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Before we start

• This is a huge subject.

• Focus more on intuitive understanding, generic 
feature, less on specifics.

• Only a (small) subset.

• Focus on methodology, rather than specific models. 

Hopefully, this serves as the starting point of 
your further study.
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Many good references, such as
Tao Han, TASI lecture,  hep-ph/0508097



proton

gluon

quark

binding energy ~ GeV
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Partons: 
gluon 
valence: u, d
“sea”:  qbar, s sbar, c, cbar, b, bbar



Most of the time

low energy fragments:  E  GeV

proton

proton
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High energy collision rare
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Kinematics

P1 →

 ← P2

p1 = x1P1 p2 = x2P2
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Rapidity

Consider a final state particle of momentum pµ = (E, p⃗) in the lab frame. Since the

c.m. frame of the two colliding partons is a priori undetermined with respect to the lab frame,

the scattering polar angle θ in these two frames is not a good observable to describe theory

and the experiment. It would be thus more desirable to seek for kinematical variables that are

invariant under unknown longitudinal boosts.

Transverse momentum and the azimuthal angle: Since the ambiguous motion between the par-

ton c.m. frame and the hadron lab frame is along the longitudinal beam direction (z⃗), variables

involving only the transverse components are invaraint under longitudinal boosts. It is thus

convenient, in contrast to Eqs. (A6) and (A9) of Appendix A in the spherical coordinate, to

write the phase space element in the cylindrical coordinate as

d3p⃗

E
= dpxdpy

dpz

E
= pT dpT dφ

dpz

E
, (32)

where φ is the azimuthal angle about the z⃗ axis, and

pT =
√

p2
x + p2

y = p sin θ (33)

is the transverse momentum. It is obvious that both pT and φ are boost-invariant, so is dpz/E.

Exercise: Prove that dpz/E is longitudinally boost-invariant.

Rapidity and pseudo-rapidity: The rapidity of a particle of momentum pµ is defined to be

y =
1

2
ln

E + pz

E − pz
. (34)

Exercise: With the introduction of rapidity y, show that a particle

four-momentum can be rewritten as

pµ = (ET cosh y, pT sin φ, pT cosφ, ET sinh y), ET =
√

p2
T + m2. (35)

The phase space element then can be expressed as

d3p⃗

E
= pT dpT dφ dy = ET dET dφ dy. (36)

Consider the rapidity in a boosted frame (say the parton c.m. frame), and perform the

Lorentz transformation as in Eq. (A4) of Appendix A,

y′ =
1

2
ln

E ′ + p′z
E ′ − p′z

=
1

2
ln

(1 − β0)(E + pz)

(1 + β0)(E − pz)
= y − y0. (37)
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FIG. 10: A CDF di-jet event on a lego plot in the η − φ plane. The height presents the transverse

energy scale, and the two colors (blue and pink) indicate the energy deposit in the two calorimeters

(ECAL and HCAL).

In the massless limit, E ≈ |p⃗|, so that

y →
1

2
ln

1 + cos θ

1 − cos θ
= ln cot

θ

2
≡ η, (38)

where η is the pseudo-rapidity, which has one-to-one correspondence with the scattering polar

angle π ≥ θ ≥ 0 for −∞ < η < ∞.

Since y as well as η is additive under longitudinal boosts as seen in Eq. (37), the rapidity

difference ∆y = y2 − y1 = y′
2 − y′

1 is invariant in the two frames. Thus the shape of rapidity

distributions dσ/dy in the two frames would remain the same if the boost is by a constant

velocity. In realistic hadronic collisions, the boost of course varies on an event-by-event basis

according to Eq. (28) and the distribution is generally smeared.

The lego plot: It should be clear by now that it is desirable to use the kinematical variables

(pT , η,φ) to describe events in hadronic collisions. In collider experiments, most often, electro-

magnet and hadronic calorimeters provide the energy measurements for (essentially) massless
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! d

dy
=

d

dy0

Define rapidity

Under boost along z-direction

In the massless limit :   pseudo-rapidity
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Parton Distribution Function (PDF)

• fa(x) can not be computed. 

• However, we can measure them using certain processes. 

• They are universal! Can be used everywhere!

p1 = x1P1 p2 = x2P2 Partons can be gluon, 
or different flavors of quarks, 
labelled by a, b...

parton distribution function fa(x):
probability of finding parton a with momentum fraction x

11



Prediction for hadron collisions 

“Hard scattering”
Short distance
Partonic cross section
Calculable

PDF, long distance
Universal

Factorization!
Intuitively, make sense: 
short distance physics should not “know” about long distance physics.

In practice, very difficult to prove. 

However, it is used anyway (otherwise we cannot calculate anything).
And, it works very well.
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Production.

• Schematics of production at hadron colliders. 

• Dominated by parton densities and thresholds 
(mass and cut). 

Approximating hard scattering

Leading order features:

2

?

Parton densities Threshold

matrix

elements

×phase-space

⇒ can often get away with |M |2 = C! for simple observables

⇒ refinement could be added systematically later.

Partonic cross section
16

d

2
�(a, b ! · · · )

dŝ dY

=
1

ŝ

X

a,b

x1fa(x1) x2fb(x2) �̂(a, b ! · · · )



A useful representation
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P1 = (E, 0, 0, E), P2 = (E, 0, 0,�E)

coshY =

(x1 + x2)Ep
ŝ

@|ŝ, Y |
@|x1, x2|

=
ŝ

x1x2

d

2
�(a, b ! · · · )
dx1dx2

=
X

a,b

fa(x1)fb(x2)�̂(a, b ! · · · )

d

2
�(a, b ! · · · )

dŝ dY

=
1

ŝ

X

a,b

x1fa(x1) x2fb(x2) �̂(a, b ! · · · )

p1 = x1P1, p2 = x2P2

Define Parton center of mass rapidity: Y e

Y
=

r
x1

x2

We can verify ⇒ boost of parton c.o.m frame

Starting with

Using Jacobian: 

We obtain: 



Parton Distribution Function

gluon dominated
q≈qbar ≪ gluon

14

g

q

q̄

gluon splitting
main “source” for quark PDF



Parton Distribution Function

gluon dominated
q≈qbar ≪ gluon

valence (u, d) ↑
others fall with gluon
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Another parameterization, parton luminosity

• The cross section can be written as 
parton luminosity

Very sharp falling

Falls by a factor of 10 for
 every 600 GeV

⇒ Production dominantly on threshold

In[39]:= LogLogPlotB:‚
i=1

6

‚
j=1

6

plumAsrsh2, 72, 10., i, jE, plumAsrsh2, 72, 10., 0, 0E>,

8srsh, 0.01, 7<, PlotStyle Ø Thick, AspectRatio Ø 1., AxesLabel Ø :" s - hat ", "P.L.">,

PlotLegend Ø 8"qq, 7TeV", "gg, 7TeV"<, LegendPosition Ø 81.1, -0.4<F

NIntegrate::nlim : x = 0.0204082 srsh2 is not a valid limit of integration. à

NIntegrate::nlim : x = 0.0204082 srsh2 is not a valid limit of integration. à

NIntegrate::nlim : x = 0.0204082 srsh2 is not a valid limit of integration. à

General::stop : Further output of NIntegrate::nlim will be suppressed during this calculation. à

NIntegrate::ncvb :

NIntegrate failed to converge to prescribed accuracy after 9 recursive bisections in x near 8x< =

80.810567<. NIntegrate obtained 0.` and 0.` for the integral and error estimates. à

NIntegrate::ncvb :

NIntegrate failed to converge to prescribed accuracy after 9 recursive bisections in x near 8x< =

80.810567<. NIntegrate obtained 0.` and 0.` for the integral and error estimates. à

NIntegrate::ncvb :

NIntegrate failed to converge to prescribed accuracy after 9 recursive bisections in x near 8x< =

80.810567<. NIntegrate obtained 0.` and 0.` for the integral and error estimates. à

General::stop : Further output of NIntegrate::ncvb will be suppressed during this calculation. à

Out[39]=

0.05 0.10 0.50 1.00 5.00
s-hat

10-11

10-8

10-5

0.01

10

104

P.L.

gg, 7TeV

qq, 7TeV

plum.nb  3
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7 TeV vs 14 TeV

In[44]:= ListLogLogPlotB8tmp, tmp2<, PlotStyle Ø Thick,

AspectRatio Ø 1., AxesLabel Ø :" s - hat ", "
P.L.@7 - TeVD

P.L.@14 - TeVD
">,

PlotLegend Ø 8"qq, 7TeV", "gg, 7TeV"<, LegendPosition Ø 81.1, -0.4<, Joined Ø TrueF
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p
ŝ (TeV) For 7 TeV, PL shuts off at around TeV,

For 14 TeV, around 2 TeV.

Reach scales roughly with Ecm (same x). 



Rough estimates of discovery reach

� ⇠ Lp · �̂ ⇠ 1

⌧a
�̂

Lp : parton luminosity, �̂ : parton cross section

Production of new physics particle of mass M 

Fast falling parton luminosity ⇒ 

dominant contribution from 
parton cross section near threshold �̂ ⇠ 1

M2

Number of new physics particle produced:
N = � · L

L : luminosity

ŝ ⇠ M2 ! ⌧ ⇠ M2

S



Discovery reach
Consider 2 colliders.

Collider 1:  Ecm = E1, or S1 = E12 .   Collider 2:  Ecm = E2, or S2 = E22 .

E2  > E1 

Reach for new physics at these 2 colliders
Collider 1:  M1 .   Collider 2:  M2. 

Assume the reach is obtained from the same number of signal events
that the reach is obtained by the same number of signal events, we have

1

⌧a1

1

M2
1

L1 =
1

⌧a2

1

M2
2

L2, (3)

which means
M2

M1
=

✓
s2
s1

◆ a
2a+2

✓
L2

L1

◆ 1
2a+2

. (4)

For large a, this means energy is more important, and the gain with luminosity can be quite slow. In
particular, if we require M2/M1 = E2/E1, we need L2 = (E2/E1)2L1, as emphasized in Refs. [3, 4].
However, this slow gain with luminosity also means that one would not lose too much mass reach by
going to a much lower luminosity. As demonstrated here, this is ultimately due to the fact that the
parton luminosity is steeply falling, in particular near the edge of the kinematical reach of a collider.
The gain with luminosity is more important for smaller ↵ or lower ⌧ (lower mass).
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Figure 9: The dependence of power a on mass scale M =
p
ŝ =

p
s⌧

Some obvious approximations are made here. First of all, we ignored anomalous scaling. We also
assumed that for the relevant range of ⌧ , a remains approximately constant. This is certainly not true
for full range of ⌧ . However, a does not vary too steeply with ⌧ , see Fig. 9. For comparing reaches,
we often consider similar values of ⌧ .

