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Hurdles for String Theory

* We don’t have a super-LHC to probe the theory
directly at Planck scale.

 We don’t even know which phase of the theory may
correspond to the real world. Analogy with water.

How can we be sure that string theory is the right path
to quantum gravity in the absence of direct
experiments?

A useful strategy is to focus on universal features that
must hold in all phases of the theory.

A bit like 19th century physicists who could glean
information about quantum theory of matter
(identical particles, specific heat of molecules)
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Quantum Black Holes
One of the most important clues about quantum gravity is
the entropy of a black hole:
What is the exact quantum generalization of

the celebrated Bekenstein-Hawking formula?

A 1

S:Z—|—cllog(A)—|—CQZ...+e_A+...

 How to define it ? How to compute it?

* What ensemble?

* Subleading corrections depend sensitively on the phase:
An IR window into the UV.
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Exact Quantum Entropy

Any black hole in any phase (= compactification) of
the theory should be interpretable as an ensemble
of quantum states including finite size quantum
gravity corrections.

* Universal and extremely stringent constraint

* Finite size corrections connect to a broader problem
of Quantum Holography at finite N.

Is Quantum Gravity emergent or dual to CFT?

Localization in supergravity provides novel tools to
deal with nonperturbative quantum gravity effects.
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Quantum Entropy and Holography

 Near horizon of supersymmetric BPS black holes in
4d has an AdS, x S* factor

2

d
ds? =12 | (2 = 1)d6? + — — +dy? + sin’ ydg?
I/' —

Fl=—ieldrAndf+ P'sinydyAdgp, X!

 One can apply usual rules of holographic
correspondence keeping in mind some of the
important peculiarities of AdS,
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Attractor Mechanism

* Inthe classical theory, the near horizon values of
the radius of AdS, the electric fields, and values of
various of scalar fields are determined entirely in
terms of the charges of the black hole by the
attractor mechanism:

I7(Q, P), e/(Q,P),  X{Q,P)
Ferrara Kallosh Strominger (96)

* Inthe quantum theory, we will hold these values
fixed only at the boundary of AdS and allow for
guantum fluctuations in the bulk of AdS.
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AdS,/CFT, Holography

« Bulk AdS, is Poincare disk. Put a cutoff at r=r,

« Boundary CFT, is a finite dimensional Hilbert space
of dimension (0. P) and zero Hamiltonian H=0.

ZerrQs P) = Tre2) = d(Q, P)
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Holographic Renormalization

* For the gauge field action we need a boundary term
to make the variational problem well defined.
It’s equivalent to introducing a Wilson line.

* Divergences from infinite volume of AdS
can be removed by boundary counterterms.

 The renormalized action (including Wilson line) is

l
Sren = Sbuik T Sbdry — EQIJAI
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Quantum Entropy

Exponential of quantum entropy is given by Sen (09)
i I
W(Qa P) ‘= <€Xp _EQI A >ren

e Path integral over all string fields with an insertion
of a Wilson line and with appropriate boundary
conditions and renormalization.

* Reduces to Bekenstein-Hawking-Wald for large (Q, P)
* Quantum holography requires

W(Q, P) = d(Q, P)
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Black Hole (Q, P) Brane (Q, P)
Quantum Entropy Counting of States
AdS, CFT,
Quantum Geometry Hilbert Space

A quantum generalization of
Bekenstein-Hawking Boltzmann
Can we compute both sides?
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Are You Crazy?

 Attempting exact quantum calculations especially
in bulk string field theory sounds foolhardy.

Strategy

* Integrate out massive string fields, use the
Wilsonian local effective action for massless
supergravity fields keeping all higher order terms.
Reduces the problem to supergravity with an
arbitrary local action. Still seems very difficult.

°* Be brave. Leave the secure domain of QFT and classical
strings behind. Venture into the treacherous terrain of
quantum gravity inhabited by fearsome dragons.
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Defining W(Q, P) AdS/CFT

Counting d(Q, P) D-branes, Duality
Degeneracy Index, Modularity

Path integral Localization

Sugra Localization Off-Shell Sugra
Sugra Action Nonrenormalization
Kloosterman phases Chern-Simons terms
Wall-crossing Mock Jacobi Forms



Choice of Ensemble

The gauge field behaves as

A§~—ielr+,ul; F,=—ie!

r

A natural choice is to hold the growing mode fixed.
Thus hold the electric field (and hence the charge)
fixed and let the chemical potential fluctuate.

