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Lecture 1: The Strong CP Problem
Lecture 2: Solutions of the Strong CP Problem: An Assessment
Lecture 3: Axion Cosmology and Axion Searches: Old and
New Ideas
The lectures will be self contained. But some suggested
reading:
Suggested Reading: Supersymmetry and String Theory:
Beyond the Standard Model by M. Dine, sections 5.4, 5.5, 19.2
There are many recent reviews. Some examples:
J. Kim:
https://arxiv.org/abs/1703.03114
D. Marsh:
https://arxiv.org/abs/1510.07633
Kawasaki et al:
https://arxiv.org/abs/1301.1123
P. Sikivie:
https://arxiv.org/abs/astro-ph/0610440
Helpful to do some review of anomalies. Choose your favorite
textbook (Peskin and Schroder, Schwarz, Dine)
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Lecture 1: The Strong CP Problem

1 Our understanding of QCD: Lagrangian parameters,
symmetries

2 Anomalies; CP violating parameters, U(1) problem and
their connections

3 Instantons as an indicator of ✓ dependence and
consequences of the anomaly

4 Consequences of ✓-dependence: the Neutron electric
Dipole moment.

5 Possible Solutions
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Our present understanding of the Strong
Interactions

QCD: very simple lagrangian, governed by symmetries and
particle content:

L = � 1
4g2 (F

a
µ⌫)

2 +
X

f

q̄f (i 6D � mf )qf (1)

Here Fµ⌫ is the field strength of QCD,qf the various quark
flavors.

Extremely successful.
At very high energies, detailed, precise predictions, well
verified at Tevatron and LHC (dramatically in the context of
Higgs discovery.
At low energies, precision studies with lattice gauge theory.
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QCD Parameters from Lattice Gauge Theory

The parameters of the theory: ↵s at some scale; quark masses.
Current results from lattice simulations (summarized by the
FLAG working group)

mu = 2.16 (9)(7)MeV md = 4.68 (14)(7)MeVms = 93.5(2.5)MeV (2)

(Numbers are in MS scheme at 2 GeV.)

↵s(MZ ) = 0.1192 ± 0.0011 from lattice gauge theory; compatible with
other measurements.

Would seem we know all we could want to know
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Symmetries of QCD

The u, d , and to a lesser extent the s quarks are light. Working
with left-handed fields,

q =

0

@
u
d
s

1

A q̄ =

0

@
ū
d̄
s̄

1

A (3)

For zero quark mass, the theory has symmetry U(3) ⇥ U(3):

q ! Uq; q̄ ! Vq̄ (4)

Michael Dine The Strong CP Problem and Its Implications



The symmetry is spontaneously broken to a vector subgroup,
SU(3) ⇥ U(1)B:

hq̄f̄ qf i = a⇤3�f̄ f (5)

Goldstone bosons: ⇡, K , ⌘ (eight particles). These particles
behave as expected for GB’s (“current algebra").

Where’s the ninth? The ⌘0 is much heavier than the others. E.g.

m0
⌘ = 958 MeV; m⌘ = 548 MeV (6)
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One feature of the axial U(1) current which might account for
this: it is not strictly conserved. q ! ei↵q q̄ ! ei↵q In four
component language,

jµ5 = q̄�µ�5q; @µjµ5 =
Nf

16⇡2 Fµ⌫ F̃µ⌫ . (7)

Here F̃ (“F-dual") is

F̃µ⌫ =
1
2
✏µ⌫⇢�Fµ⌫ ; FF̃ = 2~E · ~B. (8)
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The right hand side is a total derivative, 1
16⇡2@µK µ

Kµ = ✏µ⌫⇢�

✓
Aa

⌫F a
⇢� � 2

3
f abcAa

⌫Ab
⇢Ac

�

◆
(9)

So one can define a new conserved current,

j̃µ = jµ5 � Nf
16⇡2 K µ (10)

But this current is not gauge invariant, so its status requires
investigation. We’ll say much more about it shortly, but the
charge associated with this current is not conserved.
Configurations with Aµ ⇠ 1

r are already important in a
semi-classical treatment. So there is no mystery in the absence
of a ninth Goldstone boson.
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Strong CP Problem

But the assertion that FF̃ solves the U(1) problem raises a
puzzle: one can now add to the QCD lagrangian

L✓ =
✓

16⇡2 FF̃ . (11)

This term violates parity, and thus CP.