Next we consider the gain luminosity with the same collider, i.e., E1 = E2. We have

M2

M1
= exp

✓
1

2a+ 2
log(L2/L1)

◆
' 1 +

1

2a+ 2
log(L2/L1), (5)

or

M2 �M1 '
M1

2a+ 2
log(L2/L1) (6)

For example, considering qq̄ initial state, around M1 ' 40 TeV, a ' 5.5 (from Fig. 9), we have
approximately

M2 �M1 ⇠ (7 TeV)⇥ log10(L2/L1) (7)

At the same time, for lower mass M1 ' 20 TeV, a ' 3, we have instead

M2 �M1 ⇠ (5.5 TeV)⇥ log10(L2/L1) (8)

10

used �̂ ⇠ 1

M2

We have

M2

M1
=

✓
S2

S1

◆1/2 ✓S1

S2

L2

L1

◆ 1
2a+2

used ŝ ⇠ M2 ! ⌧ ⇠ M2

S



As data accumulates

2 TeV, e.g. pair of 1 TeV gluino.

)-1luminosity (fb
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Rapid gain initial 10s fb-1, slow improvements afterwards.
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500 GeV, e.g. pair of 250 GeV electroweak-inoRun 1 limit

Reaching the “slow” phase after Moriond 2017



Phase space
• General phase space factor: 

• One additional final state particle

• For example
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Rate also depends on

• Coupling constants

• More final state particles, higher power of coupling 
constants.

• QCD process dominates over weak processes.

• Singularities (enhancements) of matrix elements

• Resonances.

• Collinear and soft regime...

25



Understanding the rates

FIG. 6: Scattering cross sections versus c.m. energy for the SM processes in pp collisioins. The Higgs

boson mass has been taken as 120 GeV.

have chosen the QCD factorization scale to be Q2=10 GeV2 and 104 GeV2 in these two panels,

respectively. Several general features are important to note for future discussions. The valence

quarks uv, dv, as well as the gluons carry a large momentum fraction, typically x ∼ 0.08− 0.3.

The “sea quarks” (ū = usea, d̄ = dsea, s, c, b) have small x, and are significantly enhanced at

higher Q2. Both of these features lead to important collider consequences. First of all, heavy

objects near the energy threshold are more likely produced via valence quarks. Second, higher

energy processes (comparing to the mass scale of the parton-level subprocess) are more domi-

nantly mediated via sea quarks and gluons.

17
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Example: considering ttbar vs W+ W-,
The relevant factors are: 
top is twice as heavy as W (2 times higher threshold)
αs2  vs αw2 
ttbar is gg dominated, WW is qqbar. 

New physics

























































































































































Why is it hard to discover TeV-scale new 
physics at the LHC

• p p collider, “prefers” to produce lighter states. 

• Production rates scale roughly as 

• TeV new physics

•  

• Dominated by QCD:  A messy environment. 

• Need:

• Precise knowledge of the SM processes.

• Anticipation of  potential new physics states and 
their properties.

23



Being produced does not mean 
we can see them!

27



Final state Objects

• Colored particles: cluster of hardonic energy, jet

• Leptons: electron, muon

• Photon

• Heavy flavor: bottom (charm)

• Missing energy (MET)

ℓ±,π±, K±...

γ,π±, ...

E̸T

28



Modern detector (cartoon)

hadronic calorimeter

E-CAL

tracking

vertex detector

muon chambers

beam

pipe

( in B field )

FIG. 7: Modern multi-purpose detector at colliders.

III. COLLIDER DETECTORS: OUR ELECTRONIC EYES

Accelerators and colliders are our powerful tools to produce scattering events at high energies.

Detectors are our “e-eyes” to record and identify the useful events to reveal the nature of

fundamental interactions.

A. Particle Detector at Colliders

The particle detection is based on its interactions with matter of which the detectors are

made. A modern particle detector is an electronic complex beyond the traditional particle

detection techniques, which typically consists of a secondary displaced vertex detector/charge-

tracking system, electromagnetic calorimetry, hadronic calorimetry and a muon chamber, etc.

A simplified layout is shown in Fig. 7.

19
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Identifying particles

FIG. 8: Particle signatures left in the detector components.

B. What Do Particles Look Like in a Detector

As theorists, we mostly deal with the fundamental degrees of freedom in our SM Lagrangian,

namely the quarks, leptons, gauge bosons etc. in our calculations. The truth is that most of

them are not the particles directly “seen” in the detectors. Heavy particles like Z, W, t will

promptly decay to leptons and quarks, with a lifetime 1/Γ ∼ 1/(2 GeV) ≈ 3.3×10−25 s. Other

quarks will fragment into color-singlet hadrons due to QCD confinement at a time scale of

th ∼ 1/ΛQCD ≈ 1/(200 MeV) ≈ 3.3 × 10−24 s. The individual hadrons from fragmentation

may even behave rather differently in the detector, depending on their interactions with matter

and their life times. Stable paricles such as p, p̄, e±, γ will show up in the detector as energy

deposit in hadronic and electromagnetic calorimeters or charge tracks in the tracking system.

In Fig. 8, we indicate what particles may leave what signatures in certain components of the

detector.

20
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From SM processes 
• QCD: quark, gluon             jets

• QCD heavy flavor: b, c. 

• Z:

• W:

• Top:

• Tau lepton: narrow jet(s), lepton.

31



SM Rates at 7 TeV:

• QCD di-jet:

• Heavy flavor:

• W+... :

• Z + ... : 

one lepton + jets + MET

di-lepton + jets

New Physics: ~ pb
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SM rates at 7 TeV

• di-boson:

• top pair:     160 pb! Always has 6 objects. 

• (MET+lepton+Jet 40%, Heavy flavor...)

• Looks like new physics, pair production of a massive 
particle followed by a decay cascade.

di-lepton + MET, ~ 1.2 pb

di-lepton+jet+MET ~ 0.1 pb

tri-lepton + MET ~ 0.1 pb

33



Two possible ways of discovery:

• Rate: final states 
with more 
energetic (hard) 
objects, for 
example:

W± ⇧ charged leptons (�± : e±µ±) + neutrino ⇥(⇥̄).

Neutrino stays undetected: ⇧ ⌃ET

Z ⇧ �±, ⇥⇥̄, charged lepton or ⌃ET

final state rate estimate

begin with ⇤ 2 hard jets 105 Hz
in addition
hard jet 102 Hz

or ⌃ET >⌅ 102 GeV ⌅ 102 Hz
or 1 lepton 102 Hz
or 2 lepton 1 Hz

or 2� = e±+ µ± 10�4 Hz

⇤ 3 jets + ⌃ET

⇤ 2 jets + ⇤ 1 lepton + ⌃ET

• Special kinematical 
features, resonances, 
edges, ...

SM

SM

Resonance

edge

34



Resonance
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FIG. 11: The resonant signal for a Z boson via Z → e+e− at the D0 detector.

2. The transverse mass variable

As another example of a two-body decay, consider W → eν. The invariant mass of the

leptonic system is

m2
eν = (Ee + Eν)

2 − (p⃗eT + p⃗νT )2 − (pez + pνz)
2. (48)

The neutrino cannot be directly observed by the detector and only its transverse momentum

can be inferred by the imbalancing of the observed momenta,

/⃗pT = −
∑

p⃗T (observed), (49)

called missing transverse momentum, identified as /pT = pνT . Missing transverse energy is

similarly defined, and /ET = Eν . The invariant mass variable thus cannot be generally recon-

structed. We would get the correct value of meν if we could evaluate it in a frame in which the

missing neutrino has no longitudinal motion pνz = 0; but this is impractical. Instead, one may

consider to ignore the (unkown) longitudinal motion of the leptonic system (or the W boson)

all together, and define a transverse mass of the system [30]

m2
eνT = (EeT + EνT )2 − (p⃗eT + p⃗νT )2 (50)

≈ 2p⃗eT · p⃗νT ≈ 2EeT /ET (1 − cos φeν),
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which is invariant in any Lorentz frame, and leads to Ee ≈ MZ/2 in the Z-rest frame. Figure

11 shows the peak in the e+e− invariant mass spectrum at MZ , indicating the resonant Z

production observed by the D0 collaboration [29] at the Tevatron collider.

Now let us examine the transverse momentum variable of a daughter particle peT = pe sin θ∗,

where θ∗ is the polar angle in the partonic c.m. frame. For a two-body final state kinematics,

we thus have
dσ̂

dpeT

=
4peT

s
√

1 − 4p2
eT/s

dσ̂

d cos θ∗
. (43)

The integrand is singular at p2
eT = s/4, but it is integrable.

Exercise: Verify this equation for Drell-Yan production of e+e−.

Combining with the Breit-Wigner resonance, we obtain

dσ̂

dm2
ee dp2

eT

∝
ΓZMZ

(m2
ee − M2

Z)2 + Γ2
ZM2

Z

1

m2
ee

√

1 − 4p2
eT /m2

ee

dσ̂

d cos θ∗
. (44)

We see that the mass peak of the resonance leads to an enhanced distribution near peT = MZ/2.

This is called the Jacobian peak. This feature is present for any two-body kinematics with a

fixed subprocess c.m. energy.

Exercise: While the invariant mass distribution dσ/dme+e− is unaffected by

the motion of the produced Z boson, show that the dσ/dpeT distribution for

a moving Z with a momentum p⃗Z is changed with respect to a Z at rest at the

leading order of β⃗Z = p⃗Z/EZ.

It is straightforward to generalize the invariant mass variable to multi-body system. Consider

a slightly more complicated signal of a Higgs decay

H → Z1Z2 → e+e− µ+µ−. (45)

Obviously, besides the two Z resonant decays, the four charged leptons should reconstruct the

mass of the parent Higgs boson

m2
H = (

4
∑

i

pi )2 = 2(M2
Z + pZ1

· pZ2
) (46)

= (Ee+ + Ee− + Eµ+ + Eµ−)2 − (p⃗e+ + p⃗e− + p⃗µ+ + p⃗µ−)2. (47)
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From matrix element: Breit-Wigner

35

pp ! Z0 ! e+e�

ŝ = m2
ee = (pe1 + pe2)

2

Invariant mass (Lorentz inv.)























































New resonance, Z’, search

36

Z ′ → e+e−/µ−µ+: CMS EXO-12-015

Models:
Sequential Standard Model: Z ′

SSM
Grand Unified Theories: Z ′

Ψ

Background Contributions:
Z 0 → µ+µ−, tt̄
other prompt leptons: tW , WW , WZ ,
ZZ and Z 0 → τ+τ−

jets: one jet mis-reconstructed as a lepton

Event Selection:
double leptons triggers
with 2 isolated leptons
e: pT > 35 GeV/c and
|η| < 1.442 & 1.556 < |η| < 2.5
µ: pT > 45 GeV/c and |η| < 2.4

Adrian Perieanu SUSY’12 – BSM – Beijing 16thAugust ’12 7 of 27

Z ′ → e+e−/µ−µ+

unbinned likelihood function

shape analysis of the dilepton mass

Rσ =
pp → Z ′ + X → ℓℓ + X

pp → Z + X → ℓℓ + X
ℓ = e, µ

eliminates uncertainty from integrated luminosity

reduces dependence on experimental acceptance,
trigger and selection efficiencies

Limits:

M(Z ′
SSM) > 2590 GeV/c2 at 95% C.L.

