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1 Outline

I. Hadronic Stringiness

1. Experimental evidence for a hadronic string
model

a) Linear Regge Trajectories

b) Regge Behavior and ∞ hadronic size

c) “Narrow” resonance dominance

2. Lightcone String explanation of these features

3. Large Nc

a) Planar diagrams

b) Resonances are stable (Γ = O(1/Nc)))

c) Rules for planar QCD Feynman dia-
grams
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II. Worldsheet system for planar (Nc = ∞) QCD

1. QFT Lightcone Worldsheet

2. Ising spin rep of multi-loops: (D+1) dimension

3. Cubic Gauge Vertex on Worldsheet

4. Quartic vertices from cubics

5. Ultraviolet divergences

6. Renormalization on the Worldsheet

7. Conclusions
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2 Why bother?

1. The phenomenology of mesons and baryons in-
cludes many “stringy” aspects. QCD should
eventually be able to explain them. Establish-
ing a string description of QCD may be the
best way to accomplish this.

2. String theory is not just a theory of quan-
tum gravity and everything else: e.g. from
AdS/CFT correspondence we know some string
theories are equivalent to flat space quantum
field theories. A string theory equivalent to
QCD would finally confront string ideas with
reams of experimental tests much more strin-
gent than may ever be obtained for string’s
quantum gravity/TOE application.

3. Proper form of string theory still a work in
progress. Since sound formulations of QFT al-
ready exist, each string/QFT duality throws
new light on this project.

4. Experience shows that when a theory actu-
ally makes contact with nature, experimental
feedback illuminates aspects of the theory un-
dreamt of by its most brilliant practitioners.
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3 I: Hadronic Stringiness

3.1 Phenomenological Stringiness

1. Hadrons fall on approximately linear
Regge trajectories

t  (GeV) 2

   (t) αJ =

ρ

A2

ρ

A4

3

I=1  ,    P=(−)J ,   G=(−)J + 1

α   (t) =0.88t+0.5
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J=0.88 M^2-0.25

-1

0

1

2

3

4

5

6

0 1 2 3 4 5 6 7

J

M^2

K trajectories: P=(-)^(J+1), I=1/2

K data
J=0.88M^2-0.25

0-7



0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7 8

J

M^2

N trajectories: I=1/2, P=(-)^{J-1/2}

J=0.88 M^2+0.1
N normal data
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N abnormal data
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Delta trajectories: I=3/2, P=(-)^{J+1/2}

J=0.88 M^2+0.15
Delta normal data
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Delta abnormal data
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Lambda trajectories: I=0, P=(-)^{J-1/2}

J=0.88 M^2-.45
Lambda normal data
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Lambda abnormal data
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Sigma trajectories: I=1, P=(-)^{J-1/2}

J=0.88 M^2-.6
Sigma normal data
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2. Exchange degeneracy: Temporary Suspension
of Statistics Restrictions

On general grounds particles of even and odd J
should lie on distinct Regge trajectories. (This
is because of exchange forces in systems of iden-
tical constituents.) Plots of the data indicate
that these trajectories are nearly degenerate:
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Exchange Degeneracy: rho-a2-omega-f Trajectories

rho-a2 data
omega-f data

J=0.88 M^2+0.5

This suggests that “exchange forces” are weak
and encourages neglecting them in first ap-
proximation. (Exchange degeneracy) This sup-
ports an approximate dynamics described by
planar Feynman diagrams. Mesons as open
strings.
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3. Hadronic scattering amplitudes show clear cut
Regge behavior in processes in which “Vacuum
Quantum Number Exchange” is excluded: e.g.
π− + p → π0 + n. For s → ∞

s
uuddu

t

du uud

dd

A(s, t) ∼ β(t)sα(t)

s = −(p− + pp)2 > 0, t = −(p0 − pp)2 < 0

The t dependence of the power of s can be fit.
Consistent with a straight line passing through
the resonances ρ, ρ3, ... on the The Regge tra-
jectory α(t).

Note: Vacuum exchange must be removed. It
is dominated by glueball (“Pomeron”) exchange,
and while these may be controlled by Regge
trajectories, their α′

Pom is small near t = 0.
Because the Pomeron intercept is near unity
these processes swamp ρ exchange, unless ve-
toed by charge exchange.
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4. Resonance/Regge duality in the same Pomeon-
free processes.

Dolen, Horn and Schmid modelled A(s, t) as
a sum of narrow resonance shapes using res-
onance data from phase shift analyses. They
showed that the Regge form described this res-
onance model in an average way and extracted
an α(t) compatible with that directly measured.

This encouraged the search for narrow reso-
nance models of Regge behavior by Ademollo,
Rubinstein, Veneziano, and Virasoro that cul-
minated in Veneziano’s proposed amplitude for
π + π → π + ω

A(s, t) = g2 Γ(−α′s − α0)Γ(−α′t − α0)
Γ(−α′(s + t) − 2α0)

and the rest is the history of string theory. Ex-
change degeneracy is reflected in the absence
of u channel singularities in A(s, t).

0-14



3.2 Why this phenomenology is stringy.

Worldsheet Description of String

Coordinates and Momenta of String

xµ(σ, t), Pµ(σ, t)

Here Pµdσ = dpµ is the energy momentum carried
by the element dσ of string.

