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There will be four topics today:

(1) The Reeh-Schlieder theorem (1961), which is the basic result
showing that entanglement is unavoidable in quantum field theory.

(2) Relative entropy in quantum field theory.

(3) General proof of monotonicity of relative entropy (or strong
subadditivity) in quantum mechanics.

(4) Density matrix for Rindler space.



We consider a quantum field theory in Minkowski spacetime M,
with a Hilbert space H that contains a vacuum state Ω. There is
an algebra of local operators, whose action can produce “all” states
(or at least all states in a superselection sector) from the vacuum.
For simplicity in the notation, we will assume that this operator
algebra is generated by a hermitian scalar field φ(x). So states

φ(x1)φ(x2) · · ·φ(xn)|Ω〉

with arbitrary n and points x1, . . . , xn ∈ M, are dense in H.



The Reeh-Schlieder theorem says that actually, we get a dense set
of states (in the vacuum sector of H) if we restrict the points
x1, · · · , xn to any possibly very small open set U ⊂ M:

If this is false, there is a state χ in the vacuum sector such that

〈χ|φ(x1)φ(x2) · · ·φ(xn)|Ω〉 = 0

whenever x1, · · · , xn ∈ U .



We will show that any such χ actually satisfies

〈χ|φ(x1)φ(x2) · · ·φ(xn)|Ω〉 = 0

for all xi ∈ M. Since states created by the φ’s are dense (in the
vacuum sector) this implies that χ = 0.

Let us define

f (x1, x2, · · · xn) = 〈χ|φ(x1)φ(x2) · · ·φ(xn)|Ω〉.

We are given that this function vanishes if the xi are in U and we
want to prove that it vanishes for all xi .



As a first step, pick a future-pointing timelike vector t and consider
shifting xn by a real multiple of t:

xn → xn + ut.

Let
g(u) = 〈χ|φ(x1)φ(x2) · · ·φ(xn−1)φ(xn + ut)|Ω〉

with xi ∈ U . We have g(u) = 0 for sufficiently small real u
because then xn + ut is still in u. Also with H the Hamiltonian for
translation in the t direction,

g(u) = 〈χ|φ(x1)φ(x2) · · · exp(iHu)φ(xn) exp(−iHu)|Ω〉.

Since HΩ = 0 this is

g(u) = 〈χ|φ(x1)φ(x2) · · · exp(iHu)φ(xn)|Ω〉

and since H is nonnegative, g(u) is holomorphic in the upper half
u-plane.



Such a function is zero. If we knew g(u) to be holomorphic on the
real axis and vanishing on a segment I of the real axis, we would
say that g(u) has a convergent Taylor series expansion around a
point p ∈ I and this expansion would have to be identically zero to
make g(u) vanish on the axis. To begin with we only know that
g(u) is holomorphic above the real axis, not on it, but we can get
around this using the Cauchy integral formula:
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So now we know that (keeping x1, · · · , xn−1 ∈ U)

〈χ|φ(x1) · · ·φ(xn−1)φ(x ′n)|Ω〉

vanishes if x ′n = xn + ut where t is a timelike vector and u is any
real number. Now we do this again, picking another timelike vector
t′ and replacing x ′n by x ′′n = x ′n + u′t′ with u′ real. Repeating the
argument, we learn that

〈χ|φ(x1) · · ·φ(xn−1)φ(x ′′n )|Ω〉 = 0

for any such x ′′n . But since any point in M can be reached from U
by zigzagging backwards and forwards in various timelike
directions, we learn that

〈χφ(x1) · · ·φ(xn−1)φ(xn)|Ω〉 = 0

for x1, · · · , xn−1 ∈ U with no restriction on xn.



The next step is to remove the restriction on xn−1. We pick t as
before and now consider a common shift of xn−1 and xn in the t
direction

(xn−1, xn)→ (x ′n−1, x
′
n) = (xn−1 + ut, xn + ut)

Now we look at

h(u) = 〈χ|φ(x1)φ(x2) · · ·φ(xn−1 + ut)φ(xn + ut)|Ω〉

It vanishes for small real u, and it can be written

h(u) = 〈χ|φ(x1)φ(x2) · · · exp(iuH)φ(xn−1)φ(xn)|Ω〉,

which implies that h(u) is holomorphic in the upper half plane.
Hence h(u) is identically 0.



Repeating the process by shifting xn−1 and xn in some other
timelike direction, we learn that

〈χ|φ(x1) · · ·φ(xn−1)φ(xn)|Ω〉

vanishes for x1, · · · , xn−2 ∈ U with no restriction on xn−1, xn. The
next step is to remove the restriction on xn−2. We do this in
exactly the same way, by considering what happens when we shift
the last three coordinates by a common timelike vector. And so on.



So we end up proving the Reeh-Schlieder theorem: an “arbitrary”
state (more exactly, a dense set of states in the vacuum sector of
Hilbert space) can be created from the vacuum by acting with a
product of local operators in a small open set U ⊂ M.