Contrast this with the higher dimensional case.

Corresponds to microcanonical ensemble.
Sen (09, 10)
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Degeneracy = Index

The near horizon AdS, has SU(1, 1) symmetry.

With four supersymmetries, the closure of algebra
implies SU(1, 1/2) supergroup as symmetry.

* Hence, horizon must have SU(2) symmetry.
Consistent with the fact that supersymmetric black
holes in 4d are spherically symmetric.

* Microcanonical ensemble impliesJ=0.

All horizon degrees of freedom are bosonic!
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Electric States in N=4 theory

Heterotic on 7° Electric states with charge vector Q
Duality invariant Q°/2=A

] — 1 .
Z _ — I I = 2mit
o g (1 —g")* =)

— Z Cn)g" =g ' +24 + ...

d(A) = C(A)

Dabholkar Harvey (89)
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Modular Symmetry

* A holomorphic function F'(7) on the upper half
complex plane is a modular form of weight k, if it
transforms as

F( *Z) = (et + d)*F(r)

CcT +

fora, b, ¢, d, k integers and ad-bc =1

C

The matrices (“ 2) form the group SL(2, Z)

under matrix multiplication. Highly Symmetric.

Our Z(7) is a modular form of weight -12.
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Hardy Ramanujan Rademacher

Fourier coefficients of modular forms admit a
beautiful exact, convergent expansion in terms of
complex analytic functions and phases:

00 14
cny =Yy <%> KIN, — 1,0) ], (4”2@)

c=1

where the modified Bessel function is defined by

i ( ) 1 I€+iw dt [t . ZZ]
= cX —
P 27l P 4t

+1
€—100 P
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Kloosterman Sum

Kl(n,m,c) := Z ezm'(ng i m%)

de ZlcZ
da = 1 mod(c)

are the number theoretic phases in the formula
earlier for (n, m, c) all integers. Satisfies nontrivial
‘Selberg identities’” important for duality invariance.

Kl(np,m,c) = Kl(n,mp, c)
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Dyonic States in N=8 theory

Type Il on T° Dyons with charge vector (Q, P)
Duality invariant A =Q°P*—(Q- Py’

© (1 =g 21_ ry,—1\2 .
Z(T,Z)=H( q'y)y(1—q'y™) (y = 27

(1—-g")*

- 2 c(n, l)qnyl . c(n,l) = C(4n — l2)

n=—1

d(A) = (=) C(A)

Maldacena Moore Strominger (99) Shih Strominger Yin; Pioline(05)
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Jacobi forms

A Jacobi form of weight k and index m
q”k,m(Ta Z)

‘modular’ with weight k

‘elliptic’ in z with index m

) _ e—Zﬂim(/127+2/1Z)

P(t, 2+ AT+ U (1, 2)

(V' 4ue’z)

Our Z(r,z) is a Jacobi form of weight 2 index 1.
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Elliptic and modular properties again imply a bit more
involved Hardy-Ramanujan-Rademacher expansion:

> . A
C(A) =N Y e PLyp (=) Ko(A)
c=1

Exact degeneracies are known also for dyonic states in
N=4 in terms of Fourier coefficients of Siegel modular
forms and exhibit an intricate structure of wall-
crossings in the moduli space. They connect to the
mathematics of Mock modular forms introduced by
Ramanujan a century ago. More general N=2
degeneracies relate to Donaldson-Thomas invariants.
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Generalized Kloosterman Sum K_(A)

Z 271'7,—(A/4) M— (fYC d)ul 6271'2—( 1/4)

—c<d<0;

(d,e)=1 r=A mod 2

c—1
M_1(7)W _C Z Z 6627’—;::[d(l/—|—1)2—2(1/—|—1)(2rn—|—e(,u—|—1))—|—a(2rn—|—e(,u—|—1))2]
e=+ n=0

Intricate number theoretic phases, highly subleading in
large area expansion, but essential for integrality.
Quantum holography requires that the bulk must
reproduce these nonperturbative phases. And it does!
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Power of Quantum Holography (AdS, /CFT,)

The path integral W(4)in the near horizon AdS, can
be defined as a generalization of Wald entropy.

