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SUMMARY

It has been posited that anti-tumoral innate activa-
tion is driven by derepression of endogenous re-
peats. We compared RNA sequencing protocols to
assess repeat transcriptomes in TheCancerGenome
Atlas (TCGA). Although poly(A) selection efficiently
detects coding genes, most non-coding genes, and
limited subsets of repeats, it fails to capture overall
repeat expression and co-expression. Alternatively,
total RNA expression reveals distinct repeat co-
expression subgroups and delivers greater dynamic
changes, implying they may serve as better bio-
markers of clinical outcomes. We show that endoge-
nous retrovirus expression predicts immunotherapy
response better than conventional immune signa-
tures in one cohort yet is not predictive in another.
Moreover, we find that global repeat derepression,
including the HSATII satellite repeat, correlates with
an immunosuppressive phenotype in colorectal and
pancreatic tumors and validate in situ. In conclusion,
we stress the importance of analyzing the full spec-
trum of repeat transcription to decode their role in tu-
mor immunity.

INTRODUCTION

The transcriptional landscape of a cancer cell extends well

beyond protein-coding mRNA and includes numerous non-cod-

ing transcripts, some of which play essential roles in modulating
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malignant transformation (Lin andHe, 2017). Among the different

classes of non-coding RNA are repetitive elements, which

constitute more than half of genomic DNA and undergo

increased transcriptional activity during neoplasia (Ting et al.,

2011; Criscione et al., 2014). Aberrant transcription of repetitive

elements in tumors is likely modulated by epigenetic modifica-

tions (Carone and Lawrence, 2013) and loss of tumor suppressor

function (Wylie et al., 2016; Levine et al., 2016). Moreover, many

repeat RNAs include specific sequence motifs (Tanne et al.,

2015) and general RNA structures (Chiappinelli et al., 2015; Rou-

lois et al., 2015) typically found in pathogen rather than human

transcripts. Such pathogen ‘‘mimicry’’ can be detected by innate

pattern recognition receptors (PRRs) and initiate signaling in the

tumor microenvironment relevant for immune and epigenetic

therapies (Leonova et al., 2013; Chiappinelli et al., 2015; Roulois

et al., 2015; Woo et al., 2015; Desai et al., 2017; Greenbaum,

2017). These direct immunomodulatory features of repetitive el-

ements provide a functional signaling pathway not previously

appreciated in human cancers.

Unfortunately, the typical protocols employed in next genera-

tion RNA sequencing (RNA-seq) have been a practical barrier to

assessing the landscape of aberrantly transcribed immunosti-

mulatory repetitive elements (Zhao et al., 2014). The vastmajority

of publicly available RNA-seq datasets were biased to sequence

polyadenylated RNA and, as we show, often consequently fail to

detect many putatively functional non-coding transcripts that

can stimulate PRRs. To give a sense of the degree to which as-

sessments are biased in this regard, one need only look at the

statistics of The Cancer Genome Atlas (TCGA). Although thou-

sands of solid tumors are sequenced using the poly(A) select

approach, only 38 solid tumor samples probe the total RNA.

The breadth of aberrant repetitive element transcription and its
creativecommons.org/licenses/by-nc-nd/4.0/).
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link to PRR engagement in the tumor microenvironment is there-

fore severely under-quantified.

In this work, we first examined the 29 samples from TCGA for

which both poly(A)-selected and total RNA-seq data are avail-

able from the same tumor. We find a large number of missing

repetitive element transcripts from tumors sequenced using

poly(A) protocols. Second, we show that repetitive elements ex-

pressed from these tumors fall into a set of distinct co-expres-

sion clusters. We quantify the nature of these clusters, their di-

versity, and whether the sequences they contain have

anomalous motif use (one indicator of their potential to trigger

PRRs). Finally, we unravel associations between expression of

specific classes of repetitive elements, patient survival rates,

and the immune profile of the tumor microenvironment.

RESULTS

Normalization of Total and Poly(A)-Selected Sequencing
Shows Widespread Differences in Repetitive Element
Detection
We identified 29 patient samples in TCGA that had RNA-seq data

prepared using both the poly(A)-selected and total RNA proto-

cols. Gene expression values computed from total RNA and

poly(A) sequencing cannot be compared directly, because of

gene-specific biases inherent to each protocol. However, we

find that by applying trimmed mean of M-values (TMM) normal-

ization (Robinson and Oshlack, 2010) between the 29 paired pa-

tient samples—and clustering samples based on protein-coding

genes only—the same patient’s samples will mostly cluster

together, despite having different sequencing library construc-

tion protocols (Figure 1A, black/white color code at the top).

