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Scalar interactions have a special property:

Like objects attract. Unlike objects repel.

So they’re potentially interesting in the dark sec-

tor.

String theory provides a multitude of scalars (mod-

uli) as well as heavy objects coupled to them (e.g.

wrapped branes).

Generically expect all scalars to get a mass af-

ter SUSY breaking. But do we really understand

genericity and SUSY breaking?

While the court is still out, propose to consider

very light scalars (mφ
<∼ 1Mpc−1) in the dark sec-

tor.



Like objects attract. Unlike objects repel.

Scalar exchange is similar to gauge boson exchange:
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g00
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Compare to the force of gravity:
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where Qi = dmi
dφ is the scalar charge: conserved in

non-relativistic processes.



Brandenberger-Vafa scenario as an example

• At early times, universe was R× T9, thermally

populated with winding & momentum strings.

• As T3 → R3, winding strings generically anni-

hilate. Not true if T4 → R4. Hence D ≤ 4!

• Other T6 directions stay close to self-dual ra-

dius.

Consider strings on R3,1 × S1 (times some M5 if

you like):
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with background

ds25,str = ds24,str + e2ϕdx2
5 , x5 ∼ x5 + 2π
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Assume Φ4 gets fixed but φ remains massless.

For a string sitting at ~x = 0 but winding x5,

S = −
1

2πα′

∫
d2σ
√

g = −
1

2πα′

∫
dtdx5 eϕ

= −
∫
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1√
α′

eφ/MPl ≡ −
∫

dt mW (φ) .
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Thus we have heavy states,

winding :
√

α′mW (φ) = eφ/MPl

momentum :
√

α′mM(φ) = e−φ/MPl .

(5)

where the radius of the S1 is
√

α′eφ/MPl and M2
Pl =

1/8πG4. Let’s have these be the dark matter!

Force between two particles is

Fpq = Bpq
Gmpmq

r2
p, q are either M or W.

Bpq = 1 + βpq =

(
3 −1

−1 3

)
← net repulsion

← triple attraction
(6)

(Gauge interactions can be ignored—intuitively,

think Debye screening).

Winding strings prefer to clump up away from mo-

mentum strings: different from CDM. (Too differ-

ent? See later).



Linear perturbation theory

During matter-dominated epoch, number densities

np = n̄p(1 + δp) and φ = 0, while a(t) ∼ t2/3.

Perturbations evolve according to

δ̈p + 2
ȧ

a
δ̇p = 4πGρ

∑
q

βpqfqδq . (7)

Two independent perturbations:

adiabatic δW = δM ∼ t2/3

isocurvature δW = −δM ∼ t
(8)

Scalar force is stronger than gravity, so segrega-

tion is faster than adiabatic structure formation.

BUT δisocurvature � δadiabatic naturally at zeq ≈
3000, e.g. from inflation.



Departing from the linear regime

If δisocurvature
<∼ 1

55δadiabatic, at zeq = 3000,

then δisocurvature
<∼ δadiabatic today.

• Haloes exit the linear regime as nearly adia-

batic perturbations at perhaps znl = 10.

• Today they’re perhaps 300kpc across.

• A typical DM particle moves with v = 200km/s.

• So a test particle traverses halo in 109 yr.

• Galaxies have had at least 10 such ”dynamical

times” to relax.

• Part of relaxation is probably charge separa-

tion: + haloes, – haloes.

In the interests of allowing further tweaking of

CDM at scales <∼ 1Mpc where its correctness is

less clear, consider screening of scalar forces.



Screening of scalar forces

Setting mφ = 1Mpc−1 is one option. Or, consider

L =
1

2
(∂φ)2 + Ψsi∇/ Ψs − ysφΨ̄sΨs . (9)

ms = |ysφ|. If their energy is εs = ms/
√

1− v2,

then
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√
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1
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The main trick: 〈Ψ̄sΨs〉 = ns in rest frame. Note

rs =

√
εs

y2
s ns
∝ a(t) . (11)

Thus we screen at fixed wavenumber, not fixed

physical length.

Add massive species with m± = m± y±φ. Galactic

haloes are mostly m+’s or mostly m−’s.

(Hrs)
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ρs < ργ → rs <∼ 1Mpc

(12)

But Ψs loops will generate V (φ)!



A supersymmetric version

Consider supersymmetric generalizations, e.g. SU(2)

gauge thy with an adjoint chiral Xa
b and several 2

and 2̄’s, qa
i and q̃ia, and

W = ysq̃iaXa
bq

b
i . (13)

The analog of φ is the moduli space of SUSY

vacua. F-flatness

ysX
a
bq

b
i = 0 , ysq̃iaXa

b = 0 , ysq̃iaqb
i = 0 , (14)

has solns with X = 0 and q̃iaqb
i = 0 (Higgs branch,

SU(2)→ nothing) and where q = q̃ = 0 but X 6= 0

(Coulomb branch, SU(2)→ U(1)).

D-flatness leaves some flat dir’s: on Coulomb branch,

VD ∝ tr[X, X†]2, leaves 1C-dim’l moduli space. At

X = 0, extra massless degrees of freedom play role

of Ψs particles.



SUSY protects flat directions... That was the

point.

After SUSY breaking, standard wisdom is that

mφ
>∼ m3/2 for all scalars: comes from gravita-

tional mediation. If ΛSUSY ∼ 10TeV, then

m3/2 ∼
Λ2

SUSY

MPl
≈ 0.1eV�� 1Mpc−1 .

• Standard arguments occasionally fail in ways

we don’t understand: e.g. cosm. const.

• If SUSY breaking is the only theoretical obsta-

cle, let’s press on.

Problems can arise even before SUSY breaking:

recall that SUGRA sends

yuqHuu→ eK/2yuqHuu

mu → eK/2mu .
(15)

This is clearly a problem if φ rolls: generic dimen-

sion 5 couplings, φ
MPl

yuqHuu, violate Equivalence

Principle measurably.

So suppose we start at dimension 6, ∝ (φ/MPl)
2.



Proton mass depends on K(Φ,Φ†): fifth force?

Gauge couplings don’t depend on K, so if K =

Φ†Φ/M2
Pl + . . ., then

mp = m̄p + εp
φ2

M2
Pl

εp ∼ mu,d ∼ 10MeV . (16)

• Suppose X = Φ
MPl

σ3
2 .

• Then K(Φ) = Φ†Φ/M2
Pl + . . .

• Gauge invariance forbids a linear term in Φ.

So dmp/dφ = 0 at φ = 0, just where the screening

particles appear!

• In a galactic halo, φ 6= 0, so dmp/dφ = 2εpφ/M2
Pl.

• Current bounds translate to 〈φ〉 <∼ 10−4MPl.

• Estimate φ ∼ 10−6MPl in a galaxy.



Conclusion / Perspective

The idea of stabilizing extra dim’s with wrapped

strings / branes has been around since 1988:

2φ =
dVeff

dφ
, Veff = n+m+(φ) + n−m−(φ) (17)

stabilizes φ(t) to the minimum of Veff. For this

mechanism to be operative today, need bare mφ

very small.

• Several groups have extended this picture to

“brane gas cosmology,” usually focusing on

the early universe.

• Recent work suggests that quantum effects

may draw universe to a point where fields be-

come massless: Ψs particles pair-created at

ms = 0.

• δφ(t, ~x) is at least as interesting: scalar forces

on late-time inhomogeities may fit observa-

tions better than ΛCDM.

• There is room for the requisite light scalars in

string / M-theory compactifications, provided

we ignore SUSY breaking in dark sector.
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