Includes nonlocal effects from massless loops.
Quantum Holography implies two things:
1. W(A)=d(A) (nontrivial prediction for a path integral)
Path integral must be an integer!

2. d(A) = W(A) (nontrivial prediction for an index)
Index must be positive! (index = degeneracy.)
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&4 Positivity
A 4 7 8 11 12 15
C(A) | —12 39 —56 152 —208 513

Note that ('(A) are alternating in sign so that
d(A) = (—=1)2TLC(A) is strictly positive.
Surprising for a number theorist or a field theorist

because Fourier coefficients of modular forms or
the index in a QFT don’t have to be positive.

Sen (10) Dabholkar Gomes Murthy Sen (12)
A prediction from IR quantum gravity for black holes

which is borne out by the UV. Can we compute W(A) ?
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Harmonic Oscillator of Quantum Holography

The HRR expansion is ideally suited for a systematic
exploration of quantum corrections to BH entropy.

1 €‘|"iOO dS 22 A
17/2( z) = 274 /G_Z.OO 9/2 exp(s + 43] , (2= Z)

Nexp[z—éllogz—l—f—l—...
2

The c=1 Bessel function sums all perturbative (in 1/z)
corrections to entropy. The c>1 are non-perturbative

Can we compute all terms from the bulk to prove’
guantum holography for this harmonic oscillator?
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Localization of Path Integrals

We are interested in a path integral of the form

7 = J dy e>ren
M

with a supersymmetric measure and action.

Localization techniques make it possible to evaluate
such integrals. We have learnt a great deal about
the noperturbative structure of QFT which was
otherwise inaccessible without localization.

Duistermaat-Heckmann(82)..Witten (88) Nekrasov (02) Pestun (04) ...

Can we localize supergravity path integrals?
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Localization

Consider a supermanifold _#/ with an integration
measure du. Let O be an odd (fermionic) vector
field on this manifold that satisfies:

1. O’ = H for a compact bosonic vector field H .

2. div,(Q) =0 i.e.the measure is invariant under Q.

Note that Q is nilpotent on H-invariant configurations

Allows one to study Equivariant Cohomology’

Field space is an (infinite-dimensional) supermanifold
Qis a supersymmetry, H is a Killing field.
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Deformation Invariance
* Consider a deformation of the original integral

Z(2) = J du €S0V
M

where V is an H-invariant fermionic function

H(V) = Q*V) = 0;
* One can then prove easily that

d
_Z(/’t) — [ d//l Q(VeSren_/le) — 0
dJ P
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Saddle-point Evaluation is Exact.

1. Find the critical manifold /%Q of the QV action.

2. Evaluate the action on this critical manifold to
obtain the leading classical contribution.

3. Compute the one-loop contribution given by the
determinants Z;.; of the quadratic fluctuation
operators of the QV action. Then,

Z(0) = Z(c0) = j dug 5" 7, (M )
Mg
The final answer is independent of the QV action.
Make a clever choice of the QV action.
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Treating A~ ! as % we can now evaluate the path
integral using semiclassical’ methods near saddle

points of the QV action.

The path integral localizes onto the critical manifold
/%Q of the QV action which is nothing but the space

of Q-invariant configurations.

In many situations the critical manifold /%Q is finite
dimensional. Enormous simplification reducing a path

integral to an ordinary integral.
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Challenges in Supergravity

* In Euclidean gravity the conformal factor has a
wrong sign kinetic term.

* Since metric is dynamical what does it mean to
have a background with a symmetry?

* At a more fundamental level, since all symmetries
such as Q and H are gauge symmetries, how can
we even get started with localization?

Unlike in QFT, the action has higher derivative terms
and is nonrenormalizable.
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Strategy

e Use background field BRST quantization:
field = background field + quantum field.