The technical difference between the poly(A) and total RNA pro-

tocols is therefore less than the biological difference for protein-

coding genes in our cohort. A similar picture, to a lesser extent,

was observed when we examined the computed expression of

annotated non-coding RNAs (Figure 1B). Evaluation of repetitive

element expression, however, was markedly different between

the total and poly(A) RNA protocols. For most repeats, expres-

sion computed using the total RNA protocol exceeded the one

computed from the poly(A) protocol (Figure 1C). Hierarchical

clustering for repeat expression is therefore completely gov-

erned by the protocol used to prepare the RNA-seq library. We

evaluated the robustness of the clustering usingmultiscale boot-

strap resampling. Both approximately unbiased (AU) and boot-

strap probability (BP) confidence values equal 100% for the clus-

ter containing the 29 total RNA samples (Figure 1C). This

partitioning is almost the same as partitioning into the total

RNA and poly(A) samples (adjusted Rand index = 0.931).

Assuming that the effects of the preparation protocol are gene

specific and sample independent, we compared expression of

the same genes computed fromRNA-seq data using both proto-

cols. We performed a paired t test for expression values ob-

tained from the total RNA and poly(A) data. This ‘‘differential

expression’’ analysis evaluates the technical difference between

protocols, not the biological difference between samples.

Among 13,740 sufficiently expressed coding genes, 3,600

(26%) had lower and 3,414 (25%) had higher computed expres-

sion in the total RNA protocol (FDR < 0.05). Among 893 anno-
tated non-coding genes, 281 (32%) had lower and 220 (25%)

had higher computed expression in the total RNA protocol.

Among 967 repeat elements, 33 (3%) had lower and 850 (88%)

had significantly higher computed expression in the total RNA

protocol. Interestingly, some coding genes (75 of 13,740

[0.5%]) form an outlier population with higher computed expres-

sion in the total RNA protocol (Figure 1D, Statistical Methods).

Those were histone-related genes on chromosome 6. This

finding is expected given the lack of polyadenylation of these

genes. For non-coding genes, 38 of 893 (4%) were outliers

composed mostly of small RNAs (Figure 1E). Finally, in the

case of repeats, there is a clear and consistent inability to cap-

ture repetitive element expression using the poly(A) protocol

(Figure 1F).

Given the possible differences in DNA contamination between

sequencing protocols, we computed the average depth of

coverage for repeat reads coming from possible DNA using

the number of reads mapping to unambiguously sequenced

genome loci not annotated as genes or repeat elements. Five

hundred sixty-five repeat elements had significantly greater

expression difference than expected from pure contamination,

and 209 repeat elements had significantly lower expression dif-

ference than expected from pure contamination. Fifteen of 20

satellite repeat elements had significantly higher expression dif-

ference than expected from pure contamination, and only 3 sat-

ellite repeat elements had significantly lower expression. This is

consistent with the inability to detect satellite repeats using the

poly(A) protocol.

If the effect of preparation on computed gene expression is

sample independent, expression computed from paired total

RNA and poly(A) samples will differ by a gene-specific constant

independent of the sample. We designed an analysis, restricted

to genes whose computed median expression among the 29 pa-

tients was at least 10 reads per million in both protocols. After

computing the gene-specific difference in the expression from

the total RNA and the poly(A) counts, we added this difference

to the expression computed from the poly(A) counts. Application

of such protocol-specific correction improves the clustering ac-

curacy according to expression of coding and annotated non-

coding RNAs (Figures 1G and 1H). When clustering according

to the coding gene expression, there are 20 robust (AU confi-

dence value > 95%) two-element clusters containing the paired

poly(A) and total RNA samples from the same patient each before

the application of the correction, and there are 28 such clusters

after the application of the correction (p = 0.012, two-tailed

Fisher’s exact test). When clustering according to the annotated

non-coding gene expression, there are 12 such two-element

clusters before the application of the correction and 25 after the

application of the correction (p = 0.0008, two-tailed Fisher’s exact

test). When clustering according to the repeat element expres-

sion, there are no such two-element clusters before the applica-

tion of the correction and 5 such clusters after the application of

correction (Figure 1I), only 3 of them being robust.

Technical Noise for Repeat Expression Is Higher Than
for Conventional Coding/Non-coding Genes
We tested whether bias due to technical noise in computing

gene expression is protocol specific and gene independent.
Cell Reports 23, 512–521, April 10, 2018 513
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Figure 1. Technical Comparison of Poly(A) and Total RNA Sequencing Protocols

(A–C) Hierarchical clustering and expression heatmap based on coding gene expression (A), non-coding gene expression (B), and repeat element expression (C).

Color code (top): total and poly(A) aliquots from the same sample are denoted using the same color. Total RNA is denoted in red and poly(A) in blue. The black/

white color (top) indicates whether the total RNA and poly(A) aliquots were direct neighbors in the dendrogram. See also Figures S1A–S1C. The total RNA- and

poly(A)-selected aliquots were direct neighbors in the dendrogram for 23 of 29 pairs for coding genes and 18 of 29 pairs for non-coding genes.