M(Z ′
Ψ) > 2260 GeV/c2 at 95% C.L.

Adrian Perieanu SUSY’12 – BSM – Beijing 16thAugust ’12 8 of 27



Almost a resonance:

• What if we don’t observe all the final state particles. 
For example, consider 

• Cannot form an interesting Lorentz invariant variable. 

• At least can look for something invariant under 
boost along z-direction, e.g., transverse component 

37

pp ! W ! `⌫

P1 →
 ← P2

p1 = x1P1 p2 = x2P2

k1 : charged lepton

k2 : neutrino

k21T =
1

4
ŝ sin2 ✓̂

ˆ✓ in parton c.o.m frame

d

dk21T
=

d

d cos ˆ✓

d cos ˆ✓

dk21T

d cos ˆ✓

dk21T
= �2

ŝ


1� 4k21T

ŝ

��1/2

k1T distribution singular at

mW

2

!recall ŝ = m2
W

Jacobian peak











































































































































































Measuring the W mass
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W’  search

40

W ′ → ℓν with ℓ = e, µ: CMS EXO-12-010

W ′ Models:
right-handed with SM couplings
left-handed (interference)
Kaluza-Klein states
excited W∗ chiral boson

Background Contributions:
W → ℓν, WW , WZ , ZZ
tt̄, tW and Z 0 → ℓ+ℓ−

Event Selection:
e: pT > 90 GeV/c
µ: pT > 45 GeV/c
pTℓ and Emiss

T back-to-back

MT =
q

2 · pℓ
T · Emiss

T · (1 − cos ∆ϕℓ,ν )

Adrian Perieanu SUSY’12 – BSM – Beijing 16thAugust ’12 9 of 27

W ′ → ℓν with ℓ = e, µ

combined 2011 & 2012, e- and µ-channel:
M(W ′

SSM ) > 2.85 TeV/c2 at 95% C.L.

more analyses are shown in back-up slides
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Seeing Higgs
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Complicated New physics 
signals  

Partners:  
New physics states with similar interactions to 
those of  the Standard Model particles, 
such as the superpartners in Supersymmetry. 

42



TeV Supersymmetry (SUSY)

• Supersymmetry. 

• An extension of spacetime symmetry.

• New states:  “Partners” 

• Couplings relate to SM interactions via 
supersymmetry.

• ~ same strength.

gluon, g gluino: g̃

spin spin

1/21

SM (super)partner

... ...

W±, Z gaugino: W̃±, Z̃ 1/21

quark: q squark: q̃ 01/2

Review: S. Martin “A Supersemmtry Primer”, hep-ph/970935643



Production. 
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10 signal events.

1000 signal events

Dominated by the production of colored states.
Similar pattern for other scenarios. Overall rates scaled by spin factors.
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SUSY at colliders

- long decay chain.


- jets, leptons, missing ET ....


- Nice signal, good discovery potential. 

LSP, DM candidate

Lightest superpartner (LSP)
Neutral and stable. 
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Interactions.

- Superpartners have the same gauge quantum 
numbers as their SM counter parts. 


Similar gauge interactions. (a) (b) (c) (d) (e)

(f) (g) (h) (i)

Figure 3.3: Supersymmetric gauge interaction vertices.

eq. (3.3.3). In the MSSM these are exactly the same as the well-known QCD gluon and electroweak
gauge boson vertices of the Standard Model. (We do not show the interactions of ghost fields, which
are necessary only for consistent loop amplitudes.) Figures 3.3c,d,e,f are just the standard interactions
between gauge bosons and fermion and scalar fields that must occur in any gauge theory because of the
form of the covariant derivative; they come from eqs. (3.3.5) and (3.4.2)-(3.4.4) inserted in the kinetic
part of the Lagrangian. Figure 3.3c shows the coupling of a gaugino to a gauge boson; the gaugino line
in a Feynman diagram is traditionally drawn as a solid fermion line superimposed on a wavy line. In
Figure 3.3g we have the coupling of a gaugino to a chiral fermion and a complex scalar [the first term
in the second line of eq. (3.4.9)]. One can think of this as the “supersymmetrization” of Figure 3.3e or
3.3f; any of these three vertices may be obtained from any other (up to a factor of

√
2) by replacing two

of the particles by their supersymmetric partners. There is also an interaction in Figure 3.3h which
is just like Figure 3.3g but with all arrows reversed, corresponding to the complex conjugate term in
the Lagrangian [the second term in the second line in eq. (3.4.9)]. Finally in Figure 3.3i we have a
scalar quartic interaction vertex [the last term in eq. (3.4.12)], which is also determined by the gauge
coupling.

The results of this section can be used as a recipe for constructing the supersymmetric interactions
for any model. In the case of the MSSM, we already know the gauge group, particle content and the
gauge transformation properties, so it only remains to decide on the superpotential. This we will do
in section 6.1. However, first we will revisit the structure of supersymmetric Lagrangians in section 4
using the manifestly supersymmetric formalism of superspace and superfields, and then describe the
general form of soft supersymmetry breaking terms in section 5.

4 Superspace and superfields

4.1 Supercoordinates, general superfields, and superspace differentiation and in-
tegration

Supersymmetry can be given a geometric interpretation using superspace, a manifold obtained by
adding four fermionic coordinates to the usual bosonic spacetime coordinates t, x, y, z. Points in su-
perspace are labeled by coordinates:

xµ, θα, θ†α̇. (4.1.1)

Here θα and θ†α̇ are constant complex anticommuting two-component spinors with dimension [mass]−1/2.
In the superspace formulation, the component fields of a supermultiplet are united into a single su-
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Figure 3.3: Supersymmetric gauge interaction vertices.
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non-Abelian

More details: for example, S. Martin “Supersymmmetry Primer”
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Interactions.

- SUSY⇒ additional couplings 


strength fixed by corresponding gauge 

g̃ q

q̃

(a)

W̃ qL, ℓL, H̃u, H̃d

q̃L, ℓ̃L, Hu, Hd

(b)

B̃ q, ℓ, H̃u, H̃d

q̃, ℓ̃, Hu, Hd

(c)

Figure 6.3: Couplings of the gluino, wino, and bino to MSSM (scalar, fermion) pairs.

interactions of gauge-coupling strength, as we will explore in more detail in sections 9 and 10. The
couplings of the Standard Model gauge bosons (photon, W±, Z0 and gluons) to the MSSM particles are
determined completely by the gauge invariance of the kinetic terms in the Lagrangian. The gauginos
also couple to (squark, quark) and (slepton, lepton) and (Higgs, higgsino) pairs as illustrated in the
general case in Figure 3.3g,h and the first two terms in the second line in eq. (3.4.9). For instance, each
of the squark-quark-gluino couplings is given by

√
2g3(q̃ T aqg̃+ c.c.) where T a = λa/2 (a = 1 . . . 8) are

the matrix generators for SU(3)C . The Feynman diagram for this interaction is shown in Figure 6.3a.
In Figures 6.3b,c we show in a similar way the couplings of (squark, quark), (lepton, slepton) and
(Higgs, higgsino) pairs to the winos and bino, with strengths proportional to the electroweak gauge
couplings g and g′ respectively. For each of these diagrams, there is another with all arrows reversed.
Note that the winos only couple to the left-handed squarks and sleptons, and the (lepton, slepton)
and (Higgs, higgsino) pairs of course do not couple to the gluino. The bino coupling to each (scalar,
fermion) pair is also proportional to the weak hypercharge Y as given in Table 1.1. The interactions
shown in Figure 6.3 provide, for example, for decays q̃ → qg̃ and q̃ → W̃ q′ and q̃ → B̃q when the final
states are kinematically allowed to be on-shell. However, a complication is that the W̃ and B̃ states
are not mass eigenstates, because of splitting and mixing due to electroweak symmetry breaking, as
we will see in section 8.2.

There are also various scalar quartic interactions in the MSSM that are uniquely determined by
gauge invariance and supersymmetry, according to the last term in eq. (3.4.12), as illustrated in Fig-
ure 3.3i. Among them are (Higgs)4 terms proportional to g2 and g′2 in the scalar potential. These are
the direct generalization of the last term in the Standard Model Higgs potential, eq. (1.1), to the case
of the MSSM. We will have occasion to identify them explicitly when we discuss the minimization of
the MSSM Higgs potential in section 8.1.

The dimensionful couplings in the supersymmetric part of the MSSM Lagrangian are all dependent
on µ. Using the general result of eq. (3.2.19), µ provides for higgsino fermion mass terms

− Lhiggsino mass = µ(H̃+
u H̃−

d − H̃0
uH̃

0
d ) + c.c., (6.1.4)

as well as Higgs squared-mass terms in the scalar potential

− Lsupersymmetric Higgs mass = |µ|2(|H0
u|2 + |H+

u |2 + |H0
d |2 + |H−

d |2). (6.1.5)

Since eq. (6.1.5) is non-negative with a minimum at H0
u = H0

d = 0, we cannot understand electroweak
symmetry breaking without including a negative supersymmetry-breaking squared-mass soft term for
the Higgs scalars. An explicit treatment of the Higgs scalar potential will therefore have to wait
until we have introduced the soft terms for the MSSM. However, we can already see a puzzle: we
expect that µ should be roughly of order 102 or 103 GeV, in order to allow a Higgs VEV of order
174 GeV without too much miraculous cancellation between |µ|2 and the negative soft squared-mass
terms that we have not written down yet. But why should |µ|2 be so small compared to, say, M2

P,
and in particular why should it be roughly of the same order as m2

soft? The scalar potential of the
MSSM seems to depend on two types of dimensionful parameters that are conceptually quite distinct,
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couplings of the Standard Model gauge bosons (photon, W±, Z0 and gluons) to the MSSM particles are
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the matrix generators for SU(3)C . The Feynman diagram for this interaction is shown in Figure 6.3a.
In Figures 6.3b,c we show in a similar way the couplings of (squark, quark), (lepton, slepton) and
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couplings g and g′ respectively. For each of these diagrams, there is another with all arrows reversed.
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and (Higgs, higgsino) pairs of course do not couple to the gluino. The bino coupling to each (scalar,
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states are kinematically allowed to be on-shell. However, a complication is that the W̃ and B̃ states
are not mass eigenstates, because of splitting and mixing due to electroweak symmetry breaking, as
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There are also various scalar quartic interactions in the MSSM that are uniquely determined by
gauge invariance and supersymmetry, according to the last term in eq. (3.4.12), as illustrated in Fig-
ure 3.3i. Among them are (Higgs)4 terms proportional to g2 and g′2 in the scalar potential. These are
the direct generalization of the last term in the Standard Model Higgs potential, eq. (1.1), to the case
of the MSSM. We will have occasion to identify them explicitly when we discuss the minimization of
the MSSM Higgs potential in section 8.1.