 Gauge parameters that don’t vanish at infinity
generate the Killing symmetries of the
background. Use these symmetries to localize.

* Use off-shell superconformal supergravity.

* Nonrenormalization theorem: nonchiral D-terms
don’t contribute. Huge simplification.

de Wit Katmadas Zalk (12), Murthy Reys (13)

* Asingle prepotential F specifies the chiral terms.

ATISH DABHOLKAR QUANTUM BLACK HOLES PiTP 2018 33



Recap for Lecture Il

Type Il on T° gives N=8 supergravity in 4d.
Massless bosons: metric + 28 vector fields + scalars

Consider BPS dyonic states with charge vector (Q, P).
U-duality invariant A = Q*P*—(Q - P)’

At weak coupling, point like states in 4d
with degeneracy d(A) which can be computed
using D-brane techniques.

* At strong coupling, these states collapse to form a
a black hole in 4d with area A(A)
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Degeneracy

The degeneracy is given in terms of Fourier
coefficients of an (indexed) partition function of

4 free bosons and 4 free fermions of an effective
2d CFT (worldvolume of a D1D5 string)

S (1=g" (1 —q"y™h
/(7,2) =
(T Zoz U (1 . qr)4
= 2 c(n,Dg"y' c(n,l) = C(4n — I?)

n=-—1

(y P — eZJZiZ)

d(A) = (- DAHC(A)
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Quantum Entropy

* Near horizon geometry of the corresponding black
hole is AdS, x S°

* We defined the quantum entropy w(A) as a path
integral of N=8 supergravity fields.

A(A)] = exp[m\/A] ~d(A), A>1

W(A) ~ exp| 1

Bekenstein-Hawking = Cardy

Can we go beyond this leading semiclassical result
and compute all quantum corrections?
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W(A) =d(A)?
To attempt such a comparison it’s useful to use

Hardy-Ramanujan-Rademacher expansion

Exact generalization of Cardy formula

©9)

d(A) = ) ¢™PLy(m/ MK (D)

c=1

The c=1 Bessel function sums all perturbative

corrections to entropy. The c>1 are non-perturbative

7 C
I,,(z) ~explz —2logz+—+ -]
Z
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Computing W (A)

* The structure of the microscopic answer suggests
that 1w (A) should have an expansion

W(A) =S W.(A)

*  Wewill find that TW.(A) arises froman Z,
orbifold saddle point of the path integral.

e The higher c are exponentially subleading. Unless
one can evaluate each of them exactly it is not
particularly meaningful to add them.

Localization enables us to do this.
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Beauty of Off-Shell Supergravity

1.  Supersymmetry transformations are written
down once and for all (much like coordinate
transformations) independent of the action.

— Algebra closes without using equations of motion.
— Essential for using SUSY inside a path integral.
2. It nicely separates the problem into two parts.

— Find the offshell localizing solutions once and for
all independent of the physical action.

— Evaluate the renormalized action on the localizing
manifold for any given compactification.
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Off Shell Multiplets of N=2 Sugra

e Vector Multiplet

1%

X' = (XLALYLIQ) . 1=0..n

* Weyl Multiplet

_ a ,.,ab i a [ ij [ A1
W = (e//pwlu ) /,pb/,p MaA//p %//lj’ TabaDll/j/,p)(>

i = 1,2 isthe SU(2) doublet index.
(a,u) =0,1,2,3 arethetangent and spacetime indices

de Wit Holten Lauwers Van Proeyen (80, 81, 85)
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Supersymmetry and Prepotential
* The supersymmetry transformations look like

6Q =210, X" e, + Y&/ + 6" F, ¢,
* The chiral couplings of vector multiplets to gravity
including arbitrary higher-derivative terms are
completely specifying by a single complex function
of vector multiplet scalars and Weyl multiplet
auxiliary field called the prepotential.

