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Lecture 1: The Strong CP Problem
Lecture 2: Solutions of the Strong CP Problem: An Assessment
Lecture 3: Axion Cosmology and Axion Searches: Old and
New Ideas
The lectures will be self contained. But some suggested
reading:
Suggested Reading: Supersymmetry and String Theory:
Beyond the Standard Model by M. Dine, sections 5.4, 5.5, 19.2
There are many recent reviews. Some examples:
J. Kim:
https://arxiv.org/abs/1703.03114
D. Marsh:
https://arxiv.org/abs/1510.07633
Kawasaki et al:
https://arxiv.org/abs/1301.1123
P. Sikivie:
https://arxiv.org/abs/astro-ph/0610440
Helpful to do some review of anomalies. Choose your favorite
textbook (Peskin and Schroder, Schwarz, Dine)
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Lecture 1: The Strong CP Problem

1 Our understanding of QCD: Lagrangian parameters,
symmetries

2 Anomalies; CP violating parameters, U(1) problem and
their connections

3 Instantons as an indicator of θ dependence and
consequences of the anomaly

4 Consequences of θ-dependence: the Neutron electric
Dipole moment.

5 Possible Solutions
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Our present understanding of the Strong
Interactions

QCD: very simple lagrangian, governed by symmetries and
particle content:

L = − 1
4g2 (F a

µν)2 +
∑

f

q̄f (i 6D −mf )qf (1)

Here Fµν is the field strength of QCD,qf the various quark
flavors.

Extremely successful.
At very high energies, detailed, precise predictions, well
verified at Tevatron and LHC (dramatically in the context of
Higgs discovery.
At low energies, precision studies with lattice gauge theory.
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QCD Parameters from Lattice Gauge Theory

The parameters of the theory: αs at some scale; quark masses.
Current results from lattice simulations (summarized by the
FLAG working group)

mu = 2.16 (9)(7)MeV md = 4.68 (14)(7)MeVms = 93.5(2.5)MeV (2)

(Numbers are in MS scheme at 2 GeV.)

αs(MZ ) = 0.1192± 0.0011 from lattice gauge theory; compatible with
other measurements.

Would seem we know all we could want to know
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Symmetries of QCD

The u, d , and to a lesser extent the s quarks are light. Working
with left-handed fields,

q =

u
d
s

 q̄ =

ū
d̄
s̄

 (3)

For zero quark mass, the theory has symmetry U(3)× U(3):

q → Uq; q̄ → Vq̄ (4)
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The symmetry is spontaneously broken to a vector subgroup,
SU(3)× U(1)B:

〈q̄f̄ qf 〉 = aΛ3δf̄ f (5)

Goldstone bosons: π,K , η (eight particles). These particles
behave as expected for GB’s (“current algebra").

Where’s the ninth? The η′ is much heavier than the others. E.g.

m′η = 958 MeV; mη = 548 MeV (6)
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One feature of the axial U(1) current which might account for
this: it is not strictly conserved. q → eiαq q̄ → eiαq In four
component language,

jµ5 = q̄γµγ5q; ∂µjµ5 =
Nf

16π2 Fµν F̃µν . (7)

Here F̃ (“F-dual") is

F̃µν =
1
2
εµνρσFµν ; FF̃ = 2~E · ~B. (8)
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The right hand side is a total derivative, 1
16π2∂µK µ

Kµ = εµνρσ

(
Aa
νF a

ρσ −
2
3

f abcAa
νAb

ρA
c
σ

)
(9)

So one can define a new conserved current,

j̃µ = jµ5 −
Nf

16π2 K µ (10)

But this current is not gauge invariant, so its status requires
investigation. We’ll say much more about it shortly, but the
charge associated with this current is not conserved.
Configurations with Aµ ∼ 1

r are already important in a
semi-classical treatment. So there is no mystery in the absence
of a ninth Goldstone boson.
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Strong CP Problem

But the assertion that FF̃ solves the U(1) problem raises a
puzzle: one can now add to the QCD lagrangian

Lθ =
θ

16π2 FF̃ . (11)

This term violates parity, and thus CP.

Again, while

FF̃ = ∂µK µ; (12)

K µ is not gauge invariant. If there are important configurations,
say, in the path integral, for which the A3 term falls off as 1/r3,
then we can’t drop the surface term. Examples of such
configurations will be discussed shortly (instantons).
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The possibility of a non-zero θ is related to another possible
source of CP violation. In writing the QCD Lagrangian, we did
not commit to two or four component fermions. In the language
of two component fermions, we might have taken complex
masses. With four component fermions, we might have
included q̄γ5q terms in the quark lagrangian.