Now I want to discuss the interpretation of this theorem. The first
question that I want to dispose of is whether it contradicts
causality. It certainly sounds unintuitive at first sight. Consider a
state of the universe that on some initial time slice looks like the
vacuum near U , but contains the planet Jupiter at a distant region
spacelike V separated from U . Let J be a “Jupiter” operator
whose expectation value in a state that contains the planet Jupiter
in region V is close to 1, while its expectation value is close to 0
otherwise. The Reeh-Schlieder theorem says that there is an
operator X in region U such that the state XΩ contains the planet
Jupiter in region V. So

〈Ω|J|Ω〉 ∼= 0, 〈XΩ|J|XΩ〉 ∼= 1.

Is this a contradiction? We have 〈XΩ|J|XΩ〉 = 〈Ω|X †JX |Ω〉.
Since X is supported in U and J in the spacelike separated region
V , X † and J commute. So

1 ∼= 〈XΩ|J|XΩ〉 = 〈Ω|JX †X |Ω〉.



If X were unitary there would be a contradiction between the
statements

0 ∼= 〈Ω|J|Ω〉

and
1 ∼= 〈Ω|JX †X |Ω〉,

because if X is unitary, then X †X = 1. But the Reeh-Schlieder
theorem does not tell us that we can pick X to be unitary; it just
tells us that there is some X in region U that will create the planet
Jupiter in a distant region V.

In comparing the above formulas, all we have found is that in the
vacuum, the operators J and X †X have a nonzero correlation
function in the vacuum at spacelike separation. There is no
contradiction there; spacelike correlations in quantum field theory
are ubiquitous, even in free field theory.



The intuitive interpretation of the Reeh-Schlieder theorem involves
entanglement between the degrees of freedom inside an open set U
and those outside U . To explain the intuitive picture, let us
imagine that the Hilbert space H of our QFT has a factorization

H = HU ⊗HU ′

where HU describes the degrees of freedom in region U and HU ′

describes all of the degrees of freedom outside of U . Then any
state in H, such as the vacuum state Ω, would have a
decomposition

Ω =
∑
i

√
piψ

i
U ⊗ ψi

U ′

where we can assume the states ψi
U and also ψi

U ′ to be
orthonormal and we assume the pi are all positive (otherwise we
drop some terms from the sum).



In general when we write

Ω =
∑
i

√
piψ

i
U ⊗ ψi

U ′

the ψi
U and ψi

U ′ do not form a basis of HU or of HU ′ , because
there are not enough of them. However, something like the
Reeh-Schlieder theorem will be true for any state Ω such the ψi

U
and the ψi

U ′ do form bases of their respective spaces. Using the
fact that the ψi

U ′ are a basis of HU ′ , we would be able to expand
any state Ψ ∈ H as

Ψ =
∑
i

λiU ⊗ ψi
U ′ , λi ∈ HU .

Then because the ψi
U are a basis and the pi are nonzero, we can

define a linear operator X acting on HU by

X (
√
piψ

i
U ) = λi

and we see that we have found an operator X acting only on
degrees of freedom in U such that

XΩ = Ψ.



A state
Ω =

∑
i

√
piψ

i
U ⊗ ψi

U ′

where the pi are all positive and the ψi
U , ψi

U ′ are bases might be
called a “fully” entangled state. (I don’t think this is standard
terminology.) We call a state “maximally” entangled if the pi are
all equal (this is not possible for Hilbert spaces of infinite
dimension, as in quantum field theory). The Reeh-Schlieder
theorem means intuitively that the vacuum state Ω of a quantum
field theory is fully entangled in this sense, between the inside and
outside of an arbitrary open set U .



However, the decomposition

H = HU ⊗HU ′

that we started with is certainly not literally valid in quantum field
theory. If it were, then in H there would be an unentangled pure
state ψ ⊗ χ, ψ ∈ HU , χ ∈ HU ′ . This contradicts the fact that in
quantum field theory there is a universal ultraviolet divergence in
the entanglement entropy: the entanglement entropy of the
vacuum between degrees of freedom in U and those outside of U is
ultraviolet divergent, and the leading ultraviolet divergence is
universal, that is it is the same for any state. The leading
divergence is universal because any state looks like the vacuum at
short distances.



Now let us discuss an important corollary of the Reeh-Schlieder
theorem. Let U and V be spacelike separated open sets in
Minkowski spacetime:

Let b be an operator supported in V. Suppose that

bΩ = 0.

Then if a is supported in U , we have

b(aΩ) = abΩ = 0,

where I use the fact that [a, b] = 0 since U and V are spacelike
separated. But the states aΩ are dense in H (according to
Reeh-Schlieder) so b identically vanishes.



Thus if b 6= 0 is supported in a spacelike open set V that is small
enough that it is spacelike separated from another open set U , then

bΩ 6= 0.

The roles of U and V are symmetrical, so also for a 6= 0 supported
in U ,

aΩ 6= 0.



Let AU be the algebra of operators in region U . We have proved
two facts about the algebra AU acting on the vacuum sector H:

States aΩ, a ∈ AU , are dense in H. This is described by saying
that Ω is a “cyclic” vector for the algebra AU .

For any nonzero a ∈ AU , aΩ 6= 0. This is described by saying that
Ω is a “separating” vector of AU .

In short, the Reeh-Schlieder theorem and its corollary say that the
vacuum is a cyclic separating vector for AU .