Again, while

FF̃ = @µK µ; (12)

K µ is not gauge invariant. If there are important configurations,
say, in the path integral, for which the A3 term falls off as 1/r3,
then we can’t drop the surface term. Examples of such
configurations will be discussed shortly (instantons).
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The possibility of a non-zero ✓ is related to another possible
source of CP violation. In writing the QCD Lagrangian, we did
not commit to two or four component fermions. In the language
of two component fermions, we might have taken complex
masses. With four component fermions, we might have
included q̄�5q terms in the quark lagrangian.

One might have said: what’s the big deal? If we had written
(two component form)

q̄f mf̄ f qf + c.c. (13)

we could, by separate U(3) transformations of the q and q̄
fields, have rendered m (the quark mass matrix) diagonal and
real.
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But we have just asserted that this redefinition has an anomaly.
Indeed, if we think about the effect of such a transformation on
the lagrangian,

�L = ↵@µjµ5 = ↵
1

16⇡2 FF̃ . (14)

So we can trade a phase in the quark mass matrix for ✓, or vice
versa. The invariant quantity is often called ✓̄,

✓̄ = ✓ � arg detmq. (15)
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Anomaly in the current jµ = q̄�µ�5q: A calculation

We are interested in a mass term,mei↵q̄q There are many
ways to think about the anomaly and I cannot do justice to the
subject in ten minutes. But I can at least indicate how this effect
comes about. In four component language, we have a coupling,
for small ↵:

m ↵q̄�5q (16)

Let’s replace m by a field (this might be one of the
pseudoscalar mesons, or, as we will see later, the axion). This
allows some momentum flow through the diagram.
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It is convenient to work with the graph in four component
notation since the fermion is massive. The basic expression
has the form, after introducing Feynman parameters:

Nf m(q)↵
Z Z

dx1dx2f (x1, x2)
d4k

(2⇡)4[k2 + m2]3
Tr�5 (17)

( 6p1 6A(p1)ptwoslash 6A(p2))

=
1

16⇡2↵✏µ⌫⇢�pµ
1 p⌫

2A(p1)
⇢A(p2)

�.

This is the anticipated result.

Exercise: Verify the expression above
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Some things to note:
1 If m is a constant, the result vanishes (p1 = �p2). This is

related to the total derivative, and the rather trivial (plane
wave) nature of the external fields.

2 If we did the computation using the background field
formalism, we would obtain, also, @µjµ = Nf

16⇡2 FF̃ . This
result would hold for non-trivial backgrounds (magnetic
monopoles in a U(1) theory, instantons in the non-abelian
theory) for which

R
d4xFF̃ is non-zero.

3 It is interesting that ↵FF̃ term appears in the effective
action. Surprising since would seem one could just rotate
away.
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Instantons

QCD is a strongly coupled theory, and providing a reliable
answer to this question requires strong coupling methods
(lattice gauge theory). But a semiclassical analysis, while not
reliable, indicates that one cannot neglect

R
d4x@µK µ. As a

result, the axial current is not conserved and ✓ is physical.
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In the Euclidean functional integral

Z =

Z
[dA][dq][dq̄]e�S (18)

it is natural to look for stationary points of the effective action,
i.e. finite action, classical solutions of the theory in imaginary
time. These instanton solutions can be found rather easily. The
following tricks simplify the construction, and turn out to yield
the general solution. First, note that the Yang–Mills action
satisfies an inequality, the Bogomolnyi bound:
Z
(F ± F̃ )2 =

Z
(F 2 + F̃ 2 ± 2FF̃ ) =

Z
(2F 2 ± 2FF̃ ) � 0. (19)
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So the action is bounded by | R FF̃ |, with the bound being
saturated when

F = ±F̃ (20)

i.e. if the gauge field is (anti-) self-dual.