(D–F) Volcano plots for the pairwise difference in the computed expression between the poly(A) and total RNA protocols. Positive log(fold change) indicates higher

computed expression in the total RNA protocol. Both coding (D) and non-coding (E) genes exhibit different biases (i.e., positive or negative log[fold change]), with

a few outliers (shown in red). Mitochondrial genes (shown in orange) are depleted in the total RNA protocol. Computed expression of repeat elements (F) is higher

in the total RNA protocol for all but a few elements. Here, satellite repeats are shown in orange. See also Table S1.

(G–I) Hierarchical clustering and expression heatmap based on adjusted coding gene expression (G), non-coding gene expression (H), and repeat element

expression (I). Only genes detectable (i.e., having sufficient read numbers) in both protocols are included. See also Figures S1D–S1F. In the absence of technical

noise, the computed expression difference between the two protocols would be a gene-specific sample-independent constant.
We performed a chi-square test for the variance of the ratio of

the computed expression for each sample. We required that

the variance of this ratio across the samples does not exceed

the biologically significant expression difference. As a result,

61% of the coding genes, 37% of annotated non-coding

RNA, and only 8% of annotated repeats passed the test at

the FDR cutoff of 0.05. Genes and repeats that did not pass
514 Cell Reports 23, 512–521, April 10, 2018
the test would require a larger sample size to detect the bio-

logically significant effects.

Each sample has only one poly(A) prepared and one total RNA

prepared aliquot, and thus two computed values. We computed

the rank correlation between expressions of genes and repeat el-

ements according to the poly(A) and the total RNA protocols

(Figure 2A). We used only genes and repeat elements that
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Figure 2. Landscape of Repeat Elements Detected in RNA Sequencing Protocols

(A) Rank correlation between expression according to the total RNA and poly(A) data was computed for each gene and repeat element detectable using both

protocols. Distribution of the rank correlation for the coding and non-coding genes as well as repeat elements is shown. Rank correlation of repeat expression is

typically smaller than that of the coding or non-coding genes because repeats experience higher technical noise (t test, p = 3e-168). Small peaks for the non-

coding genes near zero comes from rRNA. See also Table S2.

(B) Regression for rank correlation between repeat expression according to the total RNA and poly(A) data versus length of the integration sites of the repeat

element in the genome. Repeats with greater lengths have smaller correlations.

(legend continued on next page)
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were detectable using both protocols. At the FDR value of 0.05,

99% of coding genes, 95% of annotated non-coding RNA, and

56% of repeats passed the significance test for correlation.

Expression values of repetitive elements computed using the

poly(A) and total RNA samples exhibit a positive correlation (Fig-

ure 2A). However, the value of this correlation is smaller than for

coding and annotated non-coding RNA. The reason may be

techical noise from polyadenylated repeats having copies lack-

ing a sufficiently long poly(A) tail or the aforementined contami-

nation from genomic DNA.

We investigated the relationship of the rank correlation be-

tween poly(A) and total RNA expression and the cumulative

length for repeat sequences within the human HG38 genome.

These values are negatively correlated (rank correlation rho =

�0.42, p = 8e-19). We performed regression between these vari-

ables (Figure 2B, p < 2e-16), which predicted that correlation be-

tween expression values computed using the two protocols of

0.99 is achieved for a cumulated sequence length of 5 kilobases:

log10L= 6:47� 0:53 ln
1+ r

1� r
;

wherer is the rank correlation and L is the cumulative repeat

length in the genome. Regression between the variance of the

expression difference between the two protocols and the cumu-

lative length of repeat sequences (Figure 2C, p < 1.3e-12) further

support the hypothesis that repeats with a higher length of inte-

gration sites within the genome exhibit greater noise. The regres-

sion is V =�0.17 + 0.08 log10L, where V is the variance of expres-

sion between the two protocols and L is the cumulative repeat

length in the genome.

Repetitive Elements Form Distinct Co-expression
Clusters
We performed consensus clustering of repetitive elements using

the 39 total RNA tumor samples in TCGA. Five clusters of repet-

itive element co-expression were detected, indicating that many

repetitive elements aberrantly expressed in tumors are not ex-

pressed independently of one another but rather are co-ex-

pressed (Figures 2D and 2E). Such clustering further indicates

that different clusters of repeat expression may confer or are

associated with distinct phenotypic traits. One cluster is an

outlier in terms of its expression and containsmost of the satellite

repeats (Figures 2D and 2E). This cluster exhibits the highest di-

versity of expression across tumors, implying that satellite re-

peats are most likely to have individualized patterns of expres-

sion, as observed before (Ting et al., 2011). The other four

clusters involve respectively LINEs, SINEs, ERVs, and repetitive
(C) Linear regression for variance of the computed expression difference for each r

genome. Repeats with greater lengths have higher variance. See also Table S1.