Consider a quantum system with a Hilbert space H = H1⊗H2 and
let A be the algebra of operators on H1. A little thought shows
that a general vector Ψ with its usual Schmidt decomposition

Ψ =
∑
i

√
piψ

i
1 ⊗ ψi

2

is cyclic for A if the ψi
2 are a basis of H2, and it is separating for

A if the ψi
1 are a basis for H1. So that is the meaning of the cyclic

separating property if the Hilbert space is a tensor product.



This completes part 1 of the lecture.

Now, what about entanglement in quantum field theory? A
mathematical machinery that can be useful for analyzing
entanglement when the Hilbert space does not factorize is called
Tomita-Takesaki theory. It applies whenever one has an algebra A
acting on a Hilbert space H with a cyclic separating vector. My
next goal will be an introduction to this. (Tomita-Takesaki theory
has had many applications in recent years in quantum field theory,
some of which we will hear about from other lecturers.)



The starting point in Tomita-Takesaki theory is that, given an
algebra A with cyclic separating vector Ψ, we define an antilinear
operator, the Tomita operator

SΨ : H → H

by
SΨaΨ = a†Ψ.

The definition makes sense because of the separating property (if
we could have aΨ = 0 with a†Ψ 6= 0, we would get a
contradiction) and it does define SΨ on a dense set of states in H,
because of the cyclic property (states aΨ are dense in H). A
couple of obvious facts are that

S2
Ψ = 1

(which in particular says that SΨ is invertible) and

SΨ|Ψ〉 = |Ψ〉.



The modular operator is a linear, self-adjoint operator defined by

∆Ψ = S†ΨSΨ.

(The definition of the adjoint of an antilinear operator is
〈α|S |β〉 = 〈β|S†|α〉.) ∆Ψ is positive-definite because SΨ is
invertible.



We will also need the relative modular operator. Let the state Ψ
be cyclic separating, and let Φ be any other state. The relative
Tomita operator SΨ|Φ is an antilinear operator defined by

SΨ|Φa|Ψ〉 = a†|Φ〉.

Again the well-definedness of the definition depends on the cyclic
separating nature of Ψ, but no property of Φ is needed. In defining
SΨ|Φ, we assume that Ψ and Φ are unit vectors

〈Ψ|Ψ〉 = 〈Φ|Φ〉 = 1.

The relative modular operator is defined by

∆Ψ|Φ = S†Ψ|ΦSΨ|Φ.

It is still self-adjoint and positive semi-definite, but it is not
necessarily invertible. If Φ = Ψ then the definitions reduce to the
previous ones

SΨ|Ψ = SΨ, ∆Ψ|Ψ = ∆Ψ.



Now we are ready to define relative entropy in quantum field
theory. We fix an open set U (small enough so that the vacuum is
cyclic separating), and consider the algebra AU . Let Ψ be any
cyclic separating vector for AU , and Φ any other vector. The
relative entropy between the states Ψ and Φ, for measurements in
region U (as defined by Araki in the 1970’s) is

SΨ|Φ(U) = −〈Ψ| log ∆Ψ|Φ|Ψ〉.

It is not immediately obvious that this has anything to do with
relative entropy as defined in yesterday’s lecture, but we will later
see that this definition reduces to the more familiar one for the
case of an ordinary quantum system. For now, let us just proceed
and explore the consequences of this definition.



First let us discuss positivity properties of relative entropy, defined
by

SΨ|Φ(U) = −〈Ψ| log ∆Ψ|Φ|Ψ〉.

First of all, if Φ = Ψ then we had

∆ΨΨ = Ψ

so
log ∆ΨΨ = 0

and hence the relative entropy between Ψ and itself is 0:

SΨ|Ψ(U) = 0.

But more than that, suppose that Φ = a′Ψ, where a′ is unitary and
[a′,AU ] = 0, so that measurements in region U cannot distinguish
Φ from Ψ. One can show that in this case again ∆Ψ|Φ = ∆Ψ

(exercise!) so again
SΨ|a′Ψ(U) = 0.



Now consider a completely general state Φ. The inequality
− log λ ≥ 1− λ for a positive real number λ implies an operator
inequality − log ∆ ≥ 1−∆, implying

SΨ|Φ(U) = −〈Ψ| log ∆Ψ|Φ|Ψ〉 ≥ 〈Ψ|(1−∆Ψ|Φ)|Ψ〉

= 〈Ψ|Ψ〉 − 〈Ψ|S†Ψ|ΦSΨ|Φ|Ψ〉 = 〈Ψ|Ψ〉 − 〈Φ|Φ〉 = 0.

So in general
SΨ|Φ ≥ 0.

(For a converse to what we said before – the proof that
SΨ|Φ(U) = 0 only if Φ = a′Ψ for some unitary a′ that commutes
with AU – I refer to section 3.3 of my notes.)



We gave another proof of positivity of relative entropy in the first
lecture, but we do not yet know that they were proving the same
thing; we will only learn that when we analyze Tomita-Takesaki
theory for a factorized quantum system, later on.



