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Abstract:

Quantum entropy of a black hole is a quantum generalization of the celebrated Bekenstein-

Hawking area formula. For supersymmetric black holes in string theory, quantum entropy can

be placed in a broader context of quantum holography and defined in terms of a supergravity

path integral in the near horizon spacetime. Quantum gravity corrections to the Bekenstein-

Hawking formula in the bulk correspond to finite N corrections in the boundary.

In these lectures I describe examples where both the bulk and boundary partition functions are

computable exactly including all perturbative and nonperturbative corrections. Supersymmet-

ric localization proves to be a valuable tool in these nonperturbative explorations of quantum

gravity. Surprisingly, the supergravity path integral in the bulk evaluates to an integer in agree-

ment with the boundary. This ‘integrality from the bulk’ provides highly nontrivial evidence

for quantum holography and suggests intriguing connections with number theory and topology.

An outline of lectures in ‘Prospects in Theoretical Physics 2018’ at Princeton.

Keywords: black holes, superstrings, holography.

http://jhep.sissa.it/stdsearch


Contents

1. Lecture I 1

1.1 Quantum Entropy and AdS2/CFT1 Holography 2

1.2 Counting Functions for BPS Black Holes 2

1.3 Hardy-Ramanujan-Rademacher Expansion 3

1.4 Localization in Supergravity 4

1.5 Localizing submanifold and the Bessel Function 4

2. Lecture II 5

2.1 Nonperturbative Corrections and Orbifolds 5

2.2 Chern-Simons and Kloosterman 5

2.3 BRST Quantization in Gravity 5

2.4 Computation of Determinants 6

2.5 Assessment and Future Directions 6

For a review of quantum black holes in string theory see [1, 2]; for more details of counting

of black hole degeneracies see [3]; for a review of modular forms and the relevant number theory

in connection with black hole counting see [4]; for a review of localization methods in quantum

field theory see [5, 6, 7]. Relevant references for the main topics are described in the text below.

1. Lecture I

In the first lecture I will motivate the study of quantum entropy of black holes and then define it

using AdS2/CFT1 holography. I will describe the counting of microscopic degeneracies of a class

of black holes and aspects of analytic number theory that facilitate the comparison between

the boundary and the bulk. Finally, I will review localization techniques in supersymmetric

field theory and explain how they can be applied to the supergravity path integral to evaluate

quantum entropy.

– 1 –



1.1 Quantum Entropy and AdS2/CFT1 Holography

For supersymmetric black holes, the near horizon spacetime contains an AdS2 factor. Using the

framework of AdS2/CFT1 holography one can define the exponential of the quantum entropy

of a black hole with charge vector Γ by a formal path integral W (Γ) of massless supergravity

fields [8, 9] in the bulk AdS2. The action for the path integral is determined by the effective

Wilsonian action obtained by integrating out the massive string fields. This definition is a

generalization of the Bekenstein-Hawking-Wald entropy of a black hole in that it includes

the nonlocal contributions from quantum loops of massless particles in addition to the local

contributions from integrating out massive string states.

The path integral W (Γ) in the bulk defined above is dual to the quantity d(Γ) in the

boundary which corresponds to the number of microstates of the black hole. This follows

from the fact that the near horizon limit corresponds to the low energy limit in the boundary.

The microstates of the supersymmetric black hole are separated from the excited states by a

mass gap. Thus, the Hilbert space of the boundary theory is finite-dimensional and consists

of the microstates of the black hole. Moreover, for a CFT1, conformal invariance implies that

the Hamiltonian is zero and hence the partition function d(Γ) is simply the dimension of the

Hilbert subspace corresponding to the number of black hole microstates.

In some situations the degeneracy d(Γ) depends only on a single duality invariant combi-

nation of charges1 which we denote by the integer ∆.

1.2 Counting Functions for BPS Black Holes

The quantum states that correspond to supersymmetric black holes have a representation as

bound states of branes at weak coupling. Using techniques from brane dynamics it has been

possible to compute the indexed degeneracies of these bound states, and in a number of examples

they are given by the Fourier coefficients of modular forms [4].

As a simple example, consider the half-BPS states of N = 4 supersymmetric theory in four

dimensions. The indexed partition function for these states is given by the partition function

of 24 left-moving bosons of the heterotic string world-sheet [10, 11]:

Z(τ) =
1

q

∞∏
n=1

1

(1− qn)24
(q := e2πiτ ) . (1.1)

This function is a modular form of weight −12:

Z(
aτ + b

cτ + d
) = (cτ + d)−12Z(τ) ∀

(
a b

c d

)
∈ SL(2,Z) , (1.2)

and admits a Fourier expansion

Z(τ) =
∞∑

N=−1

c(N)qN = q−1 + 24 + . . . . (1.3)

1In general, it is necessary to specify additional arithmetic duality invariants which are more subtle to classify.

