# The Precision Frontier of Particle Physics

Peter Graham

Stanford

# Cosmic Axion Spin Precession Experiment (CASPEr)

with



Dmitry Budker Micah Ledbetter Surjeet Rajendran Alex Sushkov

#### SIMONS FOUNDATION

DFG Deutsche Forschungsgemeinschaft PRX **4** (2014) arXiv:1306.6089 PRD **88** (2013) arXiv:1306.6088 PRD **84** (2011) arXiv:1101.2691

## Axions with NMR



NMR resonant spin flip when Larmor frequency  $2\mu B_{\text{ext}} = \omega$ 

### Cosmic Axion Spin Precession Experiment (CASPEr)

NMR techniques + high precision magnetometry



Larmor frequency = axion mass  $\rightarrow$  resonant enhancement

SQUID measures resulting transverse magnetization

## Resonant Enhancement

resonance  $\rightarrow$  scan over axion masses by changing  $B_{ext}$ 

magnetization signal increases linearly in time (axion periods)



designed NMR pulse sequences can improve (dynamic decoupling) demonstrated  $T_2 = 1300$  s in Xe

### Cosmic Axion Spin Precession Experiment (CASPEr)

NMR techniques + high precision magnetometry



ferroelectric (e.g. PbTiO<sub>3</sub>) for large E\* NMR pulse sequences (spin-echo,...) for longer T<sub>2</sub> NMR techniques for high polarization fraction quantum spin projection (magnetization) noise small enough

## Magnetization Noise



a material sample has magnetization noise

irreducible noise arises from quantum spin projection

every spin necessarily has random quantum projection onto transverse direction

Magnetization (quantum spin projection) noise:

$$S\left(\omega\right) = \frac{1}{8} \left( \frac{T_2}{1 + T_2^2 \left(\omega - 2\mu_N B\right)^2} \right)$$

an approximate estimate, in a particular sample magnetization noise must be measured



## CASPEr Sensitivity



## CASPEr-Wind

spin coupling:  $(\partial_{\mu}a)\bar{\psi}\gamma^{\mu}\gamma_{5}\psi \rightarrow H \ni \nabla a \cdot \vec{\sigma}_{N}$ 





makes a directional detector for axions (and gives annual modulation)

### Cosmic Axion Spin Precession Experiment (CASPEr)

New field of axion direct detection, similar to early stages of WIMP direct detection

No other way to search for light axions

Would be the discovery of dark matter and glimpse into physics at high energies  $\sim 10^{16}$  -  $10^{19}$  GeV









Dmitry Budker Alexander Sushkov Peter W. Graham Surjeet Rajendran Derek J. Kimball Arne Wickenbrock John Blanchard Marina Gil Sendra Gary Centers Nataniel Figueroa Deniz Aybas Adam Pearson Hannah Mekbib Tao Wang



#### under construction at Mainz and BU









#### SIMONS FOUNDATION

## QCD Axion Dark Matter

May be able to cover all of QCD axion dark matter:



many more new ideas beyond these for axion detection in general!

# Other Couplings & Techniques

# Possibilities for Light Dark Matter

Only really 4 different types of effects, 4 types of experiments needed



Can cover all these possibilities!

arXiv:1512.06165

## Axion DM Effects

spin coupling:  $(\partial_{\mu}a)\bar{\psi}\gamma^{\mu}\gamma_{5}\psi \rightarrow H \ni \nabla a \cdot \vec{\sigma}_{N}$ 



scalar coupling:  $aH^{\dagger}H$  e.g. change electron mass



axion DM field gradient can exert a force oscillatory and violates equivalence principle

same effects allow searches for hidden photons

# Force/Torque from Dark Matter

PRD 93 (2016) arXiv:1512.06165

New oscillatory force/torque from dark matter

New Direct Detection Experiments:

Torsion Balances scalar balance for force spin-polarized for torque



Atom Interferometers split + recombine atom wavefunction measure atom spin and acceleration



Pulsar Timing Arrays DM and gravitational wave detection similar



Eot-Wash analysis underwayIn construction Kasevich/Hogan groupswith Will Terranocovers frequency range ~10 Hz down to yr<sup>-1</sup>

# DM Direct Detection



+ many important new force/transmission experiments (e.g. ARIADNE)

# New Force and Transmission Experiments

### DM expts:

### New force/transmission expts:





### amplitude $\propto g$

amplitude  $\propto g^2$ 

### microwave cavity (e.g ADMX)



light-through-walls (e.g. ALPS)  $\gamma \longrightarrow_{B} - \sum_{k=1}^{N} \gamma \longrightarrow_{B} \gamma \longrightarrow_{B$ 

resonance optimal, need to scan frequencies reach smaller couplings, limited mass range covers all masses (below expt cutoff) not as sensitive in coupling