Now we consider a smaller open set Ũ ⊂ U . Now we have two
different algebras AŨ ⊂ AU and two different operators SΨ|Φ;Ũ and

SΨ|Φ;U and associated modular operators ∆Ψ|Φ;Ũ and ∆Ψ|Φ;U . The

relative entropy beween Ψ and Φ for measurements in U is

SΨ|Φ(U) = −〈Ψ| log ∆Ψ|Φ;U |Ψ〉.

The corresponding relative entropy for measurements in Ũ is

SΨ|Φ(Ũ) = −〈Ψ| log ∆Ψ|Φ;Ũ |Ψ〉.

We want to prove that relative entropy is monotonic under
increasing the region considered:

SΨ|Φ(Ũ) ≤ SΨ|Φ(U).

This is an important statement for applications; for instance, it
was used by A. Wall in proving the generalized second law of
thermodynamics.



The states Ψ and Φ will be held fixed in this discussion, so to
llighten the notation we will omit subscripts and denote the
operators just as SU , SŨ and likewise ∆U and ∆Ũ . The main point
of the proof is to show that as an operator

∆Ũ ≥ ∆U .

As I will explain in a moment, this implies

log ∆Ũ ≥ log ∆U . (∗)

The inequality we want

−〈Ψ| log ∆Ũ |Ψ〉 ≤ −〈Ψ| log ∆U |Ψ〉

is just a matrix element of inequality (∗) in the state Ψ.



To show that if P and Q are positive self-adjoint operators and

P ≥ Q (∗)

then also
logP ≥ logQ

let
R(t) = tP + (1− t)Q

so (by virtue of (∗)), R is an increasing function of t, in the sense
that Ṙ(t) ≥ 0. We have

logR(t) =

∫ ∞
0

ds

(
1

s
− 1

s + R

)
.

So
d

dt
logR(t) =

∫ ∞
0

ds
1

s + R
Ṙ

1

s + R
.

The integrand is positive since it is BAB with A,B positive
(A = Ṙ, B = 1/(s + R)), so the integral is positive and thus
d
dt logR ≥ 0. Hence R(1) ≥ R(0) or

logP ≥ logQ.



(In case you think that we just proved was obvious, let me remark
that for operators, the inequality P ≥ Q does not imply P2 ≥ Q2.
The function P → logP is better, in that sense, than the function
P → P2. Incidentally, P2 ≥ Q2 for positive P,Q does imply
P ≥ Q.)



So monotonicity of relative entropy under increasing the region
considered will follow from an inequality

∆Ũ ≥ ∆U .

If we try to understand this inequality, we may get confused at
first. We have

∆Ũ = S†
Ũ
SŨ , ∆U = S†USU ,

Here the two S ’s were defined, naively, by the same formula

SŨaΨ = a†Φ, SUaΨ = a†Ψ

with the sole difference that a is in AŨ in one case and in AU in
the other. The algebra AU is bigger, so SU is defined on more
states. But states aΨ with a ∈ AŨ are already dense in Hilbert
space so actually SŨ and SU coincide on a dense set of states.



If one is careless, one might assume that two operators that agree
on a dense subspace of Hilbert space actually coincide. This is not
true, however, for unbounded operators such as SŨ and SU . We
have to remember that an unbounded operator is never defined on
all states in Hilbert space, only (at most) on a dense subspace.
The proper statement is that SU is an extension of SŨ , meaning
that SU is defined whenever SŨ is defined and, on states on which
they are both defined, they coincide. In our problem, SU is a
proper extension, because there are states aΨ, a ∈ AU , that are
not of the form aΨ, a ∈ AŨ . Anyway, the fact that SU is an
extension of SŨ implies, as a general Hilbert space statement, that

SŨ
†SŨ ≥ SU

†SU ,

which is what we need for monotonicity of relative entropy.



The intuitive idea of the inequality

SŨ
†SŨ ≥ SU

†SU

is that the fact that SŨ is defined on fewer states than SU is
defined on corresponds to a constraint that has been placed on the
states in the case of SŨ , and this constraint raises the energy (i.e.
the value of ∆ = S†S). I will give an analogy that aims to make
this obvious. Instead of SU , we will consider the exterior derivative
d mapping zero-forms (functions) on a manifold M to 1-forms.
But we will assume that M has a boundary N, and we will consider
two different versions of the operator d.



The first will be the derivative operator acting on differentiable
functions that are constrained to vanish on the boundary of X :

d̂ : f (x1, . . . , xn)→
(
∂f

∂x1
,
∂f

∂x2
, · · · , ∂f

∂xn

)
, f |∂X = 0.

We also consider the same operator d without the constraint that
f vanishes on the boundary. Differentiable functions that vanish on
the boundary are dense in Hilbert space, so d̂ and d are each
defined on a dense subspace of Hilbert space; moreover, obviously,
d is an extension of d̂ since it is defined whenever d̂ is defined and
they agree when they are both defined.



Associated to d̂ is the Dirichlet Laplacian

∆̂ = d̂†d̂

and associated in the same way to d is the Neumann Laplacian

∆ = d†d.

Here ∆̂ and ∆ are nonnegative operators that coincide on a dense
set of states, but ∆̂ is more positive than ∆ because of the
constraint that the wavefunction should vanish on the boundary.



