left| \Rightarrow \eta = \frac{F_{M}}{F_{B}} = \frac{\gamma \rho v_{p}}{B_{p}} = \text{const} \right|$$

$$F_{M} = \gamma \rho v_{p} \left| \Rightarrow \mu = \frac{F_{E}}{F_{M}} = \gamma \frac{F_{EM}}{F_{KE}} + \gamma = \gamma(\sigma + 1) \right|$$

$$F_{E} = F_{EM} + F_{KE} \left| \Rightarrow \mu = \frac{F_{E}}{F_{M}} = \gamma \frac{F_{EM}}{F_{KE}} + \gamma = \gamma(\sigma + 1) \right|$$

$$\mu \text{ sets the max Lorentz factor: } \gamma \leq \mu$$

$$\sigma \text{ sets the speed of fast waves: } \gamma_{F} \equiv \sigma^{1/2}$$

$$\ln \text{ force-free, } \sigma = \infty \text{, and fast waves travel at light speed.}$$
So, force-free breaks down when $\gamma = \gamma_{F} \equiv \sigma^{1/2} = (\mu/\gamma)^{1/2}$

$$\begin{array}{c|c} F_B = B_p \\ F_M = \gamma \rho v_p \\ F_M = \gamma \rho v_p \\ F_E = F_{EM} + F_{KE} \\ \hline \Rightarrow & \mu = \frac{F_E}{F_M} = \gamma \frac{F_{EM}}{F_{KE}} + \gamma = \gamma(\sigma + 1) \\ \hline \mu \text{ sets the max Lorentz factor: } \gamma \leq \mu \\ \hline \sigma \text{ sets the speed of fast waves:} \gamma_F \equiv \sigma^{1/2} \\ \hline \text{In force-free, } \sigma = \infty, \text{ and fast waves travel at light speed.} \end{array}$$

$$\begin{array}{c|c} F_B = B_p \\ F_M = \gamma \rho v_p \\ F_M = \gamma \rho v_p \\ F_E = F_{EM} + F_{KE} \\ \hline \Rightarrow & \mu = \frac{F_E}{F_M} = \gamma \frac{F_{EM}}{F_{KE}} + \gamma = \gamma(\sigma + 1) \\ \hline \mu \text{ sets the max Lorentz factor: } \gamma \leq \mu \\ \hline \sigma \text{ sets the speed of fast waves:} \gamma_F \equiv \sigma^{1/2} \\ \hline \text{In force-free, } \sigma = \infty, \text{ and fast waves travel at light speed.} \\ \hline \text{So, force-free breaks down when } \gamma = \gamma_F \equiv \sigma^{1/2} = (\mu/\gamma)^{1/2} \\ 10 = \gamma = \mu^{1/3} \ll \mu = 10^3 \end{array}$$

So, force-free breaks down when
$$\gamma = \gamma_{\rm F} \equiv \sigma^{1/2} = (\mu/\gamma)^{1/2}$$

$$10 = \gamma = \mu^{1/3} \ll \mu = 10^3$$

In force-free, $\sigma=\infty$, and fast waves travel at light speed.

So, force-free breaks down when $\gamma = \gamma_{\rm F} \equiv \sigma^{1/2} = (\mu/\gamma)^{1/2}$ $10 = \gamma = \mu^{1/3} \ll \mu = 10^3$

In force-free, $\sigma=\infty$, and fast waves travel at light speed.

So, force-free breaks down when $\gamma = \gamma_F \equiv \sigma^{1/2} = (\mu/\gamma)^{1/2}$ $10 = \gamma = \mu^{1/3} \ll \mu = 10^3$

In force-free, $\sigma=\infty$, and fast waves travel at light speed.

So, force-free breaks down when $\gamma = \gamma_{\rm F} \equiv \sigma^{1/2} = (\mu/\gamma)^{1/2}$ $10 = \gamma = \mu^{1/3} \ll \mu = 10^3$

Because $B_{\varphi}^2 - E^2 \gg B_r^2$, toroidal magnetic pressure contribution breaks force balance, and magnetic field lines get **bent**. Fast jets cannot make sharp turns.

