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We’ve made amazing progress with colliders and conventional particle detectors 
(e.g. WIMP detectors), but some important things can’t be seen this way:

• axions 
- critical questions such as hierarchy problem or nature of dark matter may 

not be answered at weak scale 

• gravitational waves 
- from e.g. BH's, inflation, early universe,… 

• new long-range forces 

• etc.

to see these, we need a new approach



Moore’s law in atomic physics
Atomic Clock Sensitivity

current technology already allows many new searches, and will improve by orders of magnitude



Precision Experiments

• New technologies rapidly pushing precision measurement 
- e.g. atomic clocks have 18 digit precision 

• Often small-scale, “table-top” experiments* 
- can do many <$10M experiments 

*not for gravitational waves

Many exciting, unexplored directions

not completely new (e.g. EDMs, new forces, etc.), 
but small compared to traditional particle detection

Precision measurement offers a powerful new approach for 
fundamental physics



New Physics
We know there is new physics out there (e.g. dark matter, baryogenesis) 

Where is it?  Many hints (e.g. fine-tuning problems)

Light (≪ weak scale) 
Small coupling 

high precision sensors

Heavy (weak scale) 
Large coupling (EM, weak, strong) 

high energy accelerators



Outline
1. Motivation & Overview 

2. LIGO example 

3. Dark Matter Detection (axions, hidden photons, ultralight DM) 
• Cosmic Axion Spin Precession Experiment (CASPEr)                                          
• DM Radio                                                                                                               
• Other new techniques (e.g. accelerometers) 

4. New Forces and Transmission Experiments 
• Eot-Wash torsion balances 

• light-through-walls 

5. Gravitational wave detection with atom interferometry                         



LIGO



LIGO



Estimate LIGO Sensitivity

see notes



LIGO Sensitivity



LIGO Sensitivity



LIGO Event



Dark Matter Detection



Dark Matter Candidates

DM mass:
10-22 eV

dwarf galaxy size axion

What do we know about dark matter?

100GeV
WIMP

WIMP is well-motivated, significant direct detection effort focused on WIMPs

Axion is other best-motivated candidate, only a small fraction of parameter space covered

Huge DM parameter space currently unexplored!

1019 GeV

black holes



Direct Detection

DM mass:
10-22 eV

dwarf galaxy size axion
100GeV

WIMP

How can we detect DM?

particle-like (e.g. WIMP) 
particle detectors best

Search for single, hard particle scattering

� �

N N

field-like (e.g. axion) 
new detectors required

10 eV

➔ high phase space density if�DM � 0.3
GeV
cm3

� (0.04 eV)4 m . 10 eV

optical

yr�1

Frequency range accessible!

Detect coherent effects of entire field 
(like gravitational wave detector)

1019 GeV

black holes



“Field” Dark Matter
DM at long deBroglie wavelength 

useful to picture as a “coherent” field:

signal frequency = DM mass = m

⇠ mv2spread by DM kinetic energy

galactic virial velocity                   ➜ line widthv ⇠ 10�3 ⇠ 10�6m

➜ coherence time,                periodsQ ⇠ 106

particle DM



Possibilities for Light Dark Matter
Effective field theory: all UV theories summarized by only a few possibilities:

scalar

vector

�h†h, �OSM
SM properties 
(electron mass)

Can cover all these possibilities!
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{ current searches 
(e.g ADMX)

use other couplings

e.g. can reach axion 
parameter space 

considered impossible

arXiv:1512.06165



Possibilities for Light Dark Matter
Only really 4 different types of effects, 4 types of experiments needed

scalar

vector

�h†h, �OSM
SM properties 
(electron mass)

Can cover all these possibilities!
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arXiv:1512.06165

E&M - drive currents

QCD - change nuclear 
properties

spin - cause precession

scalar - new force/
change SM properties 
(e.g. electron mass)



Axion Detection



Existing Axion Searches

a

γ

B

drives cavity at frequency ma

ADMX focuses on axions ~ 0.5 - 10 GHz 

axion Compton wavelength ~ size of cavity

all existing experiments rely on axion coupling to E&M (photons): L � aF F̃ = a ~E · ~B

at lower masses, axion wavelength ➜ 300 km 
(axions from fundamental scales near Planck scale)

how cover the full axion mass range?  a different operator

integrate by parts ➜ all effects depend on derivative of axion field

⇠ experiment size

axion wavelength

 all effects suppressed by

aF F̃ ⇠ a @ (A @A) is a derivative operator



a

V a(t) � a0 cos (mat)

Axion solution:
L � a

fa
G eGmake it dynamical so damps down towards zero

The Axion
Strong CP problem:

creates nucleon EDM d ⇥ 3� 10�16 � e cmL � � G �G ✓ . 10�9measurements ➜

m2
a a

2
0 ⇠ ⇢DM ⇠ 0.3

GeV

cm3

calculate a0:

Preskill, Wise & Wilczek; Abott & Sikivie; Dine & Fischler (1983)

Axion is a natural dark matter candidatestill has small residual oscillations today ➜

Axion DM causes oscillating nucleon EDM today, not a derivative effect!

generally light bosonic DM causes oscillating fundamental “constants”

d ⇥ 3� 10�16 a

fa
e cm

completely changes axion detection

adiabatic approximation ➜



A Different Operator For Axion Detection

all (free) nucleons radiate: lab? stars?

collective effect of EDM in condensed matter system enhances signal

standard EDM searches not sensitive to oscillating EDM, 
we’ll use resonance to enhance signal