FOAXL, A2A) = 2F(X!, A) = Z FOX AS
g=0
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Choiceof Qand V

 For our problem we choose a specific Killing spinor
of the near horizon geometry &(x) such that

Q’=(L-J):=H
5H¢p) = Sy(9)

e Choose

V=2 (0¥.¥)
* The deformation action has a bosonic part

QV~Z<Q8 » 0. %)

ATISH DABHOLKAR QUANTUM BLACK HOLES PiTP 2018
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Off-shell Localizing Solutions

« One finds off-shell localizing instantons in AdS, for

supergravity coupled to n, vector multiplets with
scalars X' and auxiliary fields v/, =v! =V

1 1 il ZCI 1
X'=xI+—, Yvi==2, (cleR;U=0,1,..n)
r r

These solutions are universal in that they are
independent of the physical action and follow
entirely from the off-shell susy transformations.

Valid for any physical action.

Dabholkar Gomes Murthy (11), Gupta Murthy (12)
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Supergravity Action

Sme 1L
. I T v | 1

= (Hi(XTF - B X)) (=5 R)
+  [iVFveX!

1 1 —a L rpid
+ EZFIJ<FabI - EXITab 51])(F - ZXJTCL?) 5’53)

Lir (T~ L XIT,,,, e T
- g r(F ~ 1 abij €7 )Ty €ij

1 Iy-gij ij
_ §ZFIJY Y — 3—2F(Tabij5‘7)2
+ §iFXC — giFgg(&?Zk&?leijBkl —2F  F )

1 o~ B ]_ _ ii ]. iy 21
+ §'LF bF,ZI(FabI - ZXITQ% Eij) — ZZB'L”F“ Yy 4 h'C'}
— WXTF - F XY (VY - va !Mw!2+D“<I>’ Da®%) .
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Renormalized Action

The renormalized action for prepotential F simplifies:

Sren(¢7 Q7p) — _WQI¢I =+ F(¢7p)

F(¢,p) = —2mi [F(qblgip-’) _F(¢I —22'2?[)]

p'=el+ '

1 . « .
§(¢I +ip’) is the off-shell value of X! at the origin

of the Poincaré disk.
Dabholkar Gomes Murthy (11, 13)
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Final Answer

nst

W,(0, P) = J[dqb] 0N IR 7 () 7

Z, () = exp [—K(gb +iP)(n, — ny + 23/12)]

e X .=—iX'F, - X'F))

A finite dimensional integral determined entirely in

terms of the prepotential (+ possibly point instantons).
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Final integral

The prepotential for the truncated theory is

1 X .
F(X)=-5%5 > CapX'X (ny =17)
a,b=2
(dropping the extra gravitini multiplets of N=8)

The path integral reduces to the Bessel integral

ds | 2 A
39/2€Xp[ | 43]

Wi(A) = N

Wi(A) = f?/z(ﬂ\/x)
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Degeneracy, Quantum Entropy, Wald Entropy

A | C(A) | Wi(A) | exp(mtvVA)
3 3 7.972 230.765
4 -12 12.201 5395.492
I 39 33.936 4071.93
8 | -56 55.721 7228.35
11 152 152.041 22506.
12 | -208 | 208.455 D3292.
Is5 | o213 | 512.998 192401

ATISH DABHOLKAR

QUANTUM BLACK HOLES

PiTP 2018
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Orbifold Contributions

* Including the M-theory circle, there is a family of
geometries M. 4that are asymptotically AdSs x S*

ds* = (r* — =)db* + o +R?(d —i( —1)d9+§d92
AN c? 7“2—6% YoRY T ¢ c

* Freely acting 7. orbifolds of BTZ black hole.

Related to the sSL(2,7) familyin AdSs

Maldacena Strominger (98) Sen (09) Pioline Murthy (09)
Dijkgraaf Maldacena Moore Verlinde (00) Dabholkar Gomes Murthy (14)

Localization justifies keeping these subleading saddles.
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Subleading Bessel Functions

 Contributions from these smooth orbifolds explain
the Bessel functions for all ¢ with correct argument
because for each orbifold the localized solutions
are the same but the renormalized action is
reduced by a factor of ¢

. What about the Kloosterman sums?