One can choose charges for which these duality invariants are trivial.
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The degeneracy of half-BPS states is given by d(∆) = c(∆) with ∆ is a duality invariant

combination of the charges. In number theory, the partition function above is well-known in

the context of the problem of partitions of integers. One can identify

c(N) = p24(N + 1) (N ≥ 0) . (1.4)

where p24(I) is the number of colored partitions of a positive integer I using integers of 24

different colors.

Similarly the counting function for one-eighth BPS black holes in N = 8 is given by a weak

Jacobi form [12] with a slightly more complicated Fourier expansion.

1.3 Hardy-Ramanujan-Rademacher Expansion

There is a beautiful result in ‘analytic number theory’ due to Hardy, Ramanujan, and Rademacher

which allows one to express Fourier coefficients of a modular form as a convergent expansion

in terms of complex analytic functions. A derivation can be found, for example, in [13, 14].

The main ideas can be explained concretely in the example above. The modular properties

of Z(τ) and the fact that it has negative modular weight imply that c(N) admits the Hardy-

Ramanujan-Rademacher expansion for N ≥ 0:

c(N) =
∞∑
c=1

(
2π

c

)14

Kl(N,−1, c) I13

(
4π
√
N

c

)
, (1.5)

where

Iρ(z) :=
1

2πi

∫ ε+i∞

ε−i∞

dt

tρ+1
exp[t+

z2

4t
] (1.6)

is the modified Bessel function of index ρ, and

Kl(n,m, c) :=
∑

d∈Z/cZ
da=1mod(c)

e2πi(n
d
c
+ma

c ). (1.7)

is the Kloosterman sum defined for integers n,m, c.

For large z, the leading Bessel function with c = 1 has the asymptotics:

Iν(z) ∼ ez

zν+
1
2

(1 +
a1
z

+
a2
z2
. . .) (1.8)

where ai are constants determined by ν. The leading exponential corresponds to the well-

known Cardy formula in conformal field theory and can be identified with the exponential of

the Bekenstein-Hawking-Wald entropy. The subleading Bessel functions with c > 1 are expo-

nentially suppressed in comparison. For the Fourier coefficients of the weak Jacobi forms of in-

terest later, there is a similar but more complicated generalized Hardy-Ramanujan-Rademacher

expansion [14, 15].

Such an expansion is particularly well-suited for comparing the integer d(∆) with the path

integral W (∆) which a priori is a complex analytic object. Our goal in the remaining lecture

will be to see how the supergravity path integral for W (∆) can reproduce these intricate details

of the Hardy-Ramanujan-Rademacher expansion.
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1.4 Localization in Supergravity

Loalization is a powerful tool for evaluating a complicated supersymmetric path integral by ‘lo-

calizing ’ it to a submanifold in field space [16, 17, 18, 19]. The heuristic idea behind localization

follows from the observation that the Berezin integral over a fermionic variable θ vanishes:∫
dθ = 0 . (1.9)

If an integrand of an integral is invariant under a superchargeQ, then the integral along the orbit

of the supercharge in field space parametrized by a fermionic coordinate θ should vanish by the

identity above. If Q does not act freely, then this argument works everywhere except near the

fixed points of Q. The path integral then receives contributions only from the localizing manifold

which is the submanifold left fixed by the supercharge Q. In many cases the localizing manifold

is finite-dimensional. The path integral then reduces to an ordinary integral. This method

has been used successfully over the years to perform a number of nontrivial computations in

quantum field theory, for example in [20, 21].

One of the goals of these lectures is to explain how localization methods could be extended

to supergravity path integrals. There are a number of new conceptual and technical issues that

arise when the metric is dynamical. There has been considerable progress in evaluating the path

integral for W (∆) for a class of supersymmetric black holes using localization techniques [22,

23, 24] guided by the Hardy-Ramanujan-Rademacher expansion of the corresponding d(∆).

Developing these methods further would be a way to learn about nonperturbative aspects of

quantum gravity that would otherwise be inaccessible.