The dimensionful couplings in the supersymmetric part of the MSSM Lagrangian are all dependent
on µ. Using the general result of eq. (3.2.19), µ provides for higgsino fermion mass terms

− Lhiggsino mass = µ(H̃+
u H̃−

d − H̃0
uH̃

0
d ) + c.c., (6.1.4)

as well as Higgs squared-mass terms in the scalar potential
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u |2 + |H0
d |2 + |H−

d |2). (6.1.5)

Since eq. (6.1.5) is non-negative with a minimum at H0
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d = 0, we cannot understand electroweak
symmetry breaking without including a negative supersymmetry-breaking squared-mass soft term for
the Higgs scalars. An explicit treatment of the Higgs scalar potential will therefore have to wait
until we have introduced the soft terms for the MSSM. However, we can already see a puzzle: we
expect that µ should be roughly of order 102 or 103 GeV, in order to allow a Higgs VEV of order
174 GeV without too much miraculous cancellation between |µ|2 and the negative soft squared-mass
terms that we have not written down yet. But why should |µ|2 be so small compared to, say, M2
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and in particular why should it be roughly of the same order as m2

soft? The scalar potential of the
MSSM seems to depend on two types of dimensionful parameters that are conceptually quite distinct,
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interactions of gauge-coupling strength, as we will explore in more detail in sections 9 and 10. The
couplings of the Standard Model gauge bosons (photon, W±, Z0 and gluons) to the MSSM particles are
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general case in Figure 3.3g,h and the first two terms in the second line in eq. (3.4.9). For instance, each
of the squark-quark-gluino couplings is given by

√
2g3(q̃ T aqg̃+ c.c.) where T a = λa/2 (a = 1 . . . 8) are

the matrix generators for SU(3)C . The Feynman diagram for this interaction is shown in Figure 6.3a.
In Figures 6.3b,c we show in a similar way the couplings of (squark, quark), (lepton, slepton) and
(Higgs, higgsino) pairs to the winos and bino, with strengths proportional to the electroweak gauge
couplings g and g′ respectively. For each of these diagrams, there is another with all arrows reversed.
Note that the winos only couple to the left-handed squarks and sleptons, and the (lepton, slepton)
and (Higgs, higgsino) pairs of course do not couple to the gluino. The bino coupling to each (scalar,
fermion) pair is also proportional to the weak hypercharge Y as given in Table 1.1. The interactions
shown in Figure 6.3 provide, for example, for decays q̃ → qg̃ and q̃ → W̃ q′ and q̃ → B̃q when the final
states are kinematically allowed to be on-shell. However, a complication is that the W̃ and B̃ states
are not mass eigenstates, because of splitting and mixing due to electroweak symmetry breaking, as
we will see in section 8.2.

There are also various scalar quartic interactions in the MSSM that are uniquely determined by
gauge invariance and supersymmetry, according to the last term in eq. (3.4.12), as illustrated in Fig-
ure 3.3i. Among them are (Higgs)4 terms proportional to g2 and g′2 in the scalar potential. These are
the direct generalization of the last term in the Standard Model Higgs potential, eq. (1.1), to the case
of the MSSM. We will have occasion to identify them explicitly when we discuss the minimization of
the MSSM Higgs potential in section 8.1.

The dimensionful couplings in the supersymmetric part of the MSSM Lagrangian are all dependent
on µ. Using the general result of eq. (3.2.19), µ provides for higgsino fermion mass terms

− Lhiggsino mass = µ(H̃+
u H̃−

d − H̃0
uH̃

0
d ) + c.c., (6.1.4)

as well as Higgs squared-mass terms in the scalar potential

− Lsupersymmetric Higgs mass = |µ|2(|H0
u|2 + |H+

u |2 + |H0
d |2 + |H−

d |2). (6.1.5)

Since eq. (6.1.5) is non-negative with a minimum at H0
u = H0

d = 0, we cannot understand electroweak
symmetry breaking without including a negative supersymmetry-breaking squared-mass soft term for
the Higgs scalars. An explicit treatment of the Higgs scalar potential will therefore have to wait
until we have introduced the soft terms for the MSSM. However, we can already see a puzzle: we
expect that µ should be roughly of order 102 or 103 GeV, in order to allow a Higgs VEV of order
174 GeV without too much miraculous cancellation between |µ|2 and the negative soft squared-mass
terms that we have not written down yet. But why should |µ|2 be so small compared to, say, M2

P,
and in particular why should it be roughly of the same order as m2

soft? The scalar potential of the
MSSM seems to depend on two types of dimensionful parameters that are conceptually quite distinct,
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Figure 3.3: Supersymmetric gauge interaction vertices.

eq. (3.3.3). In the MSSM these are exactly the same as the well-known QCD gluon and electroweak
gauge boson vertices of the Standard Model. (We do not show the interactions of ghost fields, which
are necessary only for consistent loop amplitudes.) Figures 3.3c,d,e,f are just the standard interactions
between gauge bosons and fermion and scalar fields that must occur in any gauge theory because of the
form of the covariant derivative; they come from eqs. (3.3.5) and (3.4.2)-(3.4.4) inserted in the kinetic
part of the Lagrangian. Figure 3.3c shows the coupling of a gaugino to a gauge boson; the gaugino line
in a Feynman diagram is traditionally drawn as a solid fermion line superimposed on a wavy line. In
Figure 3.3g we have the coupling of a gaugino to a chiral fermion and a complex scalar [the first term
in the second line of eq. (3.4.9)]. One can think of this as the “supersymmetrization” of Figure 3.3e or
3.3f; any of these three vertices may be obtained from any other (up to a factor of

√
2) by replacing two

of the particles by their supersymmetric partners. There is also an interaction in Figure 3.3h which
is just like Figure 3.3g but with all arrows reversed, corresponding to the complex conjugate term in
the Lagrangian [the second term in the second line in eq. (3.4.9)]. Finally in Figure 3.3i we have a
scalar quartic interaction vertex [the last term in eq. (3.4.12)], which is also determined by the gauge
coupling.

The results of this section can be used as a recipe for constructing the supersymmetric interactions
for any model. In the case of the MSSM, we already know the gauge group, particle content and the
gauge transformation properties, so it only remains to decide on the superpotential. This we will do
in section 6.1. However, first we will revisit the structure of supersymmetric Lagrangians in section 4
using the manifestly supersymmetric formalism of superspace and superfields, and then describe the
general form of soft supersymmetry breaking terms in section 5.

4 Superspace and superfields

4.1 Supercoordinates, general superfields, and superspace differentiation and in-
tegration

Supersymmetry can be given a geometric interpretation using superspace, a manifold obtained by
adding four fermionic coordinates to the usual bosonic spacetime coordinates t, x, y, z. Points in su-
perspace are labeled by coordinates:

xµ, θα, θ†α̇. (4.1.1)

Here θα and θ†α̇ are constant complex anticommuting two-component spinors with dimension [mass]−1/2.
In the superspace formulation, the component fields of a supermultiplet are united into a single su-
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Interactions. 

- SM fermions (such as the top quark) 
receive masses by coupling to the Higgs 
boson.
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Figure 6.1: The top-quark Yukawa coupling (a) and its “supersymmetrizations” (b), (c), all of
strength yt.
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Figure 6.2: Some of the (scalar)4 interactions with strength proportional to y2t .

Since the Yukawa interactions yijk in a general supersymmetric theory must be completely sym-
metric under interchange of i, j, k, we know that yu, yd and ye imply not only Higgs-quark-quark and
Higgs-lepton-lepton couplings as in the Standard Model, but also squark-Higgsino-quark and slepton-
Higgsino-lepton interactions. To illustrate this, Figures 6.1a,b,c show some of the interactions involving
the top-quark Yukawa coupling yt. Figure 6.1a is the Standard Model-like coupling of the top quark
to the neutral complex scalar Higgs boson, which follows from the first term in eq. (6.1.3). For variety,

we have used tL and t†R in place of their synonyms t and t (see the discussion near the end of section
2). In Figure 6.1b, we have the coupling of the left-handed top squark t̃L to the neutral higgsino field
H̃0

u and right-handed top quark, while in Figure 6.1c the right-handed top anti-squark field (known

either as t̃ or t̃∗R depending on taste) couples to H̃0
u and tL. For each of the three interactions, there is

another with H0
u → H+

u and tL → −bL (with tildes where appropriate), corresponding to the second
part of the first term in eq. (6.1.3). All of these interactions are required by supersymmetry to have
the same strength yt. These couplings are dimensionless and can be modified by the introduction of
soft supersymmetry breaking only through finite (and small) radiative corrections, so this equality of
interaction strengths is also a prediction of softly broken supersymmetry. A useful mnemonic is that
each of Figures 6.1a,b,c can be obtained from any of the others by changing two of the particles into
their superpartners.

There are also scalar quartic interactions with strength proportional to y2t , as can be seen from
Figure 3.1c or the last term in eq. (3.2.18). Three of them are shown in Figure 6.2. Using eq. (3.2.18)
and eq. (6.1.3), one can see that there are five more, which can be obtained by replacing t̃L → b̃L
and/or H0

u → H+
u in each vertex. This illustrates the remarkable economy of supersymmetry; there

are many interactions determined by only a single parameter. In a similar way, the existence of all
the other quark and lepton Yukawa couplings in the superpotential eq. (6.1.1) leads not only to Higgs-
quark-quark and Higgs-lepton-lepton Lagrangian terms as in the ordinary Standard Model, but also
to squark-higgsino-quark and slepton-higgsino-lepton terms, and scalar quartic couplings [(squark)4,
(slepton)4, (squark)2(slepton)2, (squark)2(Higgs)2, and (slepton)2(Higgs)2]. If needed, these can all be
obtained in terms of the Yukawa matrices yu, yd, and ye as outlined above.

However, the dimensionless interactions determined by the superpotential are usually not the most
important ones of direct interest for phenomenology. This is because the Yukawa couplings are already
known to be very small, except for those of the third family (top, bottom, tau). Instead, production
and decay processes for superpartners in the MSSM are typically dominated by the supersymmetric
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known to be very small, except for those of the third family (top, bottom, tau). Instead, production
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Examples of production: coloredProduction of colored superpartners

• Squark and gluino production. 
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Examples of production

- Squark pair

48

q̃

q̃∗

q

q′
g̃

q̃

q̃′



Decay of squark and gluinoDecay: gluino and squark (colored)

• Gluino always decays into squark (on or off-shell). 
– Glunino -> squark + Jets

• Squark decay.  
– Jet + 

• To gluino, then go through off-shell squark. 