One might have said: what’s the big deal? If we had written
(two component form)

q̄f mf̄ f qf + c.c. (13)

we could, by separate U(3) transformations of the q and q̄
fields, have rendered m (the quark mass matrix) diagonal and
real.
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But we have just asserted that this redefinition has an anomaly.
Indeed, if we think about the effect of such a transformation on
the lagrangian,

δL = α∂µjµ5 = α
1

16π2 FF̃ . (14)

So we can trade a phase in the quark mass matrix for θ, or vice
versa. The invariant quantity is often called θ̄,

θ̄ = θ − arg detmq. (15)
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Anomaly in the current jµ = q̄γµγ5q: A calculation

We are interested in a mass term,meiαq̄q There are many
ways to think about the anomaly and I cannot do justice to the
subject in ten minutes. But I can at least indicate how this effect
comes about. In four component language, we have a coupling,
for small α:

m αq̄γ5q (16)

Let’s replace m by a field (this might be one of the
pseudoscalar mesons, or, as we will see later, the axion). This
allows some momentum flow through the diagram.
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It is convenient to work with the graph in four component
notation since the fermion is massive. The basic expression
has the form, after introducing Feynman parameters:

Nf m(q)α

∫ ∫
dx1dx2f (x1, x2)

d4k
(2π)4[k2 + m2]3

Trγ5 (17)

( 6p1 6A(p1)ptwoslash 6A(p2))

=
1

16π2αεµνρσpµ1 pν2A(p1)ρA(p2)σ.

This is the anticipated result.

Exercise: Verify the expression above
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Some things to note:
1 If m is a constant, the result vanishes (p1 = −p2). This is

related to the total derivative, and the rather trivial (plane
wave) nature of the external fields.

2 If we did the computation using the background field
formalism, we would obtain, also, ∂µjµ = Nf

16π2 FF̃ . This
result would hold for non-trivial backgrounds (magnetic
monopoles in a U(1) theory, instantons in the non-abelian
theory) for which

∫
d4xFF̃ is non-zero.

3 It is interesting that αFF̃ term appears in the effective
action. Surprising since would seem one could just rotate
away.
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Instantons

QCD is a strongly coupled theory, and providing a reliable
answer to this question requires strong coupling methods
(lattice gauge theory). But a semiclassical analysis, while not
reliable, indicates that one cannot neglect

∫
d4x∂µK µ. As a

result, the axial current is not conserved and θ is physical.
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In the Euclidean functional integral

Z =

∫
[dA][dq][dq̄]e−S (18)

it is natural to look for stationary points of the effective action,
i.e. finite action, classical solutions of the theory in imaginary
time. These instanton solutions can be found rather easily. The
following tricks simplify the construction, and turn out to yield
the general solution. First, note that the Yang–Mills action
satisfies an inequality, the Bogomolnyi bound:∫

(F ± F̃ )2 =

∫
(F 2 + F̃ 2 ± 2FF̃ ) =

∫
(2F 2 ± 2FF̃ ) ≥ 0. (19)
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So the action is bounded by |
∫

FF̃ |, with the bound being
saturated when

F = ±F̃ (20)

i.e. if the gauge field is (anti-) self-dual.

This is a first order differential equation. Comparatively easy to
solve.
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The Instanton Solution

’t Hooft presented the instanton in a fashion which is useful for
actual computations. Defining the symbol η:

ηaij = εaij ; ηa4i = −ηai4 = −δai ; η̄aµν = (−1)δaµ+δaνηaµν (21)

the instanton takes the simple form:

Aa
µ =

2ηaµνxν

x2 + ρ2 (22)

while the field strength is given by:

F a
µν =

4ηaµνρ
2

(x2 + ρ2)2 (23)
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That this configuration solves the equations of motion follows
from:

ηaµν =
1
2
εµναβηaαβ. (24)

so F = F̃ .
The η symbols are connected to the embedding of SU(2) of the
gauge group in an SU(2) subgroup of O(4) = SU(2)× SU(2).
This can be understood by noting:

ηaµν =
1
2

Tr(σaσµν) η̄ = Tr(σaσ̄µν). (25)

Since F = F̃ , the equations of motion are satisfied. Note the
1/r falloff of Aµ, as opposed to the 1/r4 falloff of Fµν .
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Topological Charge

Asymptotically, Aµ is a pure gauge. The gauge transformation
maps the three sphere onto the gauge group. 1

16π2

∫
d4xFF̃

measures the number of times that the sphere is mapped into
the gauge group.