(D) Cluster assignment versus repeat type. See also Table S3 and Figures S2B a

(E) Consensus (median) expression within the five repeat clusters.

(F) Proportion of different repeat types within repeat reads. Here we have not incl

also Figure S2A.

(G) Detectability of repeat elements of different types in poly(A) RNA-seq. Note

detectable. Most of the ERV/LINE1/SINE are detectable. See also Figure S2C.

(H) Boxplot for CpG compositional bias computed for the consensus sequence f

516 Cell Reports 23, 512–521, April 10, 2018
DNA plus various repeats labeled ‘‘other’’ (e.g., CR1, hAT, simple

repeats) (Figure 2F). Unlike the cluster containing the most SAT

repeats, these clusters have similar consensus expression. We

compared the detectability of each repetitive element class us-

ing the poly(A) protocol (Figure 2G). Strikingly, contrary to ERV,

LINE, and SINE, satellite repeats appear almost universally un-

detectable by the poly(A) protocol, despite studies reporting

that a fraction of these transcripts are actively polyadenylated

(Criscione et al., 2014).

It was recently shown that the host defense protein ZAP

(ZC3HAV1), an antiviral factor that also possesses retroelement

restriction activity, specifically targets RNAs that are rich in CpG

(Takata et al., 2017). Similarly, in an earlier study, we found

that immunostimulatory properties of aberrantly expressed re-

peats were associated with unusual use of dinucleotide motifs

compared with the rest of the human genome (Tanne et al.,

2015). We therefore quantified aberrant motif use by the forces

on CpG and UpA dinucleotides. The forces measure a se-

quences deviation from maximum entropy dinucleotide usage.

We computed these effective forces for all LINE, SINE, and

SAT elements (Figure 2H). Interestingly, satellite elements are

the most diverse in terms of the CpG and UpA compositional

bias, and consequently we propose that they are more likely to

be sensed by innate PRRs as non-self based on motif usage

(Vabret et al., 2017).

ERV Expression Can Be Associated with Positive Anti-
PD-L1 (CD274) Immunotherapy Response
Pre-existing tumor T cell inflammation can be a strong predictor

of response to cancer immunotherapy such as anti-PD-L1

(CD274)/PD-1 (PDCD1) or anti-CTLA-4 antibodies (Chen and

Mellman, 2017). Several studies have recently highlighted links

between a tumor’s ERV expression, ‘‘viral defense genes,’’ and

anti-tumor immune responses (Chiappinelli et al., 2015; Roulois

et al., 2015; Badal et al., 2017). It was hypothesized that chemi-

cally induced epigenetic dysregulation in tumors leads to

expression of ERVs, which in turn stimulate innate immune

PRRs and create an anti-tumoral innate immune response. In

one study (Chiappinelli et al., 2015), endogenous ERV presence

was associated with clinical benefit in patients treated with anti-

CTLA-4 therapy. We examined one of the few available tumor

immunotherapy RNA-seq datasets from patients treated with

PD-L1 blockade (Snyder et al., 2017). In this cohort of patients

with urothelial carcinoma, we tested the hypothesis that ERV

expression is also associated with clinical benefits from therapy.

We performed hierarchical clustering using expression of ERV

repeats with the RepeatMasker/Repbase annotation, which re-

vealed two distinct clusters of high and low ERV expression
epeat element versus length of the integration sites of the repeat element in the

nd S2C.

uded the counts for rRNA, pseudogenes, and small nuclear RNA (snRNA). See

that the satellites (SAT) are not detectable, and DNA transposons (DNA) are

or repeats of different classes as well as coding and non-coding genes.
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B C Figure 3. Endogenous Retroviral Expres-

sion Is a Predictor of Patient Response in

Urothelial Cancer Cohort

(A) Heatmap for ERV expression in the urothelial

carcinoma dataset from Snyder et al. (2017).

Annotation (top): L1HS, HERVK, and HSATII,

expression of the corresponding repeat

elements; ERV3-1, ERV3K-1, PD-L1 (CD274),

PD1 (PDCD1), and CTLA-4, expression of the

corresponding Ensembl genes. The read counts

for ERV3-1 and ERVK3-1 are the highest among

ERV genes annotated in Ensembl; nevertheless,

they are still below the conventional low

bound in RNA-seq (10 reads per million) in all

samples. RECIST: black, missing data; blue,

PD (progressive disease); cyan, SD (stable

disease); orange, PR (partial response); red, CR

(complete response). Benefit: green, clinical

benefit; orange, no clinical benefit; gray, long

survival despite the absence of the clinical

benefit.