Indeed, the Neumann Laplacian ∆ is associated to the energy
function

〈f |∆|f 〉 =
1

2

∫
M
dnx
√
g |df |2

but to get the Dirichlet Laplacian ∆̂ we should add a boundary
term to the energy to make the wavefunction vanish on the
boundary. In fact, we can consider a family of operators ∆t ,
0 ≤ t ≤ ∞ associated to the energy function

〈f |∆t |f 〉 =
1

2

∫
M
dnx
√
g |df |2 + t

∫
N
dn−1x

√
g |f |2.

Clearly the operator ∆t is an increasing function of t. For t = 0,
∆t is the Neumann Laplacian, and for t →∞, ∆t goes over to the
Dirichlet Laplacian ∆̂.

So ∆̂ ≥ ∆, which is analogous to our desired ∆Ũ ≥ ∆U . A
constraint on the state always raises the energy.



Just to make sure the analogy is clear, ∆Ũ is the operator
associated to the energy function

〈SŨΛ|SŨΛ〉

for a state Λ that should be in the domain of SŨ . ∆U is similarly
associated to

〈SUΛ|SUΛ〉

for a state Λ that should be in the larger domain of SU . The
second energy function is the same as the first except that it is
defined on a larger space of states; we can get the second from the
first by a constraint that removes some states. Such a constraint
can only raiase the energy so ∆Ũ ≥ ∆U . (See section 3.6 of my
notes for a precise proof.)



Here is another analogy, now in finite dimensions. Let X be an
(n + m)× (n + m) positive hermitian matrix, which we write in
block form

X =

(
A B
B† C

)
For λ > 0, let

Xλ =

(
A B
B† C + λ

)
.

Going from λ = 0 to λ =∞ will be like going from Neumann to
Dirichlet.

For λ→∞, the lower entries of a vector decouple and

1

s + Xλ
→
(

1/(s + A) 0
0 0

)



We have
d

dλ

1

s + Xλ
= − 1

s + Xλ

(
0 0
0 1

)
1

s + Xλ

This is of the form −CDC with C ,D positive, so it is negative:

d

dλ

1

s + Xλ
≤ 0.

Hence 〈
Ψ

∣∣∣∣ 1

s + X

∣∣∣∣Ψ

〉
≥
〈

Ψ

∣∣∣∣ 1

s + Xλ

∣∣∣∣Ψ

〉
for any Ψ and any λ > 0. Let us evaluate this for Ψ =

(
ψ
0

)
and

λ→∞ (using a result on the last slide):〈
Ψ

∣∣∣∣ 1

s + X

∣∣∣∣Ψ

〉
≥
〈

Ψ

∣∣∣∣ 1

s + Xλ

∣∣∣∣Ψ

〉
λ→∞−→

〈
ψ

∣∣∣∣ 1

s + A

∣∣∣∣ψ〉 .
Integrating over s from 0 to ∞, we learn

〈Ψ| logX |Ψ〉 ≤ 〈ψ| logA|ψ〉. (∗)



We will find that this inequality leads to monotonicity of relative
entropy for a finite-dimensional quantum system.

To state it elegantly, define a unitary embedding U : Cn → Cn+m

that takes ψ to Ψ =

(
ψ
0

)
. So Ψ = Uψ and

〈Ψ| logX |Ψ〉 = 〈Uψ| logX |Uψ〉 = 〈ψ|U†(logX )U|ψ〉

Also
A = U†XU,

so our inequality (∗) on the previous slide becomes

〈ψ|U†(logX )U|ψ〉 ≤ 〈ψ| log(U†XU)|ψ〉.



This completes part 2 of the lecture. I’ve explained what I regard
as the most transparent explanation of monotonocity of relative
entropy. But this argument as stated only applies to the special
case of increasing the size of a region in spacetime.

If we had general monotonicity of relative entropy under partial
trace, this would imply strong subadditivity of entropy. That in
turn has had numerous applications in quantum field theory in
recent years. But for this we need monotonicity of relative entropy
in general, not just under increasing the size of a region.

What we will do now is to consider a general quantum system –
finite-dimensional for simplicity – and imitate the ideas we’ve
discussed up to this point. We’ll define the Tomita-Takesaki
operators, and fill a gap by explaining how the definition of relative
entropy that we used today is related to yesterday’s. Then we will
imitate the proof of monotonicity that I just explained and arrive
at a general proof of monotonicity under partial trace. (This proof
is largely due to Petz and Nielsen.)



We start with a finite-dimensional Hilbert space H that is a tensor
product H = H1 ⊗H2, where H1 and H2 are Hilbert spaces of the
same dimension n. We let A be the algebra of n × n matrices
acting on H1; an element a ∈ A acts on H by a⊗ 1. An arbitrary
vector Ψ ∈ H has a decomposition

Ψ =
n∑

k=1

ck |k〉 ⊗ |k〉′

where |k〉 and |k〉′, k = 1, . . . , n are orthonormal bases of H1 and
H2, respectively. (We will abbreviate |j〉 ⊗ |k〉′ as |j , k〉. We
assume Ψ is a unit vector and likewise Φ later.) By now we know
that Ψ is cyclic separating for the algebra A if and only if the ck
are all nonzero. Thus this is true for a generic vector.