This is a first order differential equation. Comparatively easy to
solve.
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The Instanton Solution

’t Hooft presented the instanton in a fashion which is useful for
actual computations. Defining the symbol ⌘:

⌘aij = ✏aij ; ⌘a4i = �⌘ai4 = ��ai ; ⌘̄aµ⌫ = (�1)�aµ+�a⌫⌘aµ⌫ (21)

the instanton takes the simple form:

Aa
µ =

2⌘aµ⌫x⌫

x2 + ⇢2 (22)

while the field strength is given by:

F a
µ⌫ =

4⌘aµ⌫⇢2

(x2 + ⇢2)2 (23)
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That this configuration solves the equations of motion follows
from:

⌘aµ⌫ =
1
2
✏µ⌫↵�⌘a↵� . (24)

so F = F̃ .
The ⌘ symbols are connected to the embedding of SU(2) of the
gauge group in an SU(2) subgroup of O(4) = SU(2) ⇥ SU(2).
This can be understood by noting:

⌘aµ⌫ =
1
2

Tr(�a�µ⌫) ⌘̄ = Tr(�a�̄µ⌫). (25)

Since F = F̃ , the equations of motion are satisfied. Note the
1/r falloff of Aµ, as opposed to the 1/r4 falloff of Fµ⌫ .
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Topological Charge

Asymptotically, Aµ is a pure gauge. The gauge transformation
maps the three sphere onto the gauge group. 1

16⇡2

R
d4xFF̃

measures the number of times that the sphere is mapped into
the gauge group.

1
16⇡2

Z
d4xFF̃ =

1
16⇡2

Z
d4x@µK µ = 1 (26)
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At large x ,

Aµ =
⌘aµ⌫x⌫⌧a

x2 (27)

= ig�1@µg

[Exercise: show what g = x4+i~x ·~⌧
r ].
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Consequences of the Instanton

Having found a classical solution, we want to integrate about
small fluctuations about it. Including the ✓ term, these have the
form

hOi = e� 8⇡2

g2 ei✓
Z

[d�A][dq][dq̄]exp

✓
��

2S
�A2 �A

2 � Sq,q̄

◆
O. (28)

Now S contains an explicit factor of 1/g2. As a result, the
fluctuations are formally suppressed by g2 relative to the
leading contribution. The one-loop functional integral yields a
product of determinants for the fermions, and of inverse square
root determinants for the bosons.
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Both the bosonic and fermionic quadratic fluctuation operators
have zero eigenvalues. For the bosons, these potentially give
infinite contributions to the functional integral, and they must be
treated separately. The difficulty is that among the variations of
the fields are symmetry transformations: changes in the
location of the instanton (translations), rotations of the
instanton, and scale transformations.

More explicitly

Aa
µ(x) = ⌦

2⌘aµ⌫(x � x0)
⌫

x2 + ⇢2 (29)

where ⌦ denotes a global gauge transformation (or rotation).
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Consider translations. For every solution, there is an infinite set
of solutions obtained by shifting the origin (varying x0). Instead
of integrating over a coefficient, c0, we integrate over the
collective coordinate x0 (one must also include a suitable
Jacobian factor). The effect of this is to restore translational
invariance in Green’s functions. Similarly, the instanton breaks
the rotational invariance of the theory. Correspondingly, we can
find a three-parameter set of solutions and zero modes.
Integrating over these rotational collective coordinates restores
rotational invariance. (The instanton also breaks a global gauge
symmetry, but a combination of rotations and gauge
transformations is preserved.)
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Finally, the classical theory is scale invariant; this is the origin of
the parameter ⇢ in the solution. Again, one must treat ⇢ as a
collective coordinate, and integrate over ⇢. There is a power of
⇢ arising from the Jacobian, which can be determined on
dimensional grounds. If dO is the dimension of the operator O,
then, on dimensional grounds, one expects for the ⇢
dependence:

Z
d⇢⇢�d0�1. (30)
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However, there is additional ⇢-dependence because the
quantum theory violates the scale symmetry. This can be
understood by replacing g2 ! g2(⇢) in the functional integral,
and using

e
� 8⇡2

g2(⇢) ⇡ (⇢M)b0 (31)

for small ⇢. For three-flavor QCD, for example, b0 = 9, the
leading operator has dimension 9, and the ⇢ integral diverges
logarithmically for large ⇢. This is just the statement that the
integral is dominated by the infrared, where the QCD coupling
becomes strong.
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Fermion functional integrals introduce a new feature. In
four-component language, it is necessary to treat q and q̄ as
independent fields. (In two-component language, this
corresponds to treating q and q⇤ as independent fields.) So at
one-loop order, we need to study:

6Dqn = �nqn 6Dq̄n = �nq̄n (32)
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q(x) =
X

anqn(x), (33)

S =
X

�na⇤
nan. (34)

Then
Z

[dq][dq̄]e�S =
1Y

n=0

danda⇤
ne�

P
n 6=0 �na⇤

n an . (35)