• To chargino or neutralino. 
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Next stepsChargino and neutralino decay. 

• To W or Z (maybe Higgs.)

• Lepton (suppressed by W/Z-> lepton BR.)
– 1 or 2 leptons.

• Jets (softer, constrained by W and Z mass). 
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Simple rules. 

• Typically, there are many channels through which a 
superpartner can decay.

• 2 body mode (almost) always dominate over 3‐body 
mode.

!A factor 1/100 suppression from phase space. 

• Charge channel often bigger than the neutral 
channels. 

• Higgsino prefers 3rd generation.

• Wino prefers left‐handed. 

• Typically, only one or two modes dominates. 

– Signature easier to understand. 

Exercise: 
Choose a SUSY spectrum, such as one of the so called SNOWMASS Points and Slopes (SPS) 
benchmarks, http://arxiv.org/abs/hep-ph/0202233
Use a spectrum and coupling calculator such as SUSPECT, SoftSUSY, or just PYTHIA...
Understand the output. 53
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Long decay chainsLong decay chains. 

• Putting the pieces together. 

• Many channels, many final states.

2-lepton chain

1-lepton chain

Exercise:  draw diagrams for tri-lepton, same sign di-lepton
54



Typical variables I: counts. 

• Inclusive counts. Useful for signal >> backrgound.

55



Kinematical features: transverse variables. 

• Multiple hard objects. 

• No resonance. 

• Transverse variables made of several energetic 

objects. 

Be careful.

Gianotti and Mangano, 200556
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Another example: αT

q̃

q̃∗

q̄

q

...

...

~p1

~p2

missing particles, total momentum ~p3

mT =
p
(p1T + p2T )2 � (~p1T + ~p2T )2

p1T � p2T

↵T =
p2T
mT

xi =
piTP

i=1,3 piT
, xi  1 and

X

i=1,3

xi = 2

↵T =
1

2

x2p
1� x3

momenta labelled so that

Define: 

Define pT fractions

~p1T + ~p2T + ~p3T = 0

We obtain

↵T can be either <1/2 (more often), or > 1/2

For a nice review, see Michael Peskin, “Razor and Scissors”



Another example: αT

• In comparison, consider QCD di-jet, with one of the 
jet (say p2T ) energy miss measured.
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Figure 2: Use of the scissors variable in a search for dark matter production, from [5]:
(a.) Comparison of physics simulation and data for the distribution of 2-jet events
in the scissors variable ↵T . The expectation for QCD events is shown as a green
histogram. The expectation for W/Z and top events is shown as a blue histogram.
The red and orange histograms are the expectations for two supersymmetry/dark
matter models. The data is shown in black. Notice that hundreds of thousands
of events are observed for ↵T < 0.5, but only a few events survive in the region
↵T > 0.55. (b.) Fraction of jet events that survive into the regions ↵T > 0.51 (red)
and ↵T > 0.55 (black), as measured in data and evaluated from a physics simulation.
The variable HT measures the total energy deposited in the event. The blue stars
check the second result by counting jet events in the W boson production with jets,
using events in which the muon from W decay is observed.

2-jet QCD events. Hundreds of thousands of very energetic 2-jet events are observed
in the data at values of ↵T less than 1

2 . At ↵T > 0.55, only a few events remain, and,
according to the simulation, most of these events arise from the more complex W/Z
and top production processes. Fig. 2(b) shows the measurement of R↵T , the fraction
of 2- and 3-jet events from the total sample that pass the requirements ↵T > 0.51 and
↵T > 0.55. The figure shows that this fraction is a very smooth function of the vari-
able HT that measures the total energy deposition in the detector. By measuring R↵T

for events with low energy deposition, we can confidently extrapolate the value to the
sample of events with large energy deposition, where the events from supersymmetry
and dark matter production are expected to lie. If there is an excess of events in the
region of large energy deposition, we might be able to claim that we have discovered
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Many additional transverse variables: MT2 , Razor, .... 



Kinematical variables: invariant masses

• Most useful: di‐lepton edges and endpoints. 

(Mentioned earlier in neutralino decay). 

– Clean. 

• Invariant mass distribution also carry spin 

information. Probably needs high statistics.

• More complicated invariant masses in longer decay 

chains possibly useful, but feature is less sharp. May 

need high statistics as well. 

For a review: See LW and I. Yavin, 2008

For example, see Miller and Osland. A set of papers.
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Special case: off‐shell Z

• 3‐body. End‐point in di‐lepton invariant  mass.

– Same flavor di‐lepton. 

– Combinatorials can be suppressed with flavor subtraction. Chargino and neutralino decay. 

• To W or Z (maybe Higgs.)

• Lepton (suppressed by W/Z‐> lepton BR.)

– 1 or 2 leptons.

• Jets (softer, constrained by W and Z mass). 
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More leptons if we are luckyLuckier scenario: slepton in the decay chain.

• A lot of leptons. No branching ratio suppression.

• On shell slepton, very distinctive feature. 
– Edge in di-lepton invariant mass.  

• More complicated edges useful, but need high 
statistics. See several papers  by: Miller, Osland.

MÑ2
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Topology: model independent approach

partners:
Same gauge interactions as the 
SM particles
Similar signatures.

http://indico.cern.ch/conferenceOtherViews.py?view=standard&confId=94910
http://www.lhcnewphysics.org/web/Overview.html
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A promising, and complicated, scenario.

• Multiple b, multiple lepton final state. 

• Good early discovery potential. 

• Challenging to interpret: top reconstruction 

t̃, b̃
ũ, d̃, ...

g̃

Ñ

The Dominant channel

A new method of fitting branching ratio to various final states
Acharya, Grajek, Kane, Kuflik, Suruliz, Wang, arXiv:0901.3367
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An example of a challenging 
measurement: spin 

or distinguishing SUSY with others.  
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Spin of new resonances 

67

• Eample spin of fermion.

• In the rest frame of the fermion.

• Define angle 𝜃 of the decay product w.r.t. the 
polarization axis of ψ1 .

• Coupling could be chiral if yL ≠ yR 

pψ2

pφ

θ

sψ1

an observable signal to distinguish SUSY from the Same Spin scenario in the absence of any

leptonic partners. Finally, in section 5, we comment on possible future directions and present

our conclusions.

2. Simple Spin Correlations

In this section we review some basic angular distributions from simple decays. These distri-

butions will serve as building blocks in our understanding of the spin correlations in more

complicated decay chains which we will consider later.

2.1 Scalar decay

A scalar does not pick any special direction in space and so its decay is isotropic. It does not

mean that the existence of scalars spoils any hope for distinguishing them away from phase-

space. The production of bosons (via a Z0 for example) has a different angular distribution

about the beam axis than that of fermions. This discrepancy can be employed in determining

the spin of lepton partners (see for example, [30]). However, in our study we will concentrate

on a single branch in which case it is not possible to distinguish a scalar from phase-space.

2.2 Fermion decay

First, we consider the decay of a fermion ψ1 into another fermion ψ2 and a scalar φ, via an

interaction of the form

yLφψ̄2PLψ1 + yRφψ̄2PRψ1 (2.1)

Depending on the model, this coupling could be either chiral, yL ̸= yR, or non-chiral, yL = yR.

We will see examples of both cases in our study.

If the coupling in Eq. 2.1 is chiral, ψ2 is produced in a chirality eigenstate. If ψ2 is boosted

then it is in a helicity eigenstate, i.e., polarized. However, ψ1 is, in general, not polarized and

therefore the decay is isotropic, even if the coupling (2.1) is chiral and ψ2 is boosted. It is

easy to see how this comes about. If it is a Left handed coupling, yR = 0, then ψ2 is mostly a

right-handed particle, | ↓⟩. From the transformation of a spinor under a rotation by an angle

θ we have that,

| ↑⟩ → cos

(

θ

2

)

| ↑⟩ + sin

(

θ

2

)

| ↓⟩

| ↓⟩ → − sin

(

θ

2

)

| ↑⟩ + cos

(

θ

2

)

| ↓⟩

The angle θ is defined with respect to ψ1 polarization axis. Notice that if ψ1 is left-handed

polarized, | ↑⟩, its decay probability is ∝ sin2
(

θ
2

)

. On the other hand, if it is right-handed

polarized, | ↓⟩, its decay probability ∝ cos2
(

θ
2

)

. These decay distributions are shown in Fig.(1)

as a function of cos (θ). Unfortunately, ψ1 itself is normally not polarized and averaging over

the two process the decay is indeed isotropic.

4

 1 !  2 + �



Fermion spin

• Go to the rest frame. 

• Coupling chiral.

• ψ1 polarized. 
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However, if ψ1 came from the decay of another particle and that vertex was chiral then

the situation is different. In that case ψ1 is polarized and its subsequent decay is governed by

a non-trivial angular distribution as shown in Fig. (1). Whether the decay involves a helicity

flip or not determines the sign of the slope.

-1 -0.5 0.5 1
CosΘ

0.5

1

1.5

2

!M!2

Figure 1: The decay probability for a fermion into a scalar and another fermion of the same helicity
(solid-black) or opposite helicity (dashed-red) as a function of cos θ. θ is defined with respect to the
axis of polarization of the decaying fermion.

Next, we consider the decay of a fermion into another fermion and a gauge-boson via an

interaction of the form

gLψ̄2γ
µPLψ1Aµ + gRψ̄2γ

µPRψ1Aµ (2.2)

As before, we consider the case where ψ2 is boosted. If the interaction is chiral ψ2 is in a

definite helicity state. The fermionic current that couples to Aµ is of the form ψ̄α̇σ
α̇β
µ ψβ .

If the emitted gauge-boson is longitudinally polarized the distributions are the same as the

decay into a fermion and a scalar. If it transversely polarized it is precisely opposite (i.e.

same helicity corresponds to sin2 θ/2 and opposite helicity to cos2 θ/2).

The most important feature of the fermion’s decay is the linear dependence of the decay

probability on cos θ. It is also clear that chiral vertices must be involved in order to observe

spin correlations (unless the fermion is a Majorana particle, a possibility we discuss below).