Alexander (Sasha) Tchekhovskoy

Because $B_{\varphi}^2 - E^2 \gg B_r^2$, toroidal magnetic pressure contribution breaks force balance, and magnetic field lines get **bent**. Fast jets cannot make sharp turns.

Alexander (Sasha) Tchekhovskoy

Why So Bad (1/2)?

Force-balance across **bent** magnetic field lines, $B_{\varphi}^2 - E^2 \gg B_r^2$

$$F_{B} = B_{p}$$

$$F_{M} = \gamma \rho v_{p} = \eta B_{p}$$

$$F_{E} = F_{EM} + F_{KE}$$

$$\| \Rightarrow \mu = \frac{F_{E}}{F_{M}} = \gamma \frac{F_{EM}}{F_{KE}} + \gamma = \gamma(\sigma + 1)$$

$$\frac{cEB_{\varphi}}{4\pi} \gamma F_{M}$$
mass-loaded How do^VJets Accelerate?

Conserved quantities along jets = ratios of conserved fluxes:

$$F_{B} = B_{p}$$

$$F_{M} = \gamma \rho v_{p} = \eta B_{p}$$

$$F_{E} = F_{EM} + F_{KE}$$

$$\frac{||}{eEB_{\varphi}} = \gamma F_{M}$$

$$\Rightarrow \mu = \frac{F_{E}}{F_{M}}$$

mass-loaded How do^vJets Accelerate?

Conserved quantities along jets = ratios of conserved fluxes:

 $F_{B} = B_{p}$ $F_{M} = \gamma \rho v_{p} = \eta B_{p}$ $F_{E} = F_{EM} + F_{KE}$ $H = \frac{F_{E}}{F_{M}}$ $\Rightarrow \mu = \frac{F_{E}}{F_{M}}$ $\frac{cEB_{\varphi}}{4\pi} \quad \gamma F_M$ $|| E = B_{\varphi} = \Omega R B_p / c$ $\Omega^2 R^2 B_p^2$ $4\pi c$

mass-loaded How do^VJets Accelerate?

Conserved quantities along jets = ratios of conserved fluxes:

$$F_{B} = B_{p}$$

$$F_{M} = \gamma \rho v_{p} = \eta B_{p}$$

$$F_{E} = F_{EM} + F_{KE}$$

$$\begin{cases}\Rightarrow \mu = \frac{F_{E}}{F_{B}} = \frac{\gamma \rho v_{p}}{B_{p}} = \text{const}\\ \Rightarrow \mu = \frac{F_{E}}{F_{M}}\\ \frac{cEB_{\varphi}}{4\pi} \gamma F_{M} \\ \|E = B_{\varphi} = \Omega RB_{p}/c \end{cases} \xrightarrow{\Pi} \frac{\Omega^{2}}{4\pi^{2}\eta c} \pi B_{p}R^{2} + \gamma$$

$$\frac{\Omega^{2}R^{2}B_{p}^{2}}{4\pi c}$$

mass-loaded How do^VJets Accelerate?

Conserved quantities along jets = ratios of conserved fluxes:

mass-loaded How do^vJets Accelerate?

Conserved quantities along jets = ratios of conserved fluxes:

$$\frac{\gamma}{\mu} = 1 - \frac{\pi B_p R^2}{\Phi}$$

Alexander (Sasha) Tchekhovskoy

In order to accelerate efficiently, need reduction in local field line density (Komissarov+09, AT+09)

Acceleration in a magnetic nozzle

If $B_P(R) = \text{const}$, no acceleration. Need magnetic flux bunching toward jet axis.