Zero eigenvalues of the Dirac operator are special. Because
the zero modes do not contribute to the action, many Green
functions vanish. For example, h1i = 0. In order to obtain a
non-vanishing result, we need enough insertions of q to “soak
up" all of the zero modes.
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The explicit form of the zero modes is not complicated. For
SU(2), for simplicity:

6Dq = 0 6Dq̄ = 0 (36)

and

q0 =
⇢

(⇢2 + (x � x0)2)3/2 ⇣, (37)

where ⇣ is a constant spinor.

q here might be u, ū, d , d̄ , etc.
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We can put all of this together to evaluate a Green function
which violates the classical U(1) symmetry of the massless
theory, hū(x)u(x)d̄(x)d(x)s̄(x)s(x)i. There is one zero mode
for each of u, d , s, ū, d̄ , s̄. The fields in this Green’s function can
soak up all of these zero modes. The effect of the integration
over x0 is to give a result independent of x , since the zero
modes are functions only of x � x0. The integration over the
rotational zero modes gives a non-zero result only if the Lorentz
indices are contracted in a rotationally invariant manner (the
same applies to the gauge indices). The integration over the
instanton scale size – the conformal collective coordinate – is
more problematic, exhibiting precisely the infrared divergence
we discussed earlier.
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So we have provided some evidence that the U(1) problem is
solved in QCD, but no reliable calculation. What about
✓-dependence? Let us ask first about ✓-dependence of the
vacuum energy. In order to get a non-zero result, we need to
allow that the quarks are massive. Treating the mass as a
perturbation, noting the path integral contains a term
ei✓ 1

16⇡2

R
d4xFF̃ = ei✓ we obtain a result of the form:

E(✓) = C⇤9
QCD

mumdms cos(✓)
Z

d⇢⇢7. (38)

So we have evidence for ✓-dependence, but again cannot do a
reliable calculation. That we cannot do a calculation should not
be a surprise. There is no small parameter in QCD to use as an
expansion parameter. Fortunately, we can use other facts which
we know about the strong interactions to get a better handle on
both the U(1) problem and the question of ✓-dependence.
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Neutron Electric Dipole Moment

A particularly sensitive test of CP conservation in the strong
interactions is provided by the neutron electric dipole moment.
This corresponds to an operator n̄�5�µ⌫nFµ⌫ (here F is the
gauge field of electrodynamics). We might first guess that dn is
of order e✓ Fm ⇡ ✓10�13cm. Then we might expect
suppression by powers of quark mass. Our instanton analysis
would suggest three factors of quark mass (mq/mn, say). We’ll
see in a moment that there is only one such factor;
mu/mn ⇠ 0.002, so from the limit on dn < 10�26

e cm, we would
have ✓ < 10�10. We’ll give a sharper estimate now.
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Consider, first, the coupling of pions to nucleons (for simplicity
we’ll consider a limit of approximate SU(2) ⇥ SU(2) symmetry,
i.e. we’ll just treat the u and d quarks as light. Also for simplicity
I’ll take the u and d quark masses identical. I’ll quote general
formulas in the end, and leave the derivations to you (or to an
examination of the literature).

L⇡NN = ~⇡ · N̄(~⌧ i�5g⇡NN + ḡ⇡NN)N. (39)

The second term is CP violating. Its effects are directly
measurable, in principle, but we will take this to a far more
sensitive test in a moment.
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As an aside, we can ask what this lagrangian means. We are
used to the notion of an effective action for Goldstone bosons.
This makes sense; the Goldstone bosons are the light fields,
and we can obtain their lagrangian by integrating out heavy
fields, such as nucleons and vector mesons. But in QCD,
because baryon number is conserved, we can consider a
sector with a fixed, non-zero baryon number. Baryon number
one is the simplest. For low momenta, we can treat the
nucleons as non-relativistic and ignore nucleon-anti-nucleon
pairs, and ask about pion scattering amplitudes. This subject
was developed extensively some time ago by Weinberg.
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For example, in the baryon number one sector, we can study
low momentum pion-nucleon processes by thinking of matrix
elements such as h⇡⇡ . . . |q̄q|⇡⇡ . . . i in terms of a background
pion field, and obtain the amplitude from the non-linear chiral
lagrangian.
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The CP violating term in the underlying lagrangian is obtained
from the quark mass term, mq̄q + c.c., and performing the
transformation q ! ei ~⇡·~⌧

2f⇡ q:

�L =
mq✓

2
q̄
~⇡

f⇡
· ~⌧q (40)

(compare the chiral lagrangian, q̄mq ! TrmU, U = ei ~⇡
2f⇡ , now

N̄UN. We need the matrix element between an initial and final
nucleon state:

✓mq

2f⇡
hNf |q̄⌧aq|Nii (41)

The matrix element can be obtained from standard SU(3)
global symmetry (Gell-Mann) arguments.
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Now this coupling induces a neutron electric dipole moment.
The diagram is infrared divergent as m⇡ ! 0, and this term is
readily extracted.

dn = g⇡NNḡ⇡NN
log(MN/m⇡)

4⇡2MN
(42)
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Working through the details:

dn = g⇡NN
✓mumd

f⇡(mu + md)
hNf |q̄⌧aq|Nf i ln(mp/m⇡)

1
4⇡2mp

(43)

= 5.2 ⇥ 10�16✓cm

(this is calculated in an approximation which becomes more
and more reliable as the masses of the light quarks become
smaller).

From the experimental limit, dn < 3 ⇥ 10�26
e cm, one has

✓ < 10�10.
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The Strong CP Problem

This is a puzzle. Why such a small dimensionless number?

✓ ! 0: strong interactions preserve CP. If not for the fact that
the rest of the SM violates CP, would be natural.
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Among naturalness problems, the strong CP problem is special
in that it is of almost no consequence. We don’t have to invoke
anthropic selection to realize that if the cosmological constant
was a few orders of magnitude larger than observed, the
universe would be dramatically different. The same is true for
the value of the weak scale and of the light quark and lepton
masses. But if ✓ were, say, 10�3, nuclear physics would hardly
be different than we observe, since effects of ✓ are shielded by
small quark masses.
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Possible Resolutions

1 mu = 0 If true, u ! e�i ✓2 �5u eliminates ✓ from the
lagrangian. An effective mu might be generated from
non-perturbative effects in the theory (Georgi, McArthur;
Kaplan, Manohar) Could result as an accident of discrete
flavor symmetries (Banks, Nir, Seiberg), or a result of
“anomalous" discrete symmetries as in string theory (M.D.)

2 CP exact microscopically, ✓ = 0; spontaneous breaking
gives the CKM phase but leads, under suitable conditions,
to small effective ✓ (Nelson, Barr). In critical string theories,
CP is an exact (gauge) symmetry, spontaneously broken at
generic points in typical moduli spaces. A plausible
framework.

3 A new, light particle called the axion dynamically cancels
off ✓.
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Lecture 2: Solutions of the Strong CP Problem: An
Assessment

1 mu = 0: how plausible as an idea? Confrontation with
lattice gauge theory

2 Small radiative corrections to ✓ in Standard Model.
Possible realization through spontaneous CP violation
(Barr-Nelson mechanism). Models. Virtues and problems.

3 Axions. Basic ideas. Virtues, problems, constraints.
4 Basics of Axion Physics
5 Astrophysical Constraints on Axions
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Problems with each of these solutions:

1 mu = 0. Lattice computations seem to rule out (the
required non-perturbative effects do not seem to be large
enough).

2 Spontaneous CP: special properties required to avoid
large ✓ once CP is spontaneously broken. What would
single out such theories?

3 Axions: promise and limitations.

Michael Dine The Strong CP Problem and Its Implications



mu = 0

If mu = 0, one can rotate away ✓. More precisely, one requires,
since dn / ✓mu in this limit,

mu

⇤QCD
< 10�10 (44)

at the scale ⇤SM . There are two issues with this proposal:
1 Why might mu be so small?
2 We can measure mu (with the help of the lattice). Is this

consistent with lattice results?
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Accounting for small mu

Banks, Nir, Seiberg put forward models which, in accounting for
quark flavor, gave rise to small or zero mu.