How can a SUGRA path integral possibly reproduce
this intricate number theoretic structure ?
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Generalized Kloosterman Sum K_(A)

Z 271'7, “(A/4) M— (f}/cd)l/l 6271'1 (—1/4)

—c<d<0;

(d,e)=1 r=A mod 2

c—1
M_1(7)W _C Z Z 6627’—;::[d(l/—|—1)2—2(1/—|—1)(2rn—|—e(,u—|—1))—|—a(2rn—|—e(,u—|—1))2]
e=+ n=0

Number theoretic phases essential for integrality
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Chern-Simons-Witten Theory

* Our localization analysis so far ignored the topology.

* The Chern-Simons terms in the bulk and the
boundary terms are sensitive to the global
properties of M, 4

 Additional saddles specified by holonomies of flat
connections. Various phases from CS terms
assemble nontrivially into the Kloosterman sum.

* Closely related to knot invariants of Lens space L, 4
using the surgery formula.
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Kloosterman and Chern-Simons

I(A) = / Tr (A AdA + 2A3>
Mc,d 3

In our problem we have three relevant groups

U™+t SU©2)L SU(2)g

/ \

Z 27T”L—(A/4) M (fYC d)z/l 62777,—( 1/4)

—c<d<0;
(d,c)=1 Dabholkar Murthy Gomes (14)
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Dehn Twisting

The geometries M .4 are topologically a solid 2-
torus and are related to M o by Dehn-filling.

Relabeling of cycles of the boundary 2-torus:

(gn):(i Z)(g;) for (i Z)ESL(Q,Z)

C; is contractible and C5 is noncontractible in M, g

C. is contractible and C» is noncontractible in Mec.d
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Boundary Conditions and Holonomies

* The cycle 5 is the M-circle and (; is the boundary
of AdSs for the reference geometry

* This implies the boundary condition M g

7{ Al = fixed , ]{ Al = not fixed
CQ C'1

and a boundary term

Ib(A) o / TI'AlAQdZCL‘
T2
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Contribution from SU(2)g

3 3
7{ A= 2772'70— ]{ A = 2mis
C1 2 Co 2

3 3
7{ A = 2mio ]{ A =2mif -
C, 2 C, 2

Chern-Simons contribution is completely determined by the
holonomies. For abelian the bulk contribution is zero for flat
connections and only boundary contributes. For nonabelian

I,[AR] = 27%~6 I[AR] = 21%af
Kirk Klassen (90)

ATISH DABHOLKAR QUANTUM BLACK HOLES PiTP 2018 56



Supersymmetric Z. orbifold JR =
vy=-1/c, 6§d=0, a=-1, [=—-a/c
(using o =cy+dJ, B=ay+0bd)
The total contribution to renormalized action is
QﬂikR a

Sren: kr =1
4 c f

ATISH DABHOLKAR QUANTUM BLACK HOLES PiTP 2018
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Multiplier System from SU (2)1

There is an explicit representation of the Multiplier
matrices that is suitable for our purposes.

c—1
M_l('Y)uu =C Z Z ¢ oore [A+1)? =2(v+1) (2rnte(ut1)) +a(2rnte(ut1))?]
e=+ n=0

Unlike SU(2) g the holonomies of SU(2)r, are not
constrained by supersymmetry and have to be
summed over which gives precisely this matrix.

(Assuming usual shift of k going to k +2 )

ATISH DABHOLKAR QUANTUM BLACK HOLES PiTP 2018 58



Knot Theory and Kloosterman

 This computation is closely related to knot
invariants of Lens space L., usingthe surgery
formula of Witten. Witten (89) Jeffrey (92)

 Thisis not an accident. Lens space is obtained by
taking two solid tori and gluing them by Dehn-
twisting the boundary of one of them. But Dehn-
twisted solid torus is our M. 4

* Intriguing relation between topology and number
theory for an appropriate CS theory.
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Remarkably AdS path integral reproduces all details.

A path integral (a complex analytic continuous object)

yields an integer (a number theoretic discrete object).

W(A) = integer!

An /IR Window into the UV

* It counts with precision nonperturbative states
with masses much higher than the string scale.