(B) Heatmap for the ERV repeat expression in

TCGA total RNA dataset. Annotation (top): L1HS,

expression of the corresponding repeat element;

ERV3-1 and ERVK3-1, expression of corre-

sponding Ensembl genes. The Pearson correla-

tion between the mean expression of ERV ele-

ments and expression of ERV3-1 gene is 0.46

(p = 0.0040, two-tailed t test). Pearson correlation

between the mean expression of ERV elements

and expression of ERVK3-1 gene is 0.40 (p =

0.013, two-tailed t test).

(C) Heatmap for interferon-stimulated (viral defense) gene expression in urothelial carcinoma dataset from Snyder et al. (2017). Color annotation (top) is the

same as that in (A).

(D) Kaplan-Meier plot for overall survival between patients from the ERV-repeat-high and ERV-repeat-low clusters. Association is significant (p = 0.012, log

rank test). See also Table S5.

(E) Kaplan-Meier plot for progression-free survival between the patients from the ERV-repeat-high and ERV-repeat-low clusters. Association is significant (p =

0.025, log rank test).
levels (Figure 3A). In this case, association between ERV repeats

expression and patient response (Response Evaluation Criteria

in Solid Tumors [RECIST]) to PD-L1 immunotherapy was signifi-

cant (p = 0.024, Fisher’s exact test). Consequently, patient

survival analysis showed that high expression of ERV repeats

correlates with overall survival (Figure 3D, p = 0.012) and pro-

gression-free survival (Figure 3E, p = 0.025).We performed logis-

tic regression for the clinical benefit versus the total ERV repeat

expression:

log
p

1� p
= � 7:0+ 2:4 EERV ;

where EERV is the total expression of ERV repeats, and p is the

probability of a clinical benefit (progression-free survival of at

least 6 months). The coefficient for EERV is significant (p =

0.04). We performed Cox regression for the overall survival (haz-

ard =�2.93 EERV + 0.43 age + 3.23met, where EERV is the to-

tal expression of ERV repeats, age is the patients’ age, andmet =

1 when liver metastases are present and 0 otherwise). Coeffi-

cients for EERV and met are significant (p = 0.001 and p =

0.003). We performed the Cox regression for progression-free

survival (hazard = �1.5 3 EERV � 1.9 3 age + 1.8 3 met). Coef-

ficients for EERV andmet are significant (p = 0.009 and p = 0.02).
In both cases we performed a test for the proportional hazards

assumption, and the assumption holds.

Interestingly, expression of ERV repeats was a better pre-

dictor of response to immunotherapy than the viral defense

signature, which did not similarly segregate patients (Figure 3;

Table S5). We performed a series of Cox regressions for the

hazard ratio using the patient’s age, presence of liver metas-

tases, and expression of one of the viral defense genes or

ERVs as independent variables. The effects of ERV expression

were associated with improved survival (p = 0.001, FDR =

0.02), contrary to the viral defense genes. Additionally, as

we show that RepeatMasker/Repbase annotation for ERV re-

peats yields a higher read number than that for ERV genes an-

notated in Ensembl, we suggest that clinical studies would

reveal more accurate associations by interrogating global

repeat expression for a particular class of repeats rather

than specific ERV genes. Thus, the read counts of the ERV

genes annotated in Ensembl were below the standard 10

reads per million threshold in RNA-seq, with ERV3-1 and

ERVK3-1 having the highest read numbers. Expression of

these two genes is correlated with mean ERV expression (Fig-

ure 3B). The implication is that because of the abundant tran-

scription of repetitive elements, they are more robust predic-

tors of response to immunotherapy than the expression of
Cell Reports 23, 512–521, April 10, 2018 517



associated immune genes, which likely require a larger sam-

ple size to resolve cohorts.

In addition, we investigated a dataset of anti-PD-1 (PDCD1)

therapy in metastatic melanoma (Hugo et al., 2016) and per-

formed a similar series of Cox regressions using age, number

of non-synonymous mutations, and expression of one of the

viral defense genes or ERVs as independent variables. Neither

expression of viral defense genes nor that of ERVs had a statis-

tically significant effect on the hazard ratio. It is worth noting

that almost all the tumors in this dataset are metastatic, unlike

the dataset of Snyder et al. (2017). Likewise, both datasets orig-

inate from two different tumor types, which may have different

patterns of ERV expression. Altogether, this suggests that there

are unique repeat classes linked with different phenotypes that

may be tissue context dependent, which merits further

investigation.