1
16π2

∫
d4xFF̃ =

1
16π2

∫
d4x∂µK µ = 1 (26)
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At large x ,

Aµ =
ηaµνxντa

x2 (27)

= ig−1∂µg

[Exercise: show what g = x4+i~x ·~τ
r ].
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Consequences of the Instanton

Having found a classical solution, we want to integrate about
small fluctuations about it. Including the θ term, these have the
form

〈O〉 = e
− 8π2

g2 eiθ
∫

[dδA][dq][dq̄]exp
(
−δ

2S
δA2 δA

2 − Sq,q̄

)
O. (28)

Now S contains an explicit factor of 1/g2. As a result, the
fluctuations are formally suppressed by g2 relative to the
leading contribution. The one-loop functional integral yields a
product of determinants for the fermions, and of inverse square
root determinants for the bosons.
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Both the bosonic and fermionic quadratic fluctuation operators
have zero eigenvalues. For the bosons, these potentially give
infinite contributions to the functional integral, and they must be
treated separately. The difficulty is that among the variations of
the fields are symmetry transformations: changes in the
location of the instanton (translations), rotations of the
instanton, and scale transformations.

More explicitly

Aa
µ(x) = Ω

2ηaµν(x − x0)ν

x2 + ρ2 (29)

where Ω denotes a global gauge transformation (or rotation).
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Consider translations. For every solution, there is an infinite set
of solutions obtained by shifting the origin (varying x0). Instead
of integrating over a coefficient, c0, we integrate over the
collective coordinate x0 (one must also include a suitable
Jacobian factor). The effect of this is to restore translational
invariance in Green’s functions. Similarly, the instanton breaks
the rotational invariance of the theory. Correspondingly, we can
find a three-parameter set of solutions and zero modes.
Integrating over these rotational collective coordinates restores
rotational invariance. (The instanton also breaks a global gauge
symmetry, but a combination of rotations and gauge
transformations is preserved.)

Michael Dine The Strong CP Problem and Its Implications



Finally, the classical theory is scale invariant; this is the origin of
the parameter ρ in the solution. Again, one must treat ρ as a
collective coordinate, and integrate over ρ. There is a power of
ρ arising from the Jacobian, which can be determined on
dimensional grounds. If dO is the dimension of the operator O,
then, on dimensional grounds, one expects for the ρ
dependence: ∫

dρρ−d0−1. (30)
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However, there is additional ρ-dependence because the
quantum theory violates the scale symmetry. This can be
understood by replacing g2 → g2(ρ) in the functional integral,
and using

e
− 8π2

g2(ρ) ≈ (ρM)b0 (31)

for small ρ. For three-flavor QCD, for example, b0 = 9, the
leading operator has dimension 9, and the ρ integral diverges
logarithmically for large ρ. This is just the statement that the
integral is dominated by the infrared, where the QCD coupling
becomes strong.
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Fermion functional integrals introduce a new feature. In
four-component language, it is necessary to treat q and q̄ as
independent fields. (In two-component language, this
corresponds to treating q and q∗ as independent fields.) So at
one-loop order, we need to study:

6Dqn = λnqn 6Dq̄n = λnq̄n (32)
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q(x) =
∑

anqn(x), (33)

S =
∑

λna∗nan. (34)

Then ∫
[dq][dq̄]e−S =

∞∏
n=0

danda∗ne−
∑

n 6=0 λna∗n an . (35)

Zero eigenvalues of the Dirac operator are special. Because
the zero modes do not contribute to the action, many Green
functions vanish. For example, 〈1〉 = 0. In order to obtain a
non-vanishing result, we need enough insertions of q to “soak
up" all of the zero modes.
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The explicit form of the zero modes is not complicated. For
SU(2), for simplicity:

6Dq = 0 6Dq̄ = 0 (36)

and

q0 =
ρ

(ρ2 + (x − x0)2)3/2 ζ, (37)

where ζ is a constant spinor.

q here might be u, ū,d , d̄ , etc.
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We can put all of this together to evaluate a Green function
which violates the classical U(1) symmetry of the massless
theory, 〈ū(x)u(x)d̄(x)d(x)s̄(x)s(x)〉. There is one zero mode
for each of u,d , s, ū, d̄ , s̄. The fields in this Green’s function can
soak up all of these zero modes. The effect of the integration
over x0 is to give a result independent of x , since the zero
modes are functions only of x − x0. The integration over the
rotational zero modes gives a non-zero result only if the Lorentz
indices are contracted in a rotationally invariant manner (the
same applies to the gauge indices). The integration over the
instanton scale size – the conformal collective coordinate – is
more problematic, exhibiting precisely the infrared divergence
we discussed earlier.
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So we have provided some evidence that the U(1) problem is
solved in QCD, but no reliable calculation. What about
θ-dependence? Let us ask first about θ-dependence of the
vacuum energy. In order to get a non-zero result, we need to
allow that the quarks are massive. Treating the mass as a
perturbation, noting the path integral contains a term
eiθ 1

16π2

∫
d4xFF̃ = eiθ we obtain a result of the form:

E(θ) = CΛ9
QCDmumdms cos(θ)

∫
dρρ7. (38)

So we have evidence for θ-dependence, but again cannot do a
reliable calculation. That we cannot do a calculation should not
be a surprise. There is no small parameter in QCD to use as an
expansion parameter. Fortunately, we can use other facts which
we know about the strong interactions to get a better handle on
both the U(1) problem and the question of θ-dependence.