 If we did not know the spectrum of branes a priori
we could in principle deduce it. e.g. in N=6 models!
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Summary

Exact quantum entropy: For a class of black holes
one can compute all perturbative and

nonperturbative corrections to the Bekenstein-
Hawking area formula.

Localization in supergravity: A novel and powerful

tool to analyze quantum effects in gravity even at a
nonperturbative level.

Quantum Holography: In these examples

holography appears to hold at the quantum level
including finite N corrections.
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Quantum Gravity Dual or Emergent?

(1) AdS quantum gravity is exactly dual to CFT.

M theory has its own rules of computations
(with an as-yet-unknown nonperturbative formulation)
AdS/CFT is a special corner of this duality

(2) AdS quantum gravity is emergent from CFT.

Any reasonable’ CFT gives a nonperturbative
definition of quantum gravity in AdS. How come?

Our computations seem to argue in favor of (1)
Not just UV-complete but UV-rigid
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All integers d(A) define a valid CFT,

Only a sparse set among them has a dual AdS,

Path integral W(A) can be computed independently.

W(A) =d(A) requires precise details of M-theory

(such as Chern-Simons terms and topological string)

Can we incorporate these quantum aspects of
holography into Bulk Reconstruction’?
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Future Directions

« Localization in AdS, Dabholkar Drukker Gomes (14)

The ABJM boundary partition function gives an Airy
function analogous to the Bessel function. Localizing
solutions give an integral very close to the Airy integral

* Black Holes in AdS, Benini Hristov Zaffaroni (15, 16)
For black holes with AdS, horizons in AdS, the
Bekenstein Hawking entropy agrees with the boundary

Can we do better? Develop localization methods to
compute the measure in gauged supergravity.
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e Localization in AdS 3

Can we reproduce modular forms directly instead of
their Fourier coefficients from localization in the bulk.
Closer to Ooguri-Strominger-Vafa and Denef-Moore

* Topological Holography?

Can the equivariant localization of the bulk path
integral be matched with the boundary more directly
to correspond to the elliptic genus?

* Duality Invariance Gomes (17)

Nontrivial Seleberg identities must hold for the
Kloosterman sums for general charge configurations

ATISH DABHOLKAR QUANTUM BLACK HOLES PiTP 2018 65



Open Questions

* We have obtained a general answer for N=2
supergravity. We used N=2 truncation of N=8. It
would be better if this computation can be
performed without this truncation.

* Inour N=8 example there are gravitini multiplets
that we do not know how to treat. From onshell
results one expects that their contribution will give
the correct index for the Bessel function.

* Gauge fixing from Conformal Supergravity to
Poincaré supergravity needs to done more
carefully.
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Localization in Gauge Theories

 Applying localization to gauge theory presents a
number of new subtleties even with rigid
supersymmetry. Supersymmetry algebra closes
only up to gauge transformations:

6;=6y+6,, Q°#H
* The gauge fixed action has no gauge symmetry. So

we are left with 9 bosonic and 8 fermionic fields.
— Include ghosts, antighosts, Lagrange multipliers

— Define Q=0+ Qp
such that 0°=0*+{0,05) =H
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Localization in Supergravity

The problem is exacerbated in supergravity:

 The ‘structure constants’ of supergravity gauge
algebra are field-dependent: soft algebra

* The metricis dynamical.

Earlier we dealt with them heuristically. One can set
up a Background Field BRST formalism to deal with
both these problems in a systematic way.

de Wit Murthy Reys (18)
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Soft Algebras

Gauge transformation of fields

5p' = R(¢), &
Closure of Algebra

5(8) 8(&) — 8(E) B(E) = 8(&), &E¥ =[ & &
Field-dependent structure functions satisfying
' i o1 i
R/ de pl — 5 aﬂyR Y
Jacobi Identity
%) € ' € _
Jrap"Tns + R1a0ifpy =0
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BRST Quantization

Elevate gauge parameters to ghosts &% — Ac?