2.3 Gauge-boson decay

When a gauge-boson decay (2-body), relativity forces the products to be two bosons or two

fermions. As is well known, when the products are two fermions the angular distribution is

given by,

Ptrans(cos θ) =
1

4

(

1 + cos2 θ
)

Plong(cos θ) =
1

2

(

1 − cos2 θ
)

(2.3)

If a gauge boson decays into two scalars via the interaction

gφ∗2
↔

∂ µ φ1A
µ, (2.4)

the angular distribution has the opposite structure,

Ptrans(cos θ) =
1

2
(1 − cos2 θ) Plong(cos θ) = cos2 θ (2.5)

5

An Example
yR =0
black: ψ1 right-handed,  
red: ψ1 left-handed
Linear in cos𝜃

ψ1  not polized, no correlation, no spin information



Spin-1
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where the subscript on P denotes the initial gauge-boson’s polarization. As usual θ is defined

about the polarization axis. The decay of a gauge-boson into two other gauge-bosons has

the same angular distribution as Eq. (2.5). These are shown in Fig.(2). As usual there are

-1 -0.5 0.5 1
cosΘ

0.1

0.2

0.3

0.4

0.5

P!cosΘ"

-1 -0.5 0.5 1
cosΘ

0.2

0.4

0.6

0.8

1

P!cosΘ"

Figure 2: The decay probability for a gauge-boson into two fermions (left) and two bosons (right)
for transverse (solid-black) and longitudinal polarization (dashed-red) as a function of cos θ.

finite mass effects that come into play when the products are not highly boosted. Those tend

to wash out any angular dependence of the amplitude. Generically these contributions scale

as m2/E2. Therefore, as noted before there has to be an appreciable difference between the

mass of the decaying particle and its products so that m2/E2 ! 1/2.

The contrast with the previous case is clear as the dependence of the amplitude on cos θ

is quadratic. It is also important to note that the vertex need not be chiral.

2.4 Higher spin

By noting that a rotation by θ of a state of spin j is given by eiθjσy it is easy to see that the

amplitude for the decay of a particle with spin j is some polynomial of degree 2j,

Pλ(cos θ) = a2j(cos θ)
2j + a2j−1(cos θ)

2j−1 + . . . + a0 (2.6)

The coefficients ai are such that when we sum over all polarizations λ we get,

∑

λ

Pλ(cos θ) = 1 (2.7)

since an unpolarized particle has no preferred direction. In this paper we concentrate on spin

0,1/2, and 1 and will not consider higher spin. Nonetheless, this is an important issue to

address. For example, if the partners of the graviton are indeed detected it would be good to

know whether it is a supersymmetric spin-3/2 object or a Same-Spin spin-2 resonance.

3. Angular correlations in cascade decays

In this section, we present a systematic study of spin correlations in a wide variety of cascade

decay channels. Aside from the matrix element, the kinematics also play a crucial role in the

observability of spin effects. We lay out the conditions for observing spin correlations in each

6

A0
transverse !  1 +  2

A0
longitudinal

!  
1

+  
2

A0
longitudinal

! �
1

+ �
2

A0
transverse ! �1 + �2

|M|2 / cos ✓2

|M|2 / · · ·+ cos ✓2JmotherIn general: 



Example of spin measurement
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Choice of variable

Choice used in the current study

1 and 2 are observable particles, q, ℓ, W±....

We are interested in the spin of X (on-shell).

We choose to use

t12 = (p1 + p2)
2.

In general, can not reconstruct the rest frame of X



Consider the rest frame of X
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In the rest frame of X

t12 ∝ (1 − cos θ)

To see non-trivial dependence on cos θ or t12

1. X must be polarized
• X is a vector, Y and 1 are fermions.

Y and 1 boosted, ϵL of X dominate
• X and 1 are fermions, Y is a scalar.

X−1−Y coupling chiral, 1 boosted.
2. X is a Dirac fermion.

• 2 or Z is a fermion,
X−2−Z must be chiral.
Decay product(fermion) boosted.

3. X is a Majorana fermion.
• X could go to both f and f̄ (e.g. ℓ±, b/b̄)

No chirality requirement
if we can distinguish f and f̄ .

t12 / (1� cos ✓)2

Direction of  Y and 1 can be chosen to define the polarization of X
For X with spin JX

d�

dt12
= a t2JX

12 + b t2JX�1
12 + · · ·

In principle, fitting the degree of this polynomial tells the the spin of X.

In practice, whether the coefficient a, b, ... are non-zero depends on the 
chirality of the coupling between X and 1, 2, Z, Y, and the mass 
differences between them. 

Interpreting the results correctly depending on our understanding the 
spectrum and couplings. 



Example: SUSY vs spin-1 partner
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Decay through charged partners χ̃±, W ′±...

∝ tqℓ + ... ∝ t2qℓ + ...

q̃−q− C̃ chiral
q boosted
C̃− ν̃− ℓ chiral

mq′ >> mW ′

W ′ boosted

Usually there are more leptons in the decay chain.

Near/far lepton has to be separated.



Spin measurements. Supersymmetry?

- No universally applicable method. Different 
strategies will be used in different scenarios.


- More information of the signal, masses and 
underlying processes, is crucial. 

q

ℓ
ℓ

E̸T

E̸T q

q

q̃

g̃

ℓ̃
Ñ

p pSide?

A review: LTW and Yavin, arXiv:0802.2726 
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Lepton colliders

- Fixed c.o.m. 


- Much cleaner environment. 


- Energy not as high. 

74



Searching for WIMP dark matter

DM

DM

SM

Direct detection:

CDMS


CoGeNT

COUPP

CRESST

DAMA

XENON


.....
Collider searches:


LEP

LHC


Tevatron

Indirect detection:

AMS2, PAMELA, Fermi-LAT


.....

This talk.



Discovering dark matter:
- DM candidate embedded in an extended TeV 

new physics scenario


- Could be early discovery.

DM candidate

Lightest superpartner (LSP)
Neutral and stable. 



Narrow parameter space, could still work.
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Figure 4: Current limits on bino/Higgsino DM with ⌦� = ⌦
obs

for tan � = 2 (upper), 20

(lower). Dotted brown lines are contours of ⌦(th)

� /⌦
obs

, and the brown band shows the region

having ⌦(th)

� within ±3� of ⌦
obs

. Regions above (below) the brown band require an enhancement
(dilution) of the DM abundance after freeze-out. Regions currently excluded by XENON100,
IceCube, Fermi, and LEP are shaded. The black dashed line is the SI blind spot, ch�� = 0, and
is close to (far from) the brown band for low (high) tan�.

16

Cheung, Hall, Pinner, Ruderman, 1211.4873

Giudice,  Han, Wang and LTW,  1004.4902

- The  so called “well tempered” scenario. 


- Also, A-funnel, stau/stop/squark co-ann.


- Challenging to see at the LHC. 
Cahill-Rowley, Hewett, Ismail, Peskin, Rizzo, 1305.2419 
Cohen, Wacker, 1305.2914

Arkani-Hamed,  Delgado, Giudice, hep-ph/0601041 



Could be harder make sure.
- For example: the “well tempered” scenario. 

Nearly degenerate NLSP and LSP.

NLSP LSP

soft ℓ...

LSP

N. Arkani-Hamed, A. Delgado, G. Giudice, hep-ph/0601041 

MA = 300 GeV tan� = 10 MA = 300 GeV tan� = 50

MA = 1000 GeV tan� = 10 MA = 1000 GeV tan� = 50

Figure 1: Dark matter relic density in the M1 � µ plane for heavy squarks and sleptons and
MA = 300 GeV (top) and MA = 1000 TeV (bottom), for tan� = 10 (left) and tan� = 50
(right). The thin region between the solid black lines is the region in which the predicted relic
density is in accordance with the experiments [20]. The gray hatched region is excluded by LEP
bounds on neutralino and chargino masses. The green shaded regions are excluded by the latest
CDMS/Xenon100 bounds on the spin independent dark matter-nucleon cross section, when using
the most recent determination of the strange quark form factor fs = 0.020 (dark green) or the most
conservative value for the strange quark form factor fs = 0.118 (light green).

6

S. Gori, P. Sechwaller, C. Wagner, 1103.4138



Probe NP with direct detection

- MWIMP = O(102) GeV. 


- DM of “Typical” scenarios: SUSY 

5
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FIG. 5: Spin-independent elastic WIMP-nucleon cross-section
� as function of WIMP mass m�. The new XENON100 limit
at 90% CL, as derived with the Profile Likelihood method
taking into account all relevant systematic uncertainties, is
shown as the thick (blue) line together with the 1� and 2�
sensitivity of this run (shaded blue band). The limits from
XENON100 (2010) [7] (thin, black), EDELWEISS [6] (dotted,
orange), and CDMS [5] (dashed, orange, recalculated with
vesc = 544 km/s, v0 = 220 km/s) are also shown. Expecta-
tions from CMSSM are indicated at 68% and 95% CL (shaded
gray) [17], as well as the 90% CL areas favored by CoGeNT
(green) [18] and DAMA (light red, without channeling) [19].

and a density of �� = 0.3GeV/cm3. The S1 energy res-
olution, governed by Poisson fluctuations, is taken into
account. Uncertainties in the energy scale as indicated in
Fig. 1 as well as uncertainties in vesc are profiled out and
incorporated into the limit. The resulting 90% confidence
level (CL) limit is shown in Fig. 5 and has a minimum
⇥ = 7.0�10�45 cm2 at aWIMPmass ofm� = 50GeV/c2.
The impact of Le� data below 3 keVnr is negligible at
m� = 10GeV/c2. The sensitivity is the expected limit in
absence of a signal above background and is also shown
in Fig. 5 as 1⇥ and 2⇥ region. Due to the presence of
two events around 30 keVnr, the limit at higher m� is
weaker than expected. This limit is consistent with the
one from the standard analysis, which calculates the limit
based only on events in the WIMP search region with an
acceptance-corrected exposure, weighted with the spec-
trum of a m� = 100GeV/c2 WIMP, of 1471 kg � days.
This result excludes a large fraction of previously unex-

plored WIMP parameter space, and cuts into the region
where supersymmetric WIMP dark matter is accessible
by the LHC [17]. Moreover, the new result challenges
the interpretation of the DAMA [19] and CoGeNT [18]
results as being due to light mass WIMPs.
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taking into account all relevant systematic uncertainties, is
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XENON100 (2010) [7] (thin, black), EDELWEISS [6] (dotted,
orange), and CDMS [5] (dashed, orange, recalculated with
vesc = 544 km/s, v0 = 220 km/s) are also shown. Expecta-
tions from CMSSM are indicated at 68% and 95% CL (shaded
gray) [17], as well as the 90% CL areas favored by CoGeNT
(green) [18] and DAMA (light red, without channeling) [19].
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mWIMP: 

O(1-10) GeV


Much larger σdir 

- Collider searches provide stronger bounds/potential



Collider Signals of dark matter.
- Basic channel: pair production + additional 

radiation.


- Large Standard Model background,  about 10 
times the signal.