Michael Dine The Strong CP Problem and Its Implications



Neutron Electric Dipole Moment

A particularly sensitive test of CP conservation in the strong
interactions is provided by the neutron electric dipole moment.
This corresponds to an operator n̄γ5σµνnFµν (here F is the
gauge field of electrodynamics). We might first guess that dn is
of order eθ Fm ≈ θ10−13cm. Then we might expect
suppression by powers of quark mass. Our instanton analysis
would suggest three factors of quark mass (mq/mn, say). We’ll
see in a moment that there is only one such factor;
mu/mn ∼ 0.002, so from the limit on dn < 10−26 e cm, we would
have θ < 10−10. We’ll give a sharper estimate now.
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Consider, first, the coupling of pions to nucleons (for simplicity
we’ll consider a limit of approximate SU(2)× SU(2) symmetry,
i.e. we’ll just treat the u and d quarks as light. Also for simplicity
I’ll take the u and d quark masses identical. I’ll quote general
formulas in the end, and leave the derivations to you (or to an
examination of the literature).

LπNN = ~π · N̄(~τ iγ5gπNN + ḡπNN)N. (39)

The second term is CP violating. Its effects are directly
measurable, in principle, but we will take this to a far more
sensitive test in a moment.
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As an aside, we can ask what this lagrangian means. We are
used to the notion of an effective action for Goldstone bosons.
This makes sense; the Goldstone bosons are the light fields,
and we can obtain their lagrangian by integrating out heavy
fields, such as nucleons and vector mesons. But in QCD,
because baryon number is conserved, we can consider a
sector with a fixed, non-zero baryon number. Baryon number
one is the simplest. For low momenta, we can treat the
nucleons as non-relativistic and ignore nucleon-anti-nucleon
pairs, and ask about pion scattering amplitudes. This subject
was developed extensively some time ago by Weinberg.
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For example, in the baryon number one sector, we can study
low momentum pion-nucleon processes by thinking of matrix
elements such as 〈ππ . . . |q̄q|ππ . . . 〉 in terms of a background
pion field, and obtain the amplitude from the non-linear chiral
lagrangian.
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The CP violating term in the underlying lagrangian is obtained
from the quark mass term, mq̄q + c.c., and performing the
transformation q → ei ~π·~τ2fπ q:

δL =
mqθ

2
q̄
~π

fπ
· ~τq (40)

(compare the chiral lagrangian, q̄mq → TrmU, U = ei ~π2fπ , now
N̄UN. We need the matrix element between an initial and final
nucleon state:

θmq

2fπ
〈Nf |q̄τaq|Ni〉 (41)

The matrix element can be obtained from standard SU(3)
global symmetry (Gell-Mann) arguments.
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Now this coupling induces a neutron electric dipole moment.
The diagram is infrared divergent as mπ → 0, and this term is
readily extracted.

dn = gπNN ḡπNN
log(MN/mπ)

4π2MN
(42)
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Working through the details:

dn = gπNN
θmumd

fπ(mu + md )
〈Nf |q̄τaq|Nf 〉 ln(mp/mπ)

1
4π2mp

(43)

= 5.2× 10−16θcm

(this is calculated in an approximation which becomes more
and more reliable as the masses of the light quarks become
smaller).

From the experimental limit, dn < 3× 10−26 e cm, one has
θ < 10−10.
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The Strong CP Problem

This is a puzzle. Why such a small dimensionless number?

θ → 0: strong interactions preserve CP. If not for the fact that
the rest of the SM violates CP, would be natural.
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Among naturalness problems, the strong CP problem is special
in that it is of almost no consequence. We don’t have to invoke
anthropic selection to realize that if the cosmological constant
was a few orders of magnitude larger than observed, the
universe would be dramatically different. The same is true for
the value of the weak scale and of the light quark and lepton
masses. But if θ were, say, 10−3, nuclear physics would hardly
be different than we observe, since effects of θ are shielded by
small quark masses.
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Possible Resolutions

1 mu = 0 If true, u → e−i θ2 γ5u eliminates θ from the
lagrangian. An effective mu might be generated from
non-perturbative effects in the theory (Georgi, McArthur;
Kaplan, Manohar) Could result as an accident of discrete
flavor symmetries (Banks, Nir, Seiberg), or a result of
“anomalous" discrete symmetries as in string theory (M.D.)

2 CP exact microscopically, θ = 0; spontaneous breaking
gives the CKM phase but leads, under suitable conditions,
to small effective θ (Nelson, Barr). In critical string theories,
CP is an exact (gauge) symmetry, spontaneously broken at
generic points in typical moduli spaces. A plausible
framework.

3 A new, light particle called the axion dynamically cancels
off θ.
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