Field (¢) Ghost (c), Antighost (b), Lagrange Multiplier (B)
g’ = R()'a Ac” Ssb, = AB,
ogc? = %fﬁy“ c’ Ac? ogB, = 0
Gauge fixing Lagrangian
L = B, F(¢)" — by R(¢) s c” 0,;F(h)”
Nilpotent BRST Symmetry
55 =0 Sp(L+ZL°F)=0
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Background Field Split

e Split all fields (including the metric) into a
background field and a quantum fluctuation:

* Background gauge symmetry

5¢Z — R(%)ia éa

00" = R(p+¢)'a & — R(¢)'al”
* Quantum gauge symmetry

~

5" =0 00" = R(p+ )0 "
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Background Fields and BRST

The combined gauge algebra closes.

(6,0] =0+6 [0.,6] =6 [6.6] =6
Elevate both the background and the quantum
gauge parameters to ghosts:

Y 5 A& Y 5 A
Nilpotent BRST charge Q7 =0
Appropriate BRST-invariant gauge-fixing terms.
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BRST on Ghosts
: 0p 7 =5 f(@)ag ¢*NEP
ope’ = % f(@)as’ (c+¢)*A(c+ 5)5
_ 1 (gg)aﬁv L

2
° éBba =AB(1’ 5B —O

 Deform the BRST transformation by requiring that
background fields and background ghosts are
invariant:

A

0~ 0, O*=H
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Deformation of BRST

e Choose background fields corresponding to the
near horizon attractor geometry.

« Deform the BRST symmetry by demanding that
both the background and background ghosts are
invariant under the symmetry.

A

0;~>0Q Q’=H

Background ghosts play the role of parameters of
the background symmetries. Note that ghosts for
fermionic supergravity symmetries are bosonic.
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Equivariant Cohomology

' bo" =0 6 =0

~ ~

06" =R(p+ §)'a A(c™ + %)
f(@b) O‘((Hrfi)ﬁf\(@”ré)'y

£ = A f(9)sy" N Al] ¢
Equivariant Cohomology instead of BRST Cohomology
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One-loop Determinants  Prestun (07)

 We still need to compute one-loop determinants
for the quadratic fluctuations of the QV action.

* Group the fields such as (X, X,) so that the
linearized action of Q on these fields is simple:

X X!
o(3)=(x)

X(/) o HQXQ o XO
o(5)= (i )= (%)

(cohomological variables, blue bosonic, red fermionic)

VE (Xy) = D (X))

ATISH DABHOLKAR QUANTUM BLACK HOLES PiTP 2018 76



Computation of Determinants

¢ QV(2) (XB ’ KB XB) + (XF ’ KF XF)

l\)|>—‘

[ detKg 7 B _detCOke,,(D)H_
det = [detKB] B

*  These ratios of determinants can be computed

explicitly or by using Atiyah-Bott index formula.

detKer(D) H

ZLjer = €XP [—K(¢ + iP)(n, — 1y, + 23/24)]

* Here Kis the Kihler potential. e ™ = [?(¢ + iP) is
the size of AdS2 on the localizing manifold.

Jeon, Murthy, Reys (15, 18); David Gupta, Gava, Narain (17,18)

ATISH DABHOLKAR QUANTUM BLACK HOLES PiTP 2018 77



Atiyah-Bott Index Theorem

We are interested in ~ d€lcoperiny
detg,,p) H

A —a(n)

n

n

Read off the multiplicities from an index ind(D)(?) :

Trierpy(€ ™) = Treprerpy(e ™) = Z a(n)e ="

n
¢ ~'RT has a group action on spacetime (x) and
field space (¢'). Operator D is "transversally elliptic’

x—i=eMx), @) - ) =)

(str (y))
det(1 — 0%/0x)

ind(D)(1) = )

X=X
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Determinant for a Hypermultiplet

In  AdS, x S* fixed points of our H = L -J are center
of AdS, disk and North Pole and South Pole in §-

o |
det(l — g) — (1 — q)z(l — q_1)2 g = e—ll‘/l

str(y) =4 —2qg —2q~' = —2q(1 — g~')*

ind(D) = — 4g(1 — g) = )’ 4nq"

—1in 1
Z,, = H(T)‘*n - ()™

ATISH DABHOLKAR QUANTUM BLACK HOLES PiTP 2018 79