Global Repeat Derepression Is Associated with an
Immunosuppressive Phenotype
We next studied the relation between expression of repetitive

elements and tumor progression in human cancers not treated

with immunotherapy. Because few total tumor RNA-seq data

are publicly available, we examined the expression of LINE

and ERV elements, which can be detected using poly(A) cap-

ture, thus increasing our sample size. We focused on LINE and

ERV expression in colon and rectal adenocarcinoma cancers

available in TCGA, given the well-established genetics of colon

cancer progression, the established co-expression of LINE1

and HERV-K (Desai et al., 2017), and the known presence

of satellite repetitive element genome expansions (Bersani

et al., 2015). We examined 364 paired-end RNA-seq samples

prepared with the poly(A) protocol. We performed Cox regres-

sion for the hazard ratio using age, mutational load, presence

of metastasis, high microsatellite instability (MSI-H), low micro-

satellite instability (MSI-L), and expression of LINE, SINE, or

ERV elements as independent variables. High expression of

ERV elements has negative effect on survival (p = 0.004,

FDR = 0.015). We then sorted samples by their expression

level of LINE1 elements most recently integrated into the

genome (L1HS) and performed differential expression analysis

between the third and first terciles. Survival analysis (Kaplan-

Meier curve) using the TCGA data shows that patients from

the lowest L1HS expression tercile have the longer survival,

compared to patients from the highest L1HS expression tercile

(p=0.0297; Figure 4A).

To study in detail the relationship between repeat expression

and cancer progression, we further analyzed the difference

in gene expression in tumors expressing high or low levels

of human LINE1. Gene Ontology (GO) enrichment analysis

uncovered significant enrichment of specific GO terms when

analyzing the subset of genes downregulated in high versus

low LINE1 expression samples. Interestingly, all the terms

were related to immune response, suggesting that they

are the main pathways associated with LINE1 expression.

Moreover, genes that were overexpressed in the samples that

show upregulation of LINE1 expression demonstrated no signif-

icantly enriched GO term. The most significant GO terms en-

riched for the downregulated genes include ‘‘leukocyte migra-
518 Cell Reports 23, 512–521, April 10, 2018
tion,’’ ‘‘complement activation,’’ ‘‘phagocytosis,’’ ‘‘response to

interferon-gamma,’’ and ‘‘regulation of antigen processing and

presentation’’ (Figure 4). We also performed gene set enrich-

ment analysis (GSEA) on one of the enriched GO terms, ‘‘pos-

itive regulation of leukocyte chemotaxis’’ (Figure 4D). The impli-

cation is that either there is a correlation between the lack of

epigenetic control associated with LINE1 expression and im-

mune suppression, or, to the extent LINE1 elements engage im-

mune pathways, they are activating pathways associated with

negative regulation (Figure S1).

Similar gene expression analysis could not be performed with

satellite repeats because of the small number of total RNA se-

quences available. Thus, we measured the relationship between

LINE1 and specific satellite RNAs. Previous work using single-

molecule RNA-seq had shown a strong association of LINE1 re-

peats with pericentromeric satellites in both mouse and human

cancers (Ting et al., 2011). We confirmed that LINE1 expression

correlates with expression of the human pericentromeric satellite

HSATII in TCGA tumor samples preparedwith total RNA protocol

and in pancreatic tumors sequenced by single-molecule

sequencing, obtained from Ting et al. (2011) (Figure 4B; R2 =

0.179, p = 0.009, and R2 = 0.571, p = 0.001, respectively). Given

the ability of single-molecule RNA-seq to better quantify HSATII,

we performed a targeted analysis of the 16 such pancreatic can-

cer samples (Ting et al., 2011) to determine if there was a consis-

tent relationship between HSATII and the tumor immune micro-

environment. We binned samples into terciles according to

HSATII expression and performed differential expression anal-

ysis between the third and first terciles. In particular, genes

downregulated in HSATII-high samples were also enriched in

the ‘‘lymphocyte migration’’ GO term.

Additionally, we performed a GO-independent analysis of im-

mune gene enrichment following the immune signatures defined

by Rooney et al. (2015). Interestingly, the two genes labeled as

responsible for the cytolytic activity (GZMA and PRF1) associ-

ated with cytotoxic T (CD8+) activation are highly downregulated

in high-HSATII-expressing samples (8-fold change). It was

recently shown that active b-catenin signaling in metastatic

melanoma samples results in T cell exclusion from the tumor

microenvironment (Spranger et al., 2015). To evaluate the

role of b-catenin pathway in the relation between LINE1/

HSATII expression and immune-excluded tumor phenotype,

we analyzed the differential expression of a list of b-catenin

target genes in the TCGA and pancreatic tumor datasets (Table

S5). We did not measure any significant correlation between a

b-catenin signature and L1HS and HSATII.

To validate the relevance of these GO terms, we performed

combined RNA in situ hybridization for HSATII and immunohisto-

chemistry for cytotoxic T cells (CD8+) in a cohort of 75 colon tu-

mor samples (Figures 4E and 4F).We scored tumors on the basis

of high or low levels of HSATII by comparing relative levels of

HSATII staining in tumor cells compared with normal adjacent

cells. We then quantified the density of CD8+ T cells observed

in the tumor microenvironment, finding significantly fewer

CD8+ T cells in HSATII-high tumors. This is consistent with

our computational analysis of RNA-seq data demonstrating a

downregulation of immune-related GO terms in repeat-express-

ing (LINE1 or HSATII) cancers.