A simple possibility is suggested by string theory, which often
exhibits anomalous discrete symmetries; more precisely, the
chiral content of the theory is anomalous, with the anomaly
being cancelled by the non-linear transformation of an
axion-like field. In the supersymmetric case, this means that
one has a modulus field, coupling to the ū quark as (� = �+ ia)

e��QHUū. (45)

One requires that the exponential be very small, but this is
plausible. One can speculate as to whether or not a suitable
discrete symmetry structure is typical of underlying theories.
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How might mu = 0 be consistent with known facts
of hadron physics

Instantons suggestive (Georgi-McArthur). With three light
quarks, generate an effective u quark mass (two point function)
proportional to mdms. Simple dimensional analysis suggests
the effect goes as

mdms

⇤
(46)

with ⇤ a suitable QCD scale. This could easily be of order the
few MeV expected from current algebra. Kaplan and Manohar
expressed this as an ambiguity in current algebra, i.e. they
isolated a term and second order in quark masses which could
mimic the effects of a u quark mass.
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Summary of lattice results for light quark masses

Current results from lattice simulations (summarized by the
FLAG working group) are inconsistent with mu = 0.

mu = 2.16 (9)(7)MeV md = 4.68 (14)(7)MeV (47)

ms = 93.5(2.5)MeV

Numbers are in MS scheme at 2 GeV.

So mu is many standard deviations from zero. Probably end of
story, but some proposals for dedicated tests (Kitano),
calibrations (Dine, Draper, Festuccia).
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Loop Corrections at Low Energies in the Standard
Model

Loop corrections to ✓ in the Standard Model are highly
suppressed. Focussing on divergent corrections, one requires
Higgs loops. These involve the Hermitian matrices

A = y†
dyd ; B = y†

uyu (48)

Contributions to ✓ are proportional to traces of the form

Tr(ABA2B . . . ) (49)

one additional matrix factor for each loop.
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It is easy to check that the first complex combination involves
six matrices, e.g.

Tr(ABA2B2) (50)

but this and its complex conjugate both appear with the same
coefficient. It is necessary to add a U(1) gauge loop (which
distinguishes u and d) to have the possibility of a complex
traces. [Ellis, Gaillard]
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So if ✓ is small at some scale ⇤SM , further corrections are
extremely tiny (finite corrections are also very small).

One has the feeling that this might not be such a big problem.
The question is: why might ✓(⇤SM be small?
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Spontaneous CP Violation: The Nelson-Barr
mechanism

Invokes spontaneous CP violation to argue “bare ✓" is zero.
Constructs a mass matrix such that spontaneous CP breaking
gives a large CKM angle (as observed, � = 1.2) with
arg det mq = 0.

Bare ✓ is tree level ✓ (presumes some perturbative
approximation). Must insure that ✓(⇤SM) is small.
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Unlike axion, mu = 0 solutions, no obvious low energy
consequences.

Attempts to achieve a setup where ✓ at the scale ⇤SM is
extremely small.
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Such a structure is perhaps made plausible by string theory,
where CP is a (gauge) symmetry, necessarily spontaneously
broken. At string scale, ✓ = 0 a well-defined notion. Some
features of the required mass matrices appear, e.g., in
Calabi-Yau compactifications of the heterotic string.
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Simple realization of the NB structure

Complex scalars ⌘i with complex (CP-violating) vev’s.
Additional vectorlike quark with charge 1/3.

L = µq̄q + �if⌘i d̄f q + yfgQf d̄g� (51)

where � is Higgs; y , �, µ real.

M =

✓
µ B
0 md

◆
(52)

Bf = �if⌘i is complex. M has real determinant.

The structure is reminiscent of an E6 gauge theory, which has
the requisite vector-like quarks and singlets.
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Requirements for a successful NB Solution

1 Symmetries: It is important that ⌘i not couple to q̄q, for
example. So, e.g., ⌘’s complex, subject to a ZN symmetry.

2 Coincidences of scale: if only one field ⌘, CKM angle
vanishes (can make d quark mass matrix real by an overall
phase redefinition). Need at least two, and their vev’s
(times suitable couplings) have to be quite close:

�CKM / Bsmall

Blarge
(53)

3 Similarly, µ (which might represent vev of another field) can
not be much larger than ⌘i , and if much smaller the
Yukawa’s and B’s have to have special features.
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Constraints on the Overall Scale

Before considering radiative effects, possible higher dimension
operators in L constrain the scales ⌘i , µ. E.g.

⌘⇤
i ⌘j

Mp
q̄q (54)

requires |⌘|
Mp

< 10�10.
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Barr-Nelson With/Without Supersymmetry

Without supersymmetry, highly tuned. Two light scalars and µ
(or three light scalars), with masses 10 orders of magnitude
below Mp. Far worse than ✓.

Even ignoring that, require close coincidence of scales.