Hydro: de Laval nozzle: flow opens up after sonic surface \rightarrow pressure drops $\rightarrow \nabla p$ accelerates flow:

- Communication is essential
- All signals travel inside the Mach cone ξ :

$$\xi = \frac{\gamma_{\rm F}}{\gamma} \approx \frac{\sigma^{1/2}}{\gamma}$$

• For communication across jet need $\theta \lesssim \xi$, so

$$\gamma \theta \lesssim \sigma^{1/2} = \left(\frac{\mu}{\gamma}\right)^{1/2}$$

- Thus: $\gamma \lesssim \frac{\mu^{1/3}}{\theta^{2/3}}$
- Jets accelerate better near the axis

- Communication is essential
- All signals travel inside the Mach cone ξ :

$$\xi = \frac{\gamma_{\rm F}}{\gamma} \approx \frac{\sigma^{1/2}}{\gamma}$$

• For communication across jet need $\theta \lesssim \xi$, so

$$\gamma \theta \lesssim \sigma^{1/2} = \left(\frac{\mu}{\gamma}\right)^{1/2}$$

- Thus: $\gamma \lesssim \frac{\mu^{1/3}}{\theta^{2/3}}$
- Jets accelerate better near the axis

- Communication is essential
- All signals travel inside the Mach cone ξ:

$$\xi = \frac{\gamma_{\rm F}}{\gamma} \approx \frac{\sigma^{1/2}}{\gamma}$$

• For communication across jet need $\theta \lesssim \xi$, so

$$\gamma \theta \lesssim \sigma^{1/2} = \left(\frac{\mu}{\gamma}\right)^{1/2}$$

- Thus: $\gamma \lesssim \frac{\mu^{1/3}}{\theta^{2/3}}$
- Jets accelerate better near the axis

- Communication is essential
- All signals travel inside the Mach cone ξ:

$$\xi = \frac{\gamma_{\rm F}}{\gamma} \approx \frac{\sigma^{1/2}}{\gamma}$$

• For communication across jet need $\theta \lesssim \xi$, so

$$\gamma \theta \lesssim \sigma^{1/2} = \left(\frac{\mu}{\gamma}\right)^{1/2}$$

- Thus: $\gamma \lesssim \frac{\mu^{1/3}}{\theta^{2/3}}$
- Jets accelerate better near the axis

but, most jets are collimated:

- Communication is essential
- All signals travel inside the Mach cone ξ:

• For communication across jet need $\theta \lesssim \xi$, so

/2

$$\gamma \theta \lesssim \sigma^{1/2} = \left(\frac{\mu}{\gamma}\right)^1$$

- Thus: $\gamma \lesssim \frac{\mu^{1/3}}{\theta^{2/3}}$
- Jets accelerate better near the axis

Communication is essential

Alexander (Sasha) Tchekhovskoy

Alexander (Sasha) Tchekhovskoy

(Sasha) Tchekhovskoy

Communication is essential to avoid collisions

Jet boundary B needs to keep announcing its trajectory to the rest of the jet

Alexander (Sasha) Tchekhovskoy

What Do We Observe?

- Expect in collimated jets: $\gamma\theta \lesssim \sigma^{1/2} \lesssim 1$
- Observe:
 - Active Galactic Nuclei: $\gamma \theta \sim 0.1 0.2$
 - Gamma-ray bursts (GRBs): $\gamma \theta \sim 10-100$
- Does it mean that GRB jets are unmagnetized?

GRB Jets: Problem Setup

Confined vs. Deconfined

Jet Structure Summary

Fully unconfined jet:

 $\gamma heta \simeq 20 \sigma^{1/2}$ (AT+ 2010)

Fully confined jet, large distance. <u>Centrifugal force</u> limits jet velocity (AT+ 2008):

$$\gamma \approx \left(\frac{R_c}{R}\right)^{1/2}$$

Fully confined jet, small distance. Linear increase:

 $\gamma \approx \Omega R/c$

(Michel 1969)

Magnetic Summary

- Rotation + large-scale magnetic flux → jets
- Black holes do not have their own magnetic flux, and rely on accretion disks for flux supply
- Jet power increases with rotational frequency squared and magnetic flux squared
- Jets naturally accelerate magnetically, but only collimating jets do so well
- Many jets are consistent with being powered magnetically, but other processes such as radiative driving can also be at play (see Jim Stone's lecture)

Homework

- Exercises with HARMPI code: fully parallel,
 3D general relativistic MHD code
 - MONOPOLE_PROBLEM_ID
 - MONOPOLE_PROBLEM_2D
- Documentation and download at: <u>https://github.com/atchekho/harmpi</u>