Figure 4. Repeat Element Expression Is a

Predictor of Colon Tumor Immune Infiltra-

tion and Patient Survival

(A) Kaplan-Meier plot depicting survival over time

for patients with high (red, top tercile) and low

(blue, bottom tercile) L1HS expression. Dataset

comes from colon and rectal adenocarcinoma

cancers available in TCGA and classified as mi-

crosatellite stable. See also Table S5.

(B) Correlation of HSATII and L1HS expression in

tumors prepared with total RNA protocol available

in TCGA (n = 38, left) and in pancreatic tumors

sequenced by single-molecule sequencing (n = 16,

right).

(C) GO terms enriched in genes downregulated in

the third compared with the first tercile of samples

sorted by L1HS expression in TCGA MSS colo-

rectal tumors. See also Tables S4 and S6.

(D) GSEA enrichment plot for genes of the ‘‘positive

regulation of leukocyte chemotaxis’’ GO set.

Genes were ranked by the t statistic produced by

comparison of their expression in the third and first

terciles of samples according to L1HS expression

in TCGA MSS colorectal tumors. p < 1e-4.

(E) Representative images of colon tumor stained

for CD8 protein expression (immunohistochem-

istry, brown) and HSATII RNA (in situ hybridiza-

tion, red). Left: low HSATII expression correlates

with high CD8+ T cell infiltration. Right: high

HSATII expression correlates with low CD8+ T cell

infiltration.

(F) Associated quantification of colon cancer in-

tratumoral CD8+ T cell per field of view (400 3

200 mm) (mean with SD). Tumor samples were

classified as HSATII-high or HSATII-low expres-

sion following in situ hybridization staining. p =

0.0004 (unpaired t test).
DISCUSSION

Broader use of total RNA-seq protocols and single-molecule

sequencing platforms would allow researchers to investigate

the expression of repetitive elements and their use as bio-

markers or immune stimulators in cancer. Available data reveal

that conventional poly(A) capture-based RNA-seq allows one

to detect expression of only a limited number of repetitive ele-

ments, despite their recently established role in prognosis and

response to epigenetic and immunotherapy. Only a subset of

LINE-, SINE-, and ERV-related elements can be captured with

the poly(A) protocol, along with some DNA repeats. Conversely,

satellite repeats (in particular HSATII, a known cancer biomarker

and immunostimulatory molecule) are only detected using the

total RNA protocol.

We show ERV expression is associated with positive response

in a set of patients treated with anti-PD-L1 therapy, extending

previous findings in melanoma patients treated with anti-CTLA-

4. Moreover, although ERV expression segregated patients,

the viral defense signature associated with response in previous

work did not, suggesting abundant transcription of repetitive el-

ements may represent a more robust biomarker. Satellite re-

peats display heterogeneous expression and anomalous nucle-

otide motif use relative to other repeat classes. One may
hypothesize that in late-stage tumors, in which abundant repet-

itive element expression is associated with failure of tumor sup-

pressors, the large-scale transcription of many ‘‘non-self’’ repet-

itive elements has been co-opted by the tumor’s evolution to

maintain an advantageous inflammatory state. The distinct

sequence motifs in satellite RNAs, including HSATII, that appear

‘‘non-self’’ lead to differential innate immune response is consis-

tent with this theory (Tanne et al., 2015).

Altogether, our work indicates that expression of repeat

RNAs is heterogeneous and correlates with relative changes

in the balance of inflammatory immune response that are

pro- or anti- tumoral. Mechanistically, this may involve the

sensing of repeat expression by innate immune cells in the tu-

mor microenvironment or by innate immune sensors expressed

by the cancer cell itself. This would be consistent with previous

work demonstrating that specific stimulation of innate immune

receptors on cancer cells can be pro-tumorigenic, such as

in pancreatic cancer (Ochi et al., 2012; Zambirinis et al.,

2014), in which HSATII is known to be highly abundant (Ting

et al., 2011). Because HSATII is not detected by the poly(A)

sequencing protocol, we conclude that causal molecules

with a critical role engaging the innate response in the tumor

microenvironment may be hidden from view using current

sequencing protocols. We therefore demonstrate the need for
Cell Reports 23, 512–521, April 10, 2018 519



total RNA protocols and associated bioinformatics tools to un-

cover the currently hidden, yet likely critical, signaling RNAs in

the cancer immune microenvironment.
EXPERIMENTAL PROCEDURES

We selected 38 samples from TCGA that had total RNA frozen solid tumor

RNA-seq data. These samples were composed of 12 LUAD, 10 COAD,

5 BRCA, 4 KIRC, 4 UCEC, and 3 BLCA tumors. Among these 38 samples,

29 samples had matching poly(A) RNA-seq data. Total RNA- and poly(A)-

selected aliquots were derived from the same physical sample. These samples

were composed of 11 LUAD, 6 COAD, 5 BRCA, 4 KIRC, and 3 BLCA tumors.