- Very challenging. 

p

p

γ, jet

χDM

χDM
jet, or γ+ E̸T
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FIG. 1: Current experimental limits on spin-independent WIMP direct detection from CRESST

[52], CDMS [53], Xenon 10 [54], CoGeNT [13], and Xenon 100 [15], (solid lines as labeled), as well

as the CoGeNT favored region [13] and future reach estimates for SCDMS [55] and Xenon 100

[56], where we have chosen the line using a threshold of 3PE and the conservative extrapolation

of Leff (dashed lines as labeled). Also shown are the current Tevatron exclusion for the operator

D11 (solid magenta line) as well as LHC discovery reaches (dashed lines as labeled) for relevant

operators.

collider bounds. The case of a light mediator with a particular

dark matter + dark matter ↔ SM-neutral mediator ↔ SM + SM

completion structure was considered in [9]. Beyond these particular constructions, many

models have additional light states which UV complete the interactions between the dark

matter and the Standard Model through a

dark matter + SM ↔ SM-charged mediator ↔ dark matter + SM

topology. It would be relatively simple to consider a complete set (as dictated by SM gauge

and Lorentz invariance) of UV completions, and it would be interesting to see how our

bounds are modified in the presence of such new states, and whether new collider signals

12

For small mX, 

collider rates controlled by larger mass scales, i.e., pT cut;

does not depend on mX. 

Collider bounds flat and stronger.

Goodman, Ibe, Rajaraman, Shepherd, Tait, Yu, 1008.1783

monojet



Recent results

]2 [GeV/cχM

-110 1 10 210 310

]
2

-N
u
cl

e
o
n
 C

ro
ss

 S
e
ct

io
n
 [
cm

χ

-4510

-4310

-4110

-3910

-3710

-3510

-3310

-3110
CMS MonoJet

CMS MonoPhoton

CDF 2012

XENON-100 

CoGeNT 2011

CDMSII 2011 

CDMSII 2010

CMS
 = 7 TeVs

-1
L dt = 5.0 fb∫

a) Spin Independent

 [GeV]χWIMP mass m
210 310

 [G
eV

]
*

Su
pp

re
ss

io
n 

sc
al

e 
M

200

400

600

800

1000

1200

, SR3, 90%CLOperator D5
)expσ 2± 1 ±Expected limit (

)theoryσ 1±Observed limit (

Thermal relic

 PreliminaryATLAS

=8 TeVs -1Ldt = 10.5 fb∫

not valid
effective theory

 [GeV]χWIMP mass m
210 310

 [G
eV

]
*

Su
pp

re
ss

io
n 

sc
al

e 
M

200

400

600

800

1000

1200

1400
, SR3, 90%CLOperator D8

)expσ 2± 1 ±Expected limit (
)theoryσ 1±Observed limit (

Thermal relic

 PreliminaryATLAS
=8 TeVs

-1Ldt = 10.5 fb∫
not valid
effective theory

 [GeV]χWIMP mass m
210 310

 [G
eV

]
*

Su
pp

re
ss

io
n 

sc
al

e 
M

100

150

200

250

300

350

400

450

500 , SR3, 90%CL Operator D11
)expσ 2± 1 ±Expected limit (

)theoryσ 1±Observed limit (

Thermal relic

 PreliminaryATLAS

=8 TeVs
-1Ldt = 10.5 fb∫

not valid
effective theory

Figure 9: The 90% CL lower limits on M∗ for different masses of χ. Observed and expected limits includ-
ing all but the theoretical signal uncertainties are shown as dashed black and red solid lines, respectively.
The grey and blue bands around the expected limit are the ±1 and 2σ variation expected from statistical
fluctuations and experimental systematic uncertainties on SM and signal processes. The impact of the
theoretical uncertainties is shown by the thin red dotted ±1σ limit lines around the observed limit. The
M∗ values at which WIMPs of a given mass would result in the required relic abundance are shown as
rising green lines (taken from [22]), assuming annihilation in the early universe proceeded exclusively
via the given operator. The shaded light-grey regions in the bottom right corners indicate where the ef-
fective field theory approach breaks down [22]. The plots are based on the best expected limits, which
correspond to SR3.
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Case study: a spin-1 Z’
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Only couples to SM quarks and DM.
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Connection with direct detection
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Figure 2:

Therefore, we can get

A(Q) ∼ g2(Λ)

Q2 −M2
pole −

g2(Λ)
8π [Q2L(Λ/Q)−M2

poleL(Λ/Mpole)]
. (4)

When Q ≪ Mpole, the above equation can be further simplified to be

A(Q) ∼ g2(Λ)

−M2
pole −

g2(Λ)
8π [−M2

poleL(Λ/Mpole)]
. (5)

Then, we can set Λ = Mpole so that the loop factor is small. Then we can get

A(Q) ∼ −
g2(Mpole)

M2
pole

. (6)

– 3 –
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Di-jet resonance searches.

- Resonance searches.

ATLAS: 1 fb-1 1108.6311


CMS: 1 fb-1 1107.4771


CDF: Phys. Rev. D79 (2009).


- Compositeness.

CMS 36 pb-1: Phys. Rev. Lett.  106 (2011)


Dzero: Phys. Rev. Lett. 103 (2009)

We could, and should, search for the mediator directly!



Combining di-jet with monojet
Assume gZ’ = gD
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Figure 4: Monojet and dijet constraints on direct detection cross sections for gZ� = gD and MD = 5
GeV. The solid, dashed and dotted red curves are for Atlas Monojet constraints with VeryHighPT,
HighPT and LowPT cuts described in Table 2. The green solid curve is the monojet constraint
from CDF. The dashed green and blue curves are constraints from CDF and Atlas dijet resonance
searches. The solid blue curve is LHC 5� reach assuming a centre-of-mass energy of 14 TeV and a
luminosity of 100 fb�1.
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Figure 5: Monojet constraints on direct detection cross sections in the case of small MZ� , assuming
gZ� = gD and MD = 5 GeV.

matter nucleon reduced mass M� = MNM�/(MN + M�). However, this dependence is
rather weak for M� � O(10) GeV since M� � MN . Putting this together, we expect the
limits derived from collider searches are rather insensitive to the dark matter mass M�.
In contrast with the steep weakening of the direct detection bound for light dark matter,
collider searches are particularly powerful in this regime. In order to be quantitative,
we present results assuming gZ� = gD for several values of MZ� . The visible ”kink”-
like feature around 2M� ⇤ MZ� in the curves are due to the transition from 2 ⇥ 2

– 9 –
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Figure 11: Comparing monojet and dijet constraints. The solid, dashed and dotted curves are
for Atlas dijet resonance search, Atlas monojet search with VeryHighPT cut and CDF dijet search,
respectively. The red, green, blue, purple and black are for gD/gZ� = 1, 3, 5, 10, 20, respectively.
The mass of DM is assumed to be 5 GeV.

5. Z ⇥ couples to both quarks and leptons

Z ⇥ can also couple to leptons. In this case, we can write the relevant interactions as

L = gZ�Z ⇥
µ(q̄�µq � 3xl̄�µl) + gDZ ⇥

µ⇥̄�µ⇥ . (5.1)

where we have adopted a B � xL parameterization. In this case, at tree level, the leptonic
coupling is not related to the direct detection of dark matter 1. However, probing the
leptonic coupling of Z ⇥ does provide complementary information.

In this case, compositeness and resonance searches in the dilepton channel provides the
most obvious probe for the Z ⇥. Mono-photon+MET search for production process e+e� ⇥
� +⇥⇥ is also a sensitive probe of this scenario. It has been studied in Ref.[cite]. Using the
approach adopted earlier in this paper, we will study the constraint from combining these
two search channels.

Z ⇥ generically also couples to the SM Higgs. [Langacker Cvetic review] However, the
experimental probes to this type of couplings are generically weaker, and its contribution
to the direct detection cross section is very suppressed. [more?]

bubbles.

5.1 Constraints from dilepton final states

[needs updates with similar plots as the lepto-phobic case]
The coupling between Z ⇥ and the leptons is strongly constrained by dilepton searches

at LEP and Tevatron [68, 69]. At LEP, if MZ� < 209 GeV which is the center of mass
energy of LEPII, the constraint on the coupling is 3xgZ� < 10�2 [70], whereas in the case
of MZ� > 209 GeV, the constraint can be written as

MZ�

3xgZ�
< 6.2 TeV . (5.2)

1Fox.

– 15 –















































t-channel

- For fermionic (scalar) dark matter, the 
mediator could be scalar (fermion).


- FCNC constraints ⇒ 𝝓 or 𝞆 in flavor multiplet. 


Consider the case where dark matter is singlet. 


𝝓 is 3 under SU(3)R  has universal coupling to 
all quarks. (example: squarks with universal 

See Chacko et al for flavored DM. 
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Dark matter with t-channel mediator: a simple step beyond contact interaction
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E↵ective contact operators provide the simplest parameterization for dark matter searches at the
LHC. At the same time, light mediator can change the sensitivity and search strategies in important
ways. Considering simple models of mediators is an important next step for collider searches. In this
paper, we consider the case of a t-channel mediator. Its presence opens up new contributions to the
monojet+ 6 ET searches and can change the reach significantly. We also study the complementarity
between monojet+6 ET and direct pair production of the mediators. There is a large region of
parameter space in which the monojet+ 6 ET channel provides the stronger limit. We combine the
reaches of LHC search and direct detection, and compare it with the requirement from thermal relic
abundance. We find that in the Dirac fermion dark matter case, there is no region in the parameter
space that reconciles the combined constraint of monojet+6 ET search and direct detection with
constraint from not over closing the universe; and in the Majorana fermion dark matter case, the
mass of dark matter must be larger than about 200 GeV. If the relic abundance requirement are not
satisfied within the simple model, discovery of dark matter at the LHC in monojet+ 6 ET and di-jet
+ 6 ET channels predicts additional new physics.

PACS numbers: 95.35.+d,95.30.Cq

I. INTRODUCTION

The identity of dark matter (DM) is one of the central
questions in particle physics and cosmology. Many exper-
imental e↵orts are underway to search for the answer. It
is also one of the main physics opportunities of the LHC.
In recent years, there have been significant progress in
using simple e↵ective field theory to combine the results
of the LHC searches with limits from direct detection ex-
periments [1–17]. There have also been earlier studies for
similar search channels [18–20].
The contact operator approach is based on the sim-

plifying assumption that the particles which mediate the
interaction between DM and the SM particles are heavy,
and can be integrated out. At the same time, with that
LHC probing up to TeV in hard collisions, it is also use-
ful to consider the case in which the mediator is lighter
and within its energy reach. This would inevitably intro-
duce more model dependence. Therefore, it is useful to
consider the simplest extensions first.
One such simple scenario is the so-called “s-channel”,

in which the DM scattering with nucleus is mediated
by an exchange of a mediator particle, as shown in the
left panel of Fig. 1. For light mediator of this type, it
can be produced at the colliders as s-channel resonance,
qq̄ ! � ! ��̄. Hence, the limit from monojet+ 6 E

T

type
searches can be a↵ected significantly. At the same time,
direct searches for resonance �, such as in the di-jet chan-
nel, provides complementary information. This has been
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FIG. 1: Diagrams for direct detection mediated by s-channel
(left panel) and t-channel (mediators).

demonstrated in the simple case in which the mediator �
is a massive spin-1 particle [21–23].