Supersymmetry helps. Allows light scalars. Coincidences still
required (and more chiral multiplets to achieve desired
symmetry breakings – typically at least seven). Some of the
high dimension operators better controlled (e.g. if µ, ⌘i much
larger than susy breaking scale, don’t have analogs of the
⌘⇤

i ⌘j q̄q operator).
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Loop Corrections in Nelson-Barr:
Non-Supersymmetric case

In the non-supersymmetric case, in the simplest model,
potential corrections arise at one loop order. Consider, in
particular, couplings of the form

�ij⌘i⌘j |H|2

give rise to one loop contributions.
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hHi h�ai

h�bi

Qi
d̄ q

H �

d̄j

Figure 1: Example threshold correction to Arg det md.

at tree level, or will have one loop corrections to ✓̄ similar to non-composite models. This will

lead us to consider NB in the supersymmetric context.

In the BBP model, dangerous contributions to ✓̄ arise at one loop from the Higgs portal

operators

(�ij⌘
†
i ⌘j + �ij⌘i⌘j + cc)H†H . (3.4)

�ij can be forbidden by a ZN symmetry with N > 2, so we consider the e�ects of �ij . Unless

the �s are very small, these couplings make a large contribution to the Higgs mass. In the

context of a solution to the mCP hierarchy problem, there might or might not be a principled

reason why the couplings are small, but a priori they indicate only another contribution of

many to the tuning of m2
H . At one loop, the diagram of Fig. 1 gives a complex correction to

the SM down-type Yukawa coupling, contributing to a shift in ✓̄ of order

�✓̄ � Im Tr y�1�y � ⌘aaafabf�bc⌘⇤
c

16⇡2m2
CP

. (3.5)

Adequately suppressing ✓̄ requires the a and/or � couplings to be small.

The authors of [20] took the viewpoint that whatever solves the SM hierarchy problem

might suppress the portal couplings. Such suppressions can occur in supersymmetric or

composite theories (both of which solve the m2
CP hierarchy problem, but not necessarily the

full m2
H one). These theories involve significant extra structure beyond the minimal BBP

model, and the radiative corrections to ✓̄ must be considered in the full theories. Without

supersymmetry or extra dynamics, the Higgs mass is simply tuned, and small ✓ is problematic.

At two loop order, there are additional contributions which must be suppressed. In

– 7 –
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If the new couplings are of order one these are six or seven
orders of magnitude too large.

In the past these have sometimes been dismissed on the
grounds that these couplings contribute to the Higgs mass, but
this is just part of the usual fine tuning problem.
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Supersymmetry breaking and Nelson-Barr

Many possible phases once allow soft breaking Note: these
effects don’t decouple for large susy-breaking scale. E.g.
is susy breaking described by Goldstino superfield, X ,
superpotential couplings

Od

Md�2
p

X (55)

where hOi is complex can lead to large phases in soft
breakings. Similarly phases in W . Phases in gaugino masses
feed directly into ✓.
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Loop Corrections in Supersymmetric Nelson-Barr

If tree level phases in soft terms suppressed, loops still pose a
problem (Kagan, Leigh, M.D.). Loop corrections to gaugino
mass from loops with q, q̄, fields. Require, e.g., A terms small
or proportional to Yukawas. Gauge mediation (with real F ) most
plausible solution (A terms small). (Luty, Schmaltz in a slightly
different context)
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The Peccei-Quinn Symmetry

In a somewhat streamlined language, the Peccei-Quinn
proposal was to replace ✓ by a dynamical field: ✓ ! a(x)

fa

It is assumed that a ! a + !fa is a good symmetry of the
theory, violated only by effects of QCD. Without QCD, ✓ can
take any value.

In QCD by itself, the energy is necessarily stationary when

✓eff = h a
fa

i = 0. (56)

This is simply because CP is a good symmetry of QCD if ✓ = 0,
so the vacuum energy (potential) must be an odd function of ✓.
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One can do better, calculating, again using what we know
about chiral symmetry in QCD, the axion potential:

V (a) = m2
⇡f 2

⇡

p
mumd

mu + md

a2

2f 2
a

(57)

This gives, for the axion mass:

ma = 0.6 meV

✓
1010

GeV

fa

◆
. (58)

