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Scalar interactions have a special property:

Like objects attract. Unlike objects repel.

So they're potentially interesting in the dark sec-
tor.

String theory provides a multitude of scalars (mod-
uli) as well as heavy objects coupled to them (e.q.
wrapped branes).

Generically expect all scalars to get a mass af-
ter SUSY breaking. But do we really understand
genericity and SUSY breaking?

While the court is still out, propose to consider
very light scalars (m(b S I\/Ipc_l) in the dark sec-
tor.



Like objects attract. Unlike objects repel.
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Scalar exchange is similar to gauge boson exchange:
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where @Q); = C%‘Z’ IS the scalar charge: conserved in

non-relativistic processes.



Brandenberger-VVafa scenario as an example

e At early times, universe was R x T2, thermally
populated with winding & momentum strings.

e As T3 — R3, winding strings generically anni-
hilate. Not true if 7% — R*. Hence D < 4!

e Other T° directions stay close to self-dual ra-
dius.

Consider strings on R31 x S1 (times some M5 if
you like):
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Assume d, gets fixed but ¢ remains massless.
For a string sitting at ¥ = 0 but winding zs,
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Thus we have heavy states,
winding : \/;mw(qb) = ?/Mpi (5)
momentum : \/;mM(qb) — e~ ?/Mpy

where the radius of the St is Va/e?/Mri and M3, =
1/8nG4. Let's have these be the dark matter!

Force between two particles is

p,q are either M or W.

3 —1 net repulsion
Bpq =1+ PBpg = ( i

—1 3 triple attraction

(6)
(Gauge interactions can be ignored—intuitively,
think Debye screening).

Winding strings prefer to clump up away from mo-
mentum strings: different from CDM. (Too differ-
ent? See later).



Linear perturbation theory

During matter-dominated epoch, number densities
np = np(1 4+ 6,) and ¢ = 0, while a(t) ~ t2/3.
Perturbations evolve according to
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Two independent perturbations:
adiabatic ow = Opf ~ £2/3 (8)
isocurvature oy = —opp ~ t

Scalar force is stronger than gravity, so segrega-
tion is faster than adiabatic structure formation.
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BUT disocurvature < Oadiabatic Naturally at zeq =~
3000, e.g. from inflation.



Departing from the linear regime

1 -
If disocurvature & €5%adiabatic: @t zeq = 3000,
then Sisocurvature S dadiabatic today.

e Haloes exit the linear regime as nearly adia-
batic perturbations at perhaps z,; = 10.

e [oday they're perhaps 300 kpc across.
e A typical DM particle moves with v = 200 km/s.
e So a test particle traverses halo in 10° yr.

e (Galaxies have had at least 10 such "dynamical
times” to relax.

e Part of relaxation is probably charge separa-
tion: 4+ haloes, — haloes.
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In the interests of allowing further tweaking of
CDM at scales < 1 Mpc where its correctness is
less clear, consider screening of scalar forces.



Screening of scalar forces

Setting m, = 1 Mpc—1 is one option. Or, consider
1 | _
L = 5(8¢)2 —I— \USZV wS - y8¢w8w8 . (9)

ms = |ys¢|. If their energy is es = ms/\/1 —v?,
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The main trick: (W W) = ng in rest frame. Note
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Thus we screen at fixed wavenumber, not fixed

physical length.
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Add massive species with m+ = m +y+¢. Galactic
haloes are mostly m_'s or mostly m_'s.
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But W, loops will generate V(¢)!



A supersymmetric version

Consider supersymmetric generalizations, e.g. SU(2)
gauge thy with an adjoint chiral X%, and several 2
and 2's, ¢¢ and g;,, and

W = ysGia X %a’ . (13)

The analog of ¢ is the moduli space of SUSY
vacua. F-flatness

ysX%a! =0,  ysGiaX“y =0, ysdiaq; =0, (14)
has solns with X = 0 and §;,¢? = 0 (Higgs branch,
SU(2) — nothing) and where ¢ = ¢ =0 but X #0
(Coulomb branch, SU(2) — U(1)).

D-flatness leaves some flat dir’'s: on Coulomb branch,
Vp o tr[X, XT]2, leaves 1c-dim’l moduli space. At
X = 0, extra massless degrees of freedom play role
of W, particles.

Covlomb
branch




SUSY protects flat directions... That was the
point.

After SUSY breaking, standard wisdom is that
my < mgz /o for all scalars: comes from gravita-
tional mediation. If Agygy ~ 10 TeV, then

/\2
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e Standard arguments occasionally fail in ways
we don’'t understand: e.g. cosm. const.

e If SUSY breaking is the only theoretical obsta-
cle, let's press on.

Problems can arise even before SUSY breaking:
recall that SUGRA sends
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This is clearly a problem if ¢ rolls: generic dimen-
sion 5 couplings, MiplyuqHuu, violate Equivalence

Principle measurably.

So suppose we start at dimension 6, o« (¢/Mp;)?.



Proton mass depends on K(®, ®T): fifth force?

Gauge couplings don't depend on K, so if K =
Pid /M2, + ..., then
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o Suppose X = M&pz%'

e Then K(P) =dId/M3 + ...

e Gauge invariance forbids a linear term in .

So dmp/d¢p = 0 at ¢ = 0O, just where the screening
particles appear!

e In a galactic halo, ¢ # 0, so dmy/dp = 2¢pp/M3,.
o Current bounds translate to (¢) S 10~ 4Mp;.

e Estimate ¢ ~ 107°Mp; in a galaxy.



Conclusion / Perspective

The idea of stabilizing extra dim’s with wrapped
strings / branes has been around since 1988:
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stabilizes ¢(t) to the minimum of Vi, For this
mechanism to be operative today, need bare Mg
very small.
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e Several groups have extended this picture to
“brane gas cosmology,” usually focusing on
the early universe.

e Recent work suggests that quantum effects
may draw universe to a point where fields be-
come massless: W, particles pair-created at

mSZO.

e 0o(t, %) is at least as interesting: scalar forces
on late-time inhomogeities may fit observa-
tions better than ACDM.

e [ here is room for the requisite light scalars in
string / M-theory compactifications, provided
we ignore SUSY breaking in dark sector.
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