In this paper, we consider the other simple possibility
in which the DM nucleus interaction is mediated by go-
ing through a intermediate state. We call this t-channel
mediator. We focus on the cases in which DM is ei-
ther a Dirac or a Majorana fermion. In this case, light
mediator plays an important (and di↵erent) role in the
collider searches. In particular, it can contribute to the
monojet+ 6 E

T

searches by being directly produced and
decaying into q+�, as shown in (d1-d4) of Fig. 2. At the
same time, the exchange of t-channel DM particle could
significantly enhance the mediator pair production pro-
cesses, shown in Fig 3. As we will show in this paper,
these two channels are complementary.
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Collider searches

- 2 contributions for monojet. 


- pp→𝝓𝝓, “squark” searches.


- for large m𝝓, mono-jet could be important. 
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di-jet

- pp→𝝓𝝓, “squark” searches.


- for large m𝝓, mono-jet could be important. 

2

q �
�

q
�̄

qg
(a1)

g q̄
q

�
�

�̄q̄
(a2)

q g
q

�
�

�̄q̄
(b1)

q �
�

q
�̄

gq̄
(b2)

q �
�

�
g

�̄q̄
(c)

q �

�
�

�̄

q
g

(d1)

g
q̄

�

��

�

�̄q̄
(d2)

q
q

�
q �̄

�g
(d3)

g �̄

��
q

�

q̄
q̄

(d4)

FIG. 2: Diagrams for monojet+6 ET processes at the LHC in
the t-channel mediator scenario. (a1,a2) Initial state gluon-
split processes; (b1,b2) initial state gluon-emission processes;
(c) gluon-emission from the t�channel mediator; (d1-d4) me-
diator direct production processes.
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FIG. 3: Diagrams for mediator pair production processes
at the LHC, which leads to di-jet + 6 ET signal. (a1-a4) Dia-
grams from purely QCD interaction; (b) Diagram from the t-
channel DM exchanging; (c1-c4) Diagrams from the t-channel
Majorana dark matter exchanging.

This paper is organized as follows. In Section II, we de-
scribe the scenario studied in this paper. In Section III,
we discuss leading direct detection channels. In Sec-
tion IV, we present the LHC reach. In Section V, we
combine the reaches of LHC and direct detection, and
compare with the requirement from thermal relic abun-
dance. Section VI contains our conclusion.

II. FRAMEWORK

In the t-channel mediator scenario, we consider inter-
actions of the form

L
�

= �
q

�̄�⇤q + h.c. , (1)

where q, � and � are the quark field, DM field and the
mediator, respectively. For fermionic (scalar) dark mat-
ter, the mediator � would be a scalar (fermion). The
mediator � is also necessarily colored.

In general, Eq. (1) may induce flavor changing neutral
current which are strongly constrained by flavor exper-
iments. However, these constraints can be avoided by
imposing the minimal flavor violation (MFV) structure
to the Yukawa couplings [24]. In the quark sector, with-
out turning on the Yukawa couplings, the SM Lagrangian
contains a U(3)

Q

⇥U(3)
u

⇥U(3)
d

flavor symmetry. Now,
for simplicity, let’s first assume that � is a singlet of the
flavor group. Then, to make L

�

invariant, the simplest
choice is to make � to be the 3-representation of one
of the three U(3) flavor groups. Therefore, in general,
Eq. (1) can be written as

L
�

= �
Q

�̄P
L

Q�⇤
Q

+ �
u

�̄P
R

u�⇤
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Qd
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Y
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P
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⇤

+
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Q̄HY
u

�
u

P
R

�

⇤
+

�
(2)
Qd

Q̄H̃Y
d

�
d

P
R

�

⇤
+h.c. , (2)

where H is the Higgs field and H̃ = i�2H
⇤, Y

u

and Y
d

are the two Yukawa couplings. For the monojet+ 6 E
T

processes, the parton level processes are shown in Fig. 2,
where we can see that the at least one quark or anti-quark
initial state is needed. Therefore, all the terms propor-
tional to Y

u

or Y
d

are in general suppressed by the small
masses of the quarks in first two generations. Therefore,
in the case that � is a SU(2) singlet, to study the generic
feature of monojet+ 6 E

T

constraint on the “t-channel”
completion of DM models, we can neglect the terms pro-
portional to the Yukawa couplings. Furthermore, the sig-
natures in collider or direct detection experiments are not
sensitive to the chirality of the quarks unless �

Q,u,d

are
tuned to have some special relations. Therefore, in this
work, in the case that � is a SM singlet, we will only keep
the �

u

and �
d

terms and assume �
u

= �
d

⌘ �. To sim-
plify our presentation, we also assume that the �

u

and
�
d

are degenerate and M
�u = M

�d ⌘ M
�

. Then, the
Lagrangian can be simplified as

L
�

= ��̄
L

q
R

�⇤ + h.c. . (3)

For simplicity, we will focus on the case in which only
right-handed quarks are coupled. For the coupling with
left handed quarks, minimally, either the mediator or the
DM needs to be in a SU(2)

L

doublet. There could be
additional signals if DM is part of a larger multiplet.
However, we will limit ourselves to the simpler case of
singlet DM for this paper.

We consider the case in which the all the quark flavors
are coupled. For light mediator, this immediately raises
the concern of violating stringent flavor constraints. The
best way to satisfy such constraints is probably to intro-
duce either the DM or the mediator (or both) as part of
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diator direct production processes.

g

g

g
�

��

(a1)

g

g

�

�

��

(a2)

g

g

�

��

(a3)

q

q̄

g
�

��

(a4)

q

q̄

�

�

��

(b)

q

q

�

�

�

(c1)

q

q

�

�

�

(c2)

q̄

q̄

�

��

��

(c3)

q̄

q̄

�

��

��

(c4)

FIG. 3: Diagrams for mediator pair production processes
at the LHC, which leads to di-jet + 6 ET signal. (a1-a4) Dia-
grams from purely QCD interaction; (b) Diagram from the t-
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Majorana dark matter exchanging.

This paper is organized as follows. In Section II, we de-
scribe the scenario studied in this paper. In Section III,
we discuss leading direct detection channels. In Sec-
tion IV, we present the LHC reach. In Section V, we
combine the reaches of LHC and direct detection, and
compare with the requirement from thermal relic abun-
dance. Section VI contains our conclusion.
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actions of the form
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where q, � and � are the quark field, DM field and the
mediator, respectively. For fermionic (scalar) dark mat-
ter, the mediator � would be a scalar (fermion). The
mediator � is also necessarily colored.

In general, Eq. (1) may induce flavor changing neutral
current which are strongly constrained by flavor exper-
iments. However, these constraints can be avoided by
imposing the minimal flavor violation (MFV) structure
to the Yukawa couplings [24]. In the quark sector, with-
out turning on the Yukawa couplings, the SM Lagrangian
contains a U(3)
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are in general suppressed by the small
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ity from CMS collaboration [34] 1. To use their limit,
we generate signal events using MadGraph5/MadEvent
[31]. We use CTEQ6L1 parton distribution function
(PDF) [32] with 5 flavor quarks in initial state. The par-
ton level events are showered using PYTHIA6.4 [36] and
the detector simulation is done using PGS4 with anti-
k
T

jet algorithm with a distance parameter of 0.5. We
require the signal events passing the cuts as following:

• Only one central jet which satisfies p
T

> 110 GeV,
|⌘| < 2.4.

• At most two jets which satisfy p
T

> 30 GeV, |⌘| <
4.5.

• No isolated electron whose p
T

> 10 GeV, |⌘| < 1.44
or 1.56 < |⌘| < 2.5.

• No isolated muon whose p
T

> 10 GeV, |⌘| < 2.1.

• 6 E
T

> 120 GeV.

• For events with a second jet, ��
j1j2 < 2.5.

Events which pass those cuts are separated in seven sig-
nal regions according to the 6 E

T

in the event; 6 E
T

>
200, 300, 350, 400, 450, 500, 550 GeV. The observed upper
limit is 4695, 2035, 882, 434, 157, 135 and 131 events for
each region [34]. In this work, the 6 E

T

> 450 GeV chan-
nel is used since it gives the most stringent constraint.
The leading order parton level Feynman diagrams are

shown in Fig. 2, where for the qq̄ ! g��(�̄) process, a
gluon can be emitted from both the initial quarks as well
as the intermediate �. In the small M

�

region where the
mediator can be produced on shell, the qg ! q��(�̄)
process shown in Fig. 2(d1-d4) becomes a two-body pro-
cess. Apart from the enhancement from the phase space,
this process also benefits from larger parton distribution
function of the gluon compared to the anti-quark in the
qq̄ ! g��(�̄) process. Therefore, this process dominates
if � can be produced on shell. However, in the larger M

�

region where � cannot be produced on shell, the scat-
tering matrix element contributed from (c) and (d1,d2)
is suppressed by M�2

�

, which is therefore subdominant.
We note that diagrams (d3) and (d4) give the dominant
contribution even in the heavy mediator case, especially
a large jet p

T

cut is added. This is easy to understand.
The jet which comes from the initial state radiation has
a collinear singularity and tends to follow the initial state
parton moving direction, while the jet coming from the
e↵ective operator does not. The cross section from the
dimension 8 operator does depend on the jet p

T

cut due
to the phase space integral. But such a polynomial de-
pendence drops much slower than the double logarithm
dependence in initial state radiation process from QCD

1
ATLAS collaboration also publish their result in this chan-

nel with 8 TeV pp collision, with lower luminosity which is

10fb

�1
[35]

when the p
T,cut increases. Thus, the validity of using a

contact operator depends not only on whether the medi-
ator is light to be produced at the LHC, but also on the
jet p

T

cut. Considering the e↵ect from the PDF, in the
heavy mediator case, the most important contribution
will come from the diagrams (d3) and the contribution
from (c) could be negligible generally.
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FIG. 4: The constraints to the t-channel mediator model from
both monojet+ 6 ET and di-jet+ 6 ET searches at the 8 TeV LHC
with 19.5 fb�1 integral luminosity. Both mono-jet and di-jet
constraints are shown.

In the region that � can be produced, the momentum
of the jet produced by the decay of � is about (M2

�

�
M2

�

)/2M
�

in the rest frame of �. Therefore, in the case
that M

�

⌧ M
�

, the p
T

distribution of the jet is flat
around M

�

/2. Therefore, the limit benefits from a large
p
T

cut of the jet, or equivalently a large 6 E
T

cut. We
find 6 E

T

> 500 GeV gives the most stringent constraint
on this model.