1.5 Localizing submanifold and the Bessel Function

For a large class of models in N = 2 supergravity, it has been possible to find the localizing

solutions explicitly [22, 25]. The dimension of the localizing submanifold is finite and equals

the number of vector multiplets. This result is universal in that it follows purely from the

off-shell supersymmetry transformations and is independent of the specific form of the physical

action and the compactification [22, 25]. The path integral thus reduces to a finite dimensional

integral with the integrand determined by one-loop determinants around the saddle and the

physical action evaluated on the localizing manifold.

The physical action in general is rather complicated and includes all higher derivative terms

coming from integrating out massive string fields. Using the supersymmetry of near horizon

geometry one can argue that the nonchiral terms which involve integration over the entire

superspace evaluate to zero [26, 27]. Thus, only the chiral terms coming from integration over

half of the superspace contribute. Such terms in the action are summarized in terms of a single

complex function of the vector multiplet scalars called the prepotential [28, 29]. The localized

integral can then be expressed in terms of the prepotential and has a particularly simple form

reminiscent of the OSV conjecture [30, 31, 31, 32, 33].
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In the examples that we discuss in these lectures, the prepotential is known exactly including

all higher-derivative corrections. Moreover, the finite dimensional integral also simplifies and

yields precisely the integral representation of the Bessel function!

2. Lecture II

In the second lecture I will describe the nonperturbative contributions to the quantum entropy.

It is meaningful to include these highly subleading corrections because the evaluation of the

path integral around the leading localizing saddle point is one-loop exact. I will then give an

assessment of the current status and discuss future directions in the explorations of quantum

holography.

2.1 Nonperturbative Corrections and Orbifolds

Besides the localizing saddle discussed above, there are additional saddle points which are

obtained by the ones above by smooth Zc orbifolds of AdS2 × S1 (where S1 is the M-theory

circle) labeled by a positive integer c [14, 34, 35, 36, 37]. The analysis is identical to the above

except that the physical action evaluated on the orbiolded saddles is 1/c times the action of

the unorbifolded saddle. Consequently, the orbifolded saddle points give the subleading Bessel

functions in the expansion (1.5) with the argument reduced by a the factor 1/c.

2.2 Chern-Simons and Kloosterman

The Kloosterman sums multiplying the Bessel functions for c > 1 in (1.5) are highly subleading.

However, they are conceptually quite important because their precise form is essential for the

integrality of d(∆). How can a path integral reproduce these subtle number theoretic details?

It turns out that the supergravity action includes Chern-Simons terms for various gauge

fields as well as the higher derivative gravitational Chern-Simons terms. In addition, the def-

inition of the quantum entropy path integral includes boundary Wilson lines. The localizing

solutions described above follow from solving local differential equations and are insensitive to

the topology. There are additional saddle points coming from flat connections of the gauge

fields which are sensitive to the topology of AdS2 × S1 orbifolds. The Chern-Simons action

and the boundary terms evaluated on these flat connections lead to charge-dependent topo-

logical phases which combine nicely to yield the Kloosterman sums. For more recent work see

[38, 39, 40]. Quantum holography thus implies an interesting connection between the number

theory of Fourier coefficients of modular forms in the boundary and the topological information

encapsulated by the Chern-Simons-Witten theory in the bulk [41, 42].

2.3 BRST Quantization in Gravity

An important conceptual difference between localization in theories with local supersymmetry

compared to theories with rigid supersymmetry is that the localizing supersymmetry is a gauge

symmetry. Moreover, if the metric is dynamical it is not clear what one means by Killing

symmetries required to set up the localization computation.
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This issue has been addressed recently [43]. One can set up background field BRST quan-

tization for theories with supergravity gauge symmetry on spaces with asymptotic boundaries

like AdS2. The nilpotent BRST charge QBRST acts both on the background and the quantum

fields as well as background and quantum ghosts. The background fields and in particular the

metric can be restricted to be invariant under residual Killing symmetries inherited from the

boundary. Then the background ghost must also be restricted accordingly and play the role

of parameters of the background geometry. Requiring the background ghosts to be invariant

allows one to deform QBRST into the supercharge Q which can be then used for localization.

2.4 Computation of Determinants

To complete the localization computation, it is necessary to evaluate the one-loop determinants

of various fields around the localizing saddle point. Since one is interested only in ratios of

fermionic and bosonic determinants, one can use Atiyah-Bott index theory to evaluate them [44,

45, 46] following the work of Pestun [21] in gauge theories. Computation of these determinants

is essential for reproducing the correct index of the Bessel functions.

2.5 Assessment and Future Directions

Various perturbative and nonpertubative terms in the computation of W (∆) add up to repro-

duce the Hardy-Ramanujan-Rademacher expansion of d(∆). The nonperturbative corrections

are crucial for obtaining integrality in agreement with the quantum degeneracies. They reveal

an intriguing connection between topology, number theory, and quantum gravity.