The presence of such paired samples allows one to perform a technical

comparison of sequencing protocols and their effects on computed gene

expression.

The total RNA and poly(A) preparation protocols use different strategies for

rRNA depletion. The total RNA protocol uses the RiboZero kit to remove rRNA.

The poly(A) protocol uses the poly(A) capture procedure to isolate the polyade-

nylated transcripts, which leaves rRNA out. After initial quality filtering, we

aligned the reads to the human genome and to the Repbase database of repet-

itive elements (Bao et al., 2015). The number of reads mapping to the anno-

tated genomic features was quantified, and expression was computed.

Gene expression in terms of log2-CPM (counts per million reads) was

computed and normalized across samples using the TMM method as imple-

mented in the calcNormFactors function of edgeR (Robinson et al., 2010).

Only coding genes were used for normalization. In particular, this procedure

ensures that the computational subtraction of the rRNA reads is done. The pur-

pose of the normalization procedure is to identify some reference quantities

(e.g., housekeeping gene expression) that can be compared among the

different samples to establish the sample specific normalization factor. In

particular, the TMM normalization procedure assumes that most of the genes

are not differentially expressed or that the effects of the overexpression and

the underexpression are approximately equal except for some outliers. These

assumptions are reasonable when we consider the protocol-specific differ-

ence for the coding genes. Indeed, the majority of the coding genes are ex-

pected to be detectable by both protocols, which is not the case for the repeat

elements. Genes with low expression (ones not having at least 10 reads per

million reads in at least two samples) were filtered out. The same protocol

was used for all datasets.

The difference of the computed expression between the two protocols was

computed using limma (Smyth, 2004; Ritchie et al., 2015). Expression data

were used in conjunction with the weights computed by the voom transforma-

tion (Law et al., 2014). Despite the use of the same computational procedure,

this ‘‘differential expression’’ test measures the technical difference between

the two sequencing protocols, not the biological difference between the

various tissues. This difference is expressed as the binary logarithm of the

fold change (logFC).

The chi-square test for the variance of computed gene expression was per-

formed as follows. We considered only genes with median expression using

both poly(A) and total RNA protocols that exceeded log2(10). For every phys-

ical sample, we computed the difference between the expression values from

the poly(A) protocol and total RNA protocol. Thenwe computed the variance of

these differences. We performed the chi-square test for the variance to verify

whether these differences were sample independent. We required that the

linear fold change between the two biological conditions (e.g., tumor and

normal tissue) FC = 2 be detectable, assuming n = 3 replicates for each of

the conditions. This led to the cutoff for the variance used in the test.

We performed linear regression between the variance and the log of the

repeat length in the genome. For the rank correlation rho, we performed linear

regression between log[(1 + rho)/(1 � rho)] and the log of the repeat length in

the genome (logistic regression).

Human tumor tissues were obtained from the Massachusetts General Hos-

pital according to IRB-approved protocols 2012P000039 and 2015P000731.

Research involving human participants was approved by the MSKCC IRB.

Additional details of the analyses are given in Supplemental Experimental

Procedures.
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Statistical Methods

The difference of the computed expression between the two protocols was

computed and evaluated using a paired moderated t test (limma). We identi-

fied outlier coding and non-coding genes as follows. We computed the

mean and the SD of the distribution of logFC for all genes. Then we performed

the Z test for the logFC value for each gene and computed the false discovery

rate (FDR) using the Benjamini-Hochberg procedure. Geneswhose FDRswere

less than 0.05 were considered outliers. For this computation, we considered

the coding and annotated non-coding genes separately.

Significance of the rank correlation was evaluated using the asymptotic

t approximation. Significance of the regression coefficients was evaluated us-

ing the t test. Survival analysis was carried out using Kaplan-Meier log rank test

as well as Cox regression. Where applicable, adjusted p values (FDR) were

computed using the Benjamini-Hochberg method. Statistical significance of

the hierarchical clustering was assessed using the bootstrap method (Suzuki

and Shimodaira, 2006).

Clustering of repeat elements on the basis of expression was performed as

follows. We created 1,000 bootstrap datasets and performed centroid clus-

tering on each of them. Then we computed consensus clustering. Entropic

forces acting on the sequence motifs were computed using the methods pre-

viously developed (Greenbaum et al., 2014; Chatenay et al., 2017).

DATA AND SOFTWARE AVAILABILITY

The accession number for the pancreatic cancer data (Ting et. al., 2011) re-
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noma data (Hugo et. al., 2016) reported in this paper is SRA: SRP070710.
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