The definition of the modular operator SΨ : H → H is

SΨ(a⊗ 1)Ψ = (a† ⊗ 1)Ψ.

To make this into a formula for SΨ, pick i , j in the set
{1, 2, · · · , n} and let a be the elementary matrix that acts by

a|i〉 = |j〉, a|k〉 = 0, if k 6= i .

Its adjoint acts by

a†|j〉 = |i〉, a†|k〉 = 0, if k 6= j .

So for Ψ =
∑

i ci |i , i〉, we have

(a⊗ 1)Ψ = ci |j , i〉, (a† ⊗ 1)Ψ = cj |i , j〉.

So the definition of SΨ implies

SΨ(ci |j , i〉) = cj |i , j〉.

SΨ is antilinear, so

SΨ|j , i〉 =
cj
c̄i
|i , j〉.



The adjoint of SΨ is then

S†Ψ|i , j〉 =
cj
c̄i
|j , i〉

and the modular operator ∆Ψ = S†ΨSΨ is

∆Ψ|j , i〉 =
|cj |2

|ci |2
|j , i〉.

(In getting this formula, one has to remember that S† is antilinear.)



We can describe the relative modular operator similarly. If Φ is a
second state in H, it has an expansion

Φ =
n∑

α=1

dα|α〉 ⊗ |α〉′,

where |α〉 and |α〉′ (with α = 1, · · · n) are orthonormal bases of H1

and H2 respectively, in general different from the ones that
appeared in the formula for Ψ. We will abbreviate |α, β〉 for
|α〉 ⊗ |β〉′, |α, i〉 for |α〉 ⊗ |i〉′, etc. We will determine the relative
modular operator SΨ|Φ straight from the definition

SΨ|Φ(a⊗ 1)Ψ = (a† ⊗ 1)Φ.



For some i , α ∈ {1, 2 · · · , n}, define a ∈ A by

a|i〉 = |α〉, a|j〉 = 0 if j 6= i .

Then
a†|α〉 = |i〉, a†|β〉 = 0 if β 6= α.



So with Ψ =
∑

i ci |i , i〉, Φ =
∑

α dα|α, α〉, we have

(a⊗ 1)Ψ = ci |α, i〉, (a† ⊗ 1)Φ = dα|i , α〉.

So to get S(a⊗ 1)Ψ = (a† ⊗ 1)Ψ, we need

SΨ|Φ|α, i〉 =
dα
c̄i
|i , α〉.

The adjoint is

S†Ψ|Φ|i , α〉 =
dα
c̄i
|α, i〉

And therefore

∆Ψ|Φ|α, i〉 =
|dα|2

|ci |2
|α, i〉.



To make contact between the two definitions of relative entropy,
we need to express ∆Ψ|Φ in terms of density matrices. The
reduced density matrices of our state

Ψ =
n∑

k=1

ck |k〉 ⊗ |k〉′

are
ρ1 =

∑
i

|ci |2|i〉〈i |, ρ2 =
∑
i

|ci |2|i〉′〈i |′.

Similarly the reduced density matrices of

Φ =
n∑

α=1

dα|α〉 ⊗ |α〉′

are
σ1 =

∑
α

|dα|2|α〉〈α|, σ2 =
∑
α

|dα|2|α〉′〈α|′.



Comparing these formulas to what we found for the modular
operators, we get

∆Ψ = ρ1 ⊗ ρ−1
2 , ∆Ψ|Φ = σ1 ⊗ ρ−1

2 .

Now we can compare Araki’s definition of relative entropy

S(Ψ||Φ) = −〈Ψ| log ∆Ψ|Φ|Ψ〉

to the perhaps more familiar one of yesterday. The formula for
∆Ψ|Φ leads to log ∆Ψ|Φ = log σ1⊗ 1− 1⊗ log ρ2. So S(Ψ||Φ) with
Araki’s definition is

−〈Ψ| log σ1 ⊗ 1|Ψ〉+ 〈Ψ|1⊗ log ρ2|Ψ〉

which is the same as

−TrH1ρ1 log σ1 + TrH2ρ2 log ρ2 = TrH1ρ1(log ρ1 − log σ1).

(In the last step, we use that TrH2 ρ2 log ρ2 = TrH1 ρ1 log ρ1 since
ρ1 and ρ2 have the same eigenvalues.)



This indeed coincides with yesterday’s definition.

Two remarks:

(1) Since the definitions are equivalent, today’s proof of positivity
of relative entropy makes sense verbatim in this situation and can
indeed serve as a substitute for yesterday’s.

(2) We’ve now derived the definition of relative entropy in two very
different-looking ways: by considerations of classical probability
theory at the beginning of yesterday’s lecture and today by
considerations of noncommutative algebras. I do think it is
remarkable that they agree.



Now we want to understand the monotonicity of relative entropy in
this setting. As discussed yesterday, this means that we consider a
bipartite system with Hilbert space HAB = HA ⊗HB (replacing
what has been H1 so far) and with two density matrices ρAB and
σAB . There are also reduced density matrices ρA = TrHB

ρAB ,
σA = TrHB

σAB and we want to prove that

S(ρAB ||σAB) ≥ S(ρA||σA).