It seems likely that in the near future the localization in supergravity could be developed

further to address a number of nonperturbative questions in quantum gravity in much the

same way localization in quantum field theory has been used successfully to learn about the

nonperturbative structure of gauge theories. I will discuss some of the technical and conceptual

open questions. Apart from various technical advances that are now beginning to be developed

systematically one can foresee a number of interesting applications.

1. Localization in the bulk of AdS4/CFT3 holography :

The partition function of the boundary ABJM CFT3 has been computed and yields an

Airy function at large N . In this context, the Airy function plays a role analogous to the

Bessel function encountered in AdS2. It has been possible to find the localizing solutions

of the corresponding gauged supergravity in the bulk [47]. The resulting finite dimen-

sional integral has the right form to yield the integral representation of Airy function.

The computation of one-loop determinants is more complicated. It would be interesting

to systematically compute these determinants and possibly compare even the finite N

corrections.

2. Black holes in AdS4 and AdS5:

These black holes also have an AdS2 factor but are qualitatively different from black holes

in flat space in some ways and have only half as much supersymmetry. Nevertheless, it
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seems possible in principle to apply localization methods to these black holes as well. It

would be interesting to see if localization can yield concrete results in agreement with the

boundary computations [48, 49].

References

[1] A. Dabholkar and S. Nampuri, Quantum black holes, Lect. Notes Phys. 851 (2012) 165–232,

[1208.4814].

[2] T. Mohaupt, Black hole entropy, special geometry and strings, Fortsch. Phys. 49 (2001) 3–161,

[hep-th/0007195].

[3] I. Mandal and A. Sen, Black Hole Microstate Counting and its Macroscopic Counterpart, Nucl.

Phys. Proc. Suppl. 216 (2011) 147–168, [1008.3801]. [Class. Quant. Grav.27,214003(2010)].

[4] A. Dabholkar, S. Murthy, and D. Zagier, Quantum Black Holes, Wall Crossing, and Mock

Modular Forms, 1208.4074.

[5] R. J. Szabo, Equivariant localization of path integrals, hep-th/9608068.

[6] S. Cremonesi, An Introduction to Localisation and Supersymmetry in Curved Space, PoS

Modave2013 (2013) 002.

[7] V. Pestun and M. Zabzine, Introduction to localization in quantum field theory, J. Phys. A50

(2017), no. 44 443001, [1608.02953].

[8] A. Sen, Quantum Entropy Function from AdS(2)/CFT(1) Correspondence, 0809.3304.

[9] A. Sen, Entropy Function and AdS(2)/CFT(1) Correspondence, JHEP 11 (2008) 075,

[0805.0095].

[10] A. Dabholkar and J. A. Harvey, Nonrenormalization of the superstring tension, Phys. Rev. Lett.

63 (1989) 478.

[11] A. Dabholkar, G. W. Gibbons, J. A. Harvey, and F. Ruiz Ruiz, SUPERSTRINGS AND

SOLITONS, Nucl. Phys. B340 (1990) 33–55.

[12] J. M. Maldacena, G. W. Moore, and A. Strominger, Counting BPS black holes in toroidal Type

II string theory, hep-th/9903163.

[13] H. Rademacher, Lectures on Elementary Number Theory. Robert E. Krieger Publishing Co.,

1964.

[14] R. Dijkgraaf, J. M. Maldacena, G. W. Moore, and E. P. Verlinde, A Black hole Farey tail,

hep-th/0005003.

[15] J. Manschot and G. W. Moore, A Modern Farey Tail, Commun.Num.Theor.Phys. 4 (2010)

103–159, [0712.0573].

– 7 –

http://xxx.lanl.gov/abs/1208.4814
http://xxx.lanl.gov/abs/hep-th/0007195
http://xxx.lanl.gov/abs/1008.3801
http://xxx.lanl.gov/abs/1208.4074
http://xxx.lanl.gov/abs/hep-th/9608068
http://xxx.lanl.gov/abs/1608.02953
http://xxx.lanl.gov/abs/0809.3304
http://xxx.lanl.gov/abs/0805.0095
http://xxx.lanl.gov/abs/hep-th/9903163
http://xxx.lanl.gov/abs/hep-th/0005003
http://xxx.lanl.gov/abs/0712.0573


[16] J. J. Duistermaat and G. J. Heckman, On the Variation in the cohomology of the symplectic

form of the reduced phase space, Invent. Math. 69 (1982) 259–268.
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