# Possibilities for New Fields

4 types of couplings



## Possible New Forces

Moody and Wilczek (PRD 1984)

search for a new scalar with a few types of new forces:

Scalar (monopole field)  $\phi h^{\dagger}h, \phi \mathcal{O}_{SM}$  SM properties (electron mass) Pseudoscalar (dipole field)  $(\partial_{\mu}a)\bar{\psi}\gamma^{\mu}\gamma_{5}\psi$  matter (spin)



effective field theory  $\rightarrow$  only a few possibilities

## Experimental Strategies for New Forces



scalar force

Equivalence principle violation: two different test masses

- will see infinite range (zero mass) force
- suppressed by composition difference (usually  $\sim 10^{-1} 10^{-2}$ )

deviations from  $r^{-2}$  : move test mass around

- only sensitive at masses  $\sim$  distance scale of expt

spin-dependent force: control spins of source and test masses

• limited by shortest distance achievable ( $V \sim r^{-2}$  or  $r^{-3}$ ), bad backgrounds (EM) at short distances

## Motivations

new light particles/deviations from gravity well motivated by many theories: axions, moduli (SUSY), extra dimensions...

e.g. twin Higgs has a new photon, will pick up some (small) kinetic mixing, but potentially testable by high precision experiments/astrophysics

Cosmological Constant Problem:

Raman Sundrum

great, vague, idea: turn off graviton coupling to loops (once far enough off-shell)

 $\checkmark \propto \Lambda^4 \quad \Rightarrow$  require cutoff at momenta  $\Lambda \sim \text{meV} \sim (100 \,\mu\text{m})^{-1}$ 

A Newtonian gravity  $\frac{1}{r^2}$  will cut off below 100 µm

# Eot-Wash Torsion Pendulums

high sensitivity possible: use laser readout of angle



<u>backgrounds:</u> fiber thermal noise, laser readout noise, EM forces (Casimir), gravity gradients



spin-polarized pendulums:

## Deviations from $1/r^2$

![](_page_24_Figure_1.jpeg)

 $\alpha = \text{strength relative to gravity} \qquad \lambda \sim m^{-1}$ 

# Equivalence Principle

Best current limits ~  $10^{-13}$  and will likely improve from: Lunar Laser Ranging: earth - moon falling towards sun torsion balances: two masses (e.g. Al-Be) toward earth

10<sup>-13</sup> so good it bounds how antimatter falls **EP** test  $10^{-2}$ can only see forces 10<sup>-3</sup>  $\sim 6000$  km or longer geophysical 10<sup>-4</sup> labóratory 10<sup>-5</sup> Earth-LAGEOS <u>ㅋ</u> 10<sup>-6</sup> HW: is a short-range EP 10<sup>-7</sup> test interesting? LAGEOS-Lunar 10<sup>-8</sup> 10<sup>-9</sup> LLR 10<sup>-10</sup> planetary 10<sup>-2</sup> 10<sup>0</sup> 10<sup>2</sup> 10<sup>6</sup> 10<sup>8</sup> 10<sup>10</sup> 10<sup>12</sup> 10<sup>14</sup> 10<sup>4</sup> λ [m]

New techniques coming:

Satellite Test of Equivalence Principle (STEP) Atom interferometry

![](_page_25_Picture_5.jpeg)

**Torsion Balances** 

### Atom Interferometers

<sup>85</sup>Rb-<sup>87</sup>Rb

![](_page_25_Picture_7.jpeg)

# Spin-Dependent Forces

![](_page_26_Figure_1.jpeg)

generally hard for lab measurements to beat astro bounds in spin-dependence

## ARIADNE

new experiment for axion detection though new force (monopole-dipole) uses NMR as detection technology

![](_page_27_Figure_2.jpeg)

## Light-Through-Walls

![](_page_28_Figure_1.jpeg)

# Gravitational Wave Detection with Atom Interferometry

with

Savas Dimopoulos Jason Hogan Mark Kasevich Surjeet Rajendran

PRD **94** (2016) arXiv:1606.01860 PRL **110** (2013) arXiv:1206.0818 GRG **43** (2011) arXiv:1009.2702 PLB **678** (2009) arXiv:0712.1250 PRD **78** (2008) arXiv:0806.2125

![](_page_29_Picture_4.jpeg)

# Gravitational Spectrum

Every new EM band opened has revealed unexpected discoveries, gravitational waves give a new spectrum

![](_page_30_Figure_2.jpeg)

![](_page_30_Picture_3.jpeg)

![](_page_30_Figure_4.jpeg)

Advanced LIGO can only detect GW's > 10 Hz  $\rightarrow$  How look at lower spectrum?