[Exercise: Derive the expression for V (a). To do this, integrate
out the “heavy" fields (the pions) by solving the ⇡0 equation of
motion, and subsituting back in the action. Simplify by working
to second order in a,⇡0.]
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Peccei and Quinn actually constructed a model for this
phenomenon, which was a modest extension of the Standard
Model with an extra Higgs doublet. They didn’t phrase the
problem in quite the way I did above, and didn’t appreciate that
their model had a light, pseudoscalar particle, a. This was
recognized by Weinberg and Wilczek, who calculated its mass
and the properties of its interactions. It quickly become clear
that the original axion idea was not experimentally viable.
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The Invisible Axion

But in the more general picture described above, the problems
with the axion are easily resolved. The strength of the axion’s
interactions are proportional to 1/fa. This is because of the
Peccei-Quinn symmetry. The symmetry requires that axion
interactions appear only with derivatives of the axion field; on
dimensional grounds, these come with powers of @µ

fa (momenta
– qµ/fa). QCD terms which break the symmetry also come with
powers of 1/fa. So if fa is large enough, the axion will be hard to
detect (it becomes “harmless" or “invisible").

The scale, fa, might be associated with some high scale of
physics (Mgut? Mp? – more later).
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Sample couplings

1 Axion to two photons (notation of PDG):

L�� =
1
4

Ga�� a FF̃ (59)

where now F is the electromagnetic field strength.

Ga�� =
↵

2⇡

✓
E
N

� 4
3

4 + z
1 + z

◆
1 + zp

z
ma

m⇡f⇡
z =

mu

md
(60)

E , N are the electromagnetic and QCD anomalies of the
PQ current.

2 Axion to quarks, leptons:

Laff =
X

f

Cf
2fa

 ̄f�
µ�5 f @µa. (61)

The detailed coefficients depend on the model.
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Two Benchmark models
DFSZ

Add to the Standard Model an additional Higgs doublet (e.g. as
in supersymmetry), i.e. two doublets, Hu, Hd , plus a singlet, �.
Impose the Peccei-Quinn symmetry:

� ! ei↵�; Hu ! e�i ↵2 Hu; Hd ! e�i ↵2 Hd (62)

Require potential such that HU , HD, � have expectation values,
where the � vev is very large.

h�i ⇡ fap
2

� TeV. (63)

This breaks the PQ symmetry spontaneously.
(Pseudo-)Goldstone boson:

Im � =
ap
2
.
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a couples to GG̃, FF̃ . Also couples to leptons, quarks.

E
N

= 8/3; Ce =
cos2 �

3
tan� =

hHui
hHdi . (64)

As expected, as fa becomes large, the axion’s interactions with
other particles become weaker. Once fa >> Tev, unobservable
in accelerator experiments.
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KSVZ Model

Here one has a field, �, and a new quark, q and q̄, which will be
very heavy. q and q̄ are assumed to carry color but to be
SU(2) ⇥ U(1) singlets. In two component language, the
Peccei-Quinn symmetry is assumed to be

� ! ei↵� q ! e�i ↵2 q 0q̄ ! e�i ↵2 q̄. L�q̄q = ��q̄q (65)

� is assumed to have an expectation value:

h�i = fap
2
. (66)

The imaginary part of � is the axion:

� =
1p
2
(fa + ia) . (67)
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But these are just two of a wealth of possible models,
characterized by the coefficients E , N, Ci above. These two,
however, are often used as benchmarks to characterize the
capabilities of different experimental detection schemes, as well
as to illustrate the range of possible astrophysical phenomena.
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Physical Processes Associated with Axions

1 Production in accelerators
2 Decay
3 Production in stars
4 Production in strong magnetic fields (ADMX and other

experiments
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Astrophysical Constraints

Axion interactions are “semi weak", in the sense that cross
sections go as 1/f 2

a , as opposed to weak interactions which
behave as 1/v4. So even for large fa, reaction rates can be
comparable to those for neutrinos. This raises a worry about
stars, where various processes can produce axions. If
interaction rates are large compared to those for neutrinos,
excessive amounts of energy will be carried off by axions. More
detailed studies in particular astrophysical environments place
lower limits on fa.

Michael Dine The Strong CP Problem and Its Implications



Sources of Astrophysical Constraints

Partial list:
1 The sun
2 Red Giants, Globular Clusters
3 SN 1987a
4 White dwarfs
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Primakoff process, axion bremstrahlung.
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Axion Luminosity

In sun:

La = G2
a�� ⇥ 1.85 ⇥ 1017L� (68)

so

Ga�� < 7 ⇥ 10�10. (69)

Stronger constraint from globular clusters, 7 ! 1.
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