First we pass from HAB to a “doubled” Hilbert space HAB ⊗H′AB
(playing the role played by H1 ⊗H2 until now) so that we can
“purify” ρAB and σAB by deriving them as reduced density matrices
asociated to pure states ΨAB ,ΦAB ∈ HAB ⊗H′AB . Likewise
ΨA,ΦA are reduced density matrices associated to pure states
ΨA,ΦA ∈ HA ⊗H′A. We can assume that ΨAB , ΨA are cyclic
separating since as we have seen a generic vector has that property.



In quantum field theory, we had a small algebra AŨ and a larger
algebra AU . In the present discussion, the analog of AŨ is going to
be the algebra AA of matrices on HA (acting on the first factor of
HA ⊗H′A, in other words aA ∈ AA acts on HA ⊗H′A by
Ψ→ (aA ⊗ 1)Ψ) and the analog of AU is going to be the algebra
AAB of matrices on HAB (acting similarly on the first factor of
HAB ⊗H′AB).



In quantum field theory, AŨ was naturally a subalgebra of AU .
The analog of this in the present context is that there is a natural
embedding of AA in AAB , namely

ϕ(a) = a⊗ 1.

Also, in quantum field theory, the small algebra and the large one
naturally acted on the same Hilbert space, which was the Hilbert
space of the quantum field theory. In the present context, the
algebras AA and AAB act on different spaces HA ⊗H′A and
HAB ⊗H′AB . However, a natural map of the smaller space to the
larger one presents itself, namely

U(aΨA) = ϕ(a)ΨAB .

Because ΨA is cyclic separating, this is a well-defined linear map
from HA ⊗H′A to HAB ⊗H′AB . A small calculation (see p. 42 of
my notes for this and also for a remark on the next slide) shows
that it is a unitary embedding.



A small calculation also shows that

U†∆ABU = ∆A,

which is analogous to the relation between ∆U and ∆Ũ that we
had in field theory. (It says that ∆A and ∆AB have the same
matrix elements among the states on which ∆A is defined.) So
using our inequality from the end of part 2

〈ψ|U†(logX )U|ψ〉 ≤ 〈ψ| log(U†XU)|ψ〉,

we get

S(ρA||σA) =− 〈ΨA| log ∆A|ΨA〉 = −〈ΨA| log(U†∆ABU)|Ψ〉
≤ − 〈ΨA|U†(log ∆AB)U|ΨA〉

= −〈UΨA| log ∆AB |UΨA〉
= −〈ΨAB | log ∆AB |ΨAB〉 = S(ρAB ||σAB).

This completes the proof.



Basically, this proof is the same as in the quantum field theory case
except that we have to check a couple of details that are obvious
in the quantum field theory case. Does this proof depend on tricky
details, or is it obvious, given what we found in quantum field
theory, that it would have to work? Opinions could differ on this,
but philosophically, one might believe that quantum field theory
isn’t simpler than quantum mechanics and that what worked in
quantum field theory should have an analog for a general quantum
system.



Now we come to part 4 of the lecture. Going back to quantum
field theory, in general for a state Ψ and a region U , it is very hard
to identify concretely the corresponding operator SΨ;U . There is,
however, one case in which this can be done and this example is
very important for applications. This is the case that U is a
“Rindler space” or wedge in Minkowski spacetime and Ψ is the
vacuum state Ω. The Rindler wedge U is defined by the condition
|x | > t in the xt plane

Transverse coordinates ~y will not play an important role.



There is a rigorous approach due to Bisognano and Wichman
(1971) which is based on holomorphy of correlation functions (for
an introduction, see my notes, section 5.3). Instead today I will
explain a very well-known path integral approach based on a
presumed factorization of the Hilbert space

H = H` ⊗Hr

where H` and Hr are the degrees of freedom visible in the right
and left Rindler wedges.



We continue, first of all to Euclidean time τ . The quantum
vacuum state on an initial value surface τ = 0 can be computed by
a path integral on the lower half-space τ < 0:

The green dot is supposed to be at x = 0 (any ~y). It divides the
initial value surface into left and right halves and we are going to
assume a corresponding factorization of the Hilbert space

H = H` ⊗Hr



We are going to find a density matrix for the right half-space. For
this, we think of the vacuum wavefunction as a functional
Ω(φ`, φr ) that depends on field variables on the left and right half
spaces. A density matrix |Ω〉〈Ω| for the pure state Ω would then
be a function

|Ω(φ′`, φ
′
r )〉〈Ω(φ`, φr )|

of pairs of variables. A partial trace over H` to get the density
matrix ρr for the right half space is obtained, as usual, by setting
φ′` = φ` and integrating over φ`. This corresponds to a simple path
integral procedure:



To explain this picture in more detail

a path integral on the lower half plane has created the ket |Ω〉 and
a path integral on the upper half plane has created the bra 〈Ω|.
Then an integral over the field variables on the left half of the
initial value surface has set φ′` = φ`. All this combines to a path
integral on a Euclidean space with a cut on the right half of the
initial value surface, as shown.



The result is a density matrix

ρ(φ′r , φr )

that depends on two sets of “right” variables, living just above and
just below the cut.