New detectors?

# Atomic Clock

![](_page_31_Figure_1.jpeg)

![](_page_32_Figure_0.jpeg)

cancels clock shift exactly, what is left?

# Sensitivity of Atom Interferometry

![](_page_33_Figure_1.jpeg)

the interferometer can be as long as  $T \sim 1$  sec ~ earth-moon distance!

 $\Delta \phi \sim \frac{1}{\sqrt{N_{\text{atoms}}}} \frac{1}{\sqrt{N_{\text{shots}}}} \qquad \text{each shot} \sim 1 \text{s} \Rightarrow N_{\text{shots}} \sim 10^7$  $N_{\text{atoms}} \sim 10^6 \quad \text{per shot} \qquad \Rightarrow \text{ sensitivity in one year} \sim 10^{-7} \text{ rad}$ 

have sensitivity to forces as small as  $\sim 10^{-15}g$ 

## Raman Transition

![](_page_34_Figure_1.jpeg)

 $\pi/2$  pulse is a beamsplitter  $\pi$  pulse is a mirror

![](_page_35_Figure_0.jpeg)

## Differential Measurement

![](_page_36_Figure_1.jpeg)

### Laser Phase Noise

### remove laser noise using multiple baselines

![](_page_37_Picture_2.jpeg)

### Laser Phase Noise Insensitive Detector

run atom interferometer as hybrid clock/accelerometer

PWG, Hogan, Kasevich, Rajendran PRL 110 (2013)

![](_page_38_Figure_3.jpeg)

atoms act as clocks, measure light travel time

![](_page_38_Figure_5.jpeg)

Clock transition in candidate atom <sup>87</sup>Sr

Removes laser noise, allows single baseline detection

## Atom Interferometry for Gravitational Waves

#### run atom interferometer as hybrid clock/accelerometer

PWG, Hogan, Kasevich, Rajendran PRL 110 (2013)

![](_page_39_Figure_3.jpeg)

Clock transition in candidate atom <sup>87</sup>Sr

#### atoms act as clocks $\rightarrow$ remove laser noise

![](_page_39_Picture_6.jpeg)

accelerometer → atoms are good inertial test masses, removes many noise sources (seismic, thermal vibrations, vacuum gas collisions, charging...)

## Gravitational Wave Detection

![](_page_40_Figure_1.jpeg)

## 100 m Detector Proposal at Fermilab

![](_page_41_Figure_1.jpeg)

![](_page_41_Figure_2.jpeg)

- 100 m atom interferometer (accelerometer) drop tower
  - >3 s drop time to split and recombine atomic wavefunctions
- Detect dark matter through oscillatory force
  - Also gravitational waves from unknown sources
- Lead to ~km scale detector for GW's (e.g. BH mergers) and DM, opens band below LIGO and above LISA (~ 0.1 10 Hz)

## Atom Interferometry for Gravitational Waves

Atoms could access mid-frequency band

![](_page_42_Picture_2.jpeg)

earth orbit allows polarization measurement with single detector

![](_page_42_Figure_4.jpeg)

for example this band allows:

localize sources on the sky (e.g. sub-degree accuracy) and predict BH and NS binary mergers for other telescopes to observe with Sunghoon Jung may measure initial BH spins and orbital eccentricity

## Angular Localization

![](_page_43_Figure_1.jpeg)

## Initial Black Hole Spins

![](_page_44_Figure_1.jpeg)

LIGO can't measure well, needs lower frequencies → atoms (terrestrial or satellite) could measure? gives info on formation history (primordial?), etc. of BH's

## **Recent Experimental Results**

(Kasevich and Hogan groups)

### Stanford Test Facility

![](_page_45_Picture_3.jpeg)

demonstrate necessary technologies:

V.M. KEC

![](_page_45_Figure_5.jpeg)

Macroscopic splitting of atomic wavefunction:

![](_page_45_Figure_7.jpeg)

Kovachy et. al, Nature (2015)

# Summary

Precision measurement is a powerful tool for particle physics and cosmology new technologies beyond traditional particle detection e.g. combination of several experiments will cover QCD axion dark matter fully

Light dark matter (axions) and gravitational wave detection similar: detect coherent effects of entire field, not single particles

- laser interferometry
- atom interferometry (clocks)
- EM resonators (e.g. cavities)
- NMR
- high-precision magnetometry (SQUIDs, atomic systems)
- torsion pendulums
- optically-levitated dielectric spheres
- ...

Many more possibilities we haven't thought of yet...