We call the cut spacetime W2π.



More generally we can consider a wedge of any opening angle η:

The wedge is obtained by rotating a half-space through an angle η.
The rotation matrix acts by

Rη

(
τ
x

)
=

(
cos η sin η
− sin η cos η

)(
τ
x

)
In terms of real time t = −iτ , this formula reads

Rη

(
t
x

)
=

(
cosh(iη) − sinh(iη)
− sinh(iη) cosh(iη)

)(
t
x

)
This is a Lorentz boost of the tx plane by an imaginary boost
parameter −iη.



The generator of a Lorentz boost is

K =

∫
t=0

dxd~y xT00.

Formally we can write

K = Kr − K` (∗)

where Kr and K` are partial boost generators

Kr =

∫
t=0,x≥0

dxd~y xT00, K` = −
∫
t=0, x<0

dxd~y xT00.

The purpose of the minus sign in (∗) is to ensure that both K` and
Kr boost their respective wedges forwards in time.



The operator that implements a Lorentz boost by a real boost
parameter θ is exp(−iθK ). Setting θ = −iη, we learn that, in real
time language, the path integral on the wedge constructs the
operator exp(−ηKr ). (The path integral on the wedge propagates
the degrees of freedom on the right half-space only, so here we use
Kr , not K .) To get the density matrix of the right half-space, we
set η = 2π so

ρr = exp(−2πKr ).

Likewise the density matrix of the left half-space is

ρ` = exp(−2πK`).

We’ve learned that, when the Hilbert space factorizes
H = Hr ⊗H`, the modular operator is ∆ = ρr ⊗ ρ−1

` . In this case
that gives

∆Ω = exp(−2πKr ) exp(2πK`) = exp(−2πK ).

Note that this only involves the well-defined operator K .



Now let us try to find the Tomita operator SΩ. Its relation with
∆Ω is ∆Ω = S†ΩSΩ. Equivalently

SΩ = JΩ∆
1/2
Ω ,

where JΩ is antiunitary. To find JΩ and SΩ, we have to first

understand ∆
1/2
Ω . We start by looking at a state

a|Ω〉

where a is any operator inserted on the right half of the initial
value surface. Here is a path integral interpretation



Now we try to understand

∆α
Ωa|Ω〉 = exp(−2παKr + 2παK`)a|Ω〉.

Here exp(−2παKr ) adds a wedge of opening angle 2πα to the
right of the picture and exp(2πK`) removes a wedge of the same
opening angle from the right of the picture. If we rotate the
picture so that the boundary is still horizontal, it looks like this:



If we set α = 1/2 to study

∆
1/2
Ω a|Ω〉

we get this picture:

We cannot go any farther because there is no more wedge to
remove on the left. So we cannot define

∆α
Ωa|Ω〉

for α > 1/2.



The picture

shows that
∆

1/2
Ω a|Ω〉 = ã|Ω〉

where ã is a certain operator inserted on the left half space. We
will discuss the relation between a and ã in a moment.



Now we can find the operator SΩ = JΩ∆
1/2
Ω , which is characterized

by
SΩa|Ω〉 = a†|Ω〉.

Suppose for simplicity that the operator algebra is generated by a
hermitian scalar field φ. Then it is enough to consider the cases
that a is φ(0, x , ~y) or φ̇(0, ~x , y) = d

dtφ(t, x , ~y)
∣∣
t=0

. These
operators are both hermitian so we want

SΩφ(0, x , ~y)|Ω〉 = φ(0, x , ~y)|Ω〉, SΩφ̇(0, x , ~y)|Ω〉 = φ̇(0, x , ~y)|Ω〉.



From the picture

we have

∆
1/2
Ω φ(0, x , ~y)|Ω〉 = φ(0,−x , ~y)|Ω〉, ∆

1/2
Ω φ̇(0, x , ~y)|Ω〉 = −φ̇(0, x , ~y)|Ω〉

where the minus sign in the second formula is there because ∆
1/2
Ω

rotated the picture through an angle π and reversed the sign of
d/dτ . So we need

JΩφ(0, x , ~y)J−1
Ω = φ(0,−x , ~y), JΩφ̇(0, x , ~y)J−1

Ω = −φ̇(0, x , ~y).

In other words, JΩ is an antiunitary operator that acts by
t, x , ~y → −t,−x , ~y .



The antiunitary operator that acts by t, x , ~y → −t,−x , ~y is what
we might call CRT, a combination of charge conjugation C, a
reflection R of one coordinate, and time-reversal T. So for the
Rindler wedge

JΩ = CRT.

The reason for the C is that JΩ reverses the signs of conserved
charges. To see this, consider a theory of two real scalar fields
φ1, φ2 with conserved charge Q =

∫
t=0 dxd~y(φ1φ̇2 − φ̇1φ2); this is

clearly odd under JΩ. Traditionally R and T are defined to
commute with conserved charges so in traditional terminology
JΩ = CRT.



In even dimensions, CRT can be combined with π rotations of
pairs of transverse coordinates ~y to get what is usually called CPT.
In odd dimensions, there is no universal CPT symmetry; the
universal discrete symmetry of Lorentz-invariant quantum field
theory in any dimension is CRT.