Nambu-Goto String on the Lightcone:

x+ ≡ 1√
2
(x0 + x3) = t, P+ = 1

S =
∫

dt

∫ p+

0

dσ

(
ẋ · P − 1

2
P2 − T 2

0

2
x′2

)
S →

∫
dt

∫ p+

0

dσ
1
2
(
ẋ2 − T 2

0 x′2)
Eq. of Motion for Open String:

∂2x

∂t2
= T 2

0

∂2x

∂σ2

∂x

∂σ
= 0, σ = 0, p+
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Normal modes:

xk(σ, t) =

xk
0 +

pk

p+
t +

√
2
p+

∞∑
n=1

ak
ne−iωnt + ak†

n eiωnt

√
2ωn

cos
nπσ

p+

ωn = T0
nπ

p+
, [ak

n, al†
m] = δmnδkl

H = p− =
p2 + M2

2p+

α′M2 =
∞∑

n=1

na†
nan − D − 2

24
, α′ =

1
2πT0

The mass eigen-states are of form

ak1†
n1

· · · akl†
nl

|0〉
with maximal J = l and

mass2 = (n1 + · · · + nl)/α′

Leading trajectory has minimal mass for fixed J = l,
so n1 = n2 = · · · = nl = 1, and

α′M2 = l − (D − 2)/24,

predicting a linear trajectory

α(M2) = l = α′M2 + (D − 2)/24.
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Regge Behavior (String has it but Regge behavior is
found in other models as well)

Mandelstam showed that with a Light-cone world-
sheet of shape Σ(τ):

τ

0

The path integral with free string action

A(s, t) =
∫ ∞

−∞
dτ

∫
Dx exp

{
−1

2

∫
Σ(τ)

(
ẋ2 + T 2

0 x′2)}

predicts the Veneziano formula which is Regge be-
haved.

This is a technically sophisticated calculation, so we
turn instead to a simple but peculiar consequence of
Regge behavior that is easy to explain with string.
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Infinite Hadronic Size

Near momentum transfer t = 0, α(t) ≈ α′t + α0, so
Regge behavior implies a sharp forward peak in A
as a function of t that shrinks with energy:

A ∼ Ce−α′|t| ln s (1)

This behavior implies the scattered system has an
effective size R2 ≈ α′ ln s.

Take, e.g., p−1 = 0(s), p+
1 = O(1/s) and p±2 = O(1).

Then s ≈ p−1 p+
2 . Then hadron 2 as probed by hadron

1 has a transverse size of O(
√

ln s). But since s can
be arbitrarily large, the light-cone wave function of
system 2 must actually have an infinite size.

We can easily see that this peculiar feature is a char-
acteristic of string. For example consider the corre-
lator

〈0|(x(p+, ∆t) − x(0, ∆t))(x(p+, 0) − x(0, 0))|0〉

=
2

πT0

∞∑
n=1

1 − (−)n

n
e−iωn∆t

∼ −4α′ ln
∆t

α′p+
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We can regard ∆t as the time resolution limited by
the uncertainty principle ∆t > 1/p−, so we get the
effective size of the string ground state:

∆x2 ∼ 4α′ ln(2α′p+p−) = 4α′ ln(α′s)

as required by Regge behavior.

It must be emphasized that this infinite size is of
one hadron as measured by another hadron. The
size of a hadron measured by scattering of a virtual
photon is certainly finite. One of the earliest recog-
nized short-comings of the Nambu-Goto string was
its failure to explain how a photon will not measure
an infinite size for the hadron. (FNG(q2) ∼ e−∞q2

)

It might be tempting to prefer the bag model of long
hadrons as a flux tube of fixed transverse size. But
such a picture would not be consistent with Regge
behavior and that should probably be regarded as a
significant short-coming.

The hadron wave function should embody both fea-
tures: an infinite size as measured by another hadron
but a finite size as measured by form factors.
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3.3 Long String-like Bags

q q

B

B

q qq

B

B

B=Vacuum pressure

Collimates Flux

α′ = 1
8π

√
2παsBC

Bag model states have finite size (good form factors),
but won’t include the infinite size fluctuations dic-
tated by Regge behavior.

In 1980’s Polyakov suggested that a Liouville-like
field dependence in the string tension could simulate
finite thickness in a way that also allows infinite size
fluctuations. More recently this has been realized in
the AdS/CFT correspondence of Maldacena.
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Expectations from QCD

1. Flux tube realization of confinement: Regge
trajectories asymptotically linear at large mass.
Linearity at relatively small mass into negative
t region is puzzling though not inconsistent.

2. Form factors should measure a finite hadron
size. High momentum probes should reveal
point-like constituents (quarks, gluons). Infi-
nite hadron size as measured by hadron scat-
tering a puzzle.

3. ’t Hooft identified a parametric limit Nc → ∞
which restricts perturbation theory to planar
Feynman diagrams only, and exchange degen-
eracy is exact in the limit. Corrections to ex-
change degeneracy are O(1/N2

c ).

4. Nc → ∞ and the hypothesis of confinement
imply narrow resonances, i.e. ΓRes = O(1/Nc).

5. Regge trajectories should not be exactly linear,
even at Nc = ∞.

Points 2 and 5 conflict with known string theories.
An accurate string description of planar QCD can
perhaps explain them.
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4 1/Nc Basics

O(N3
c )

O(Nc)

So nonplanar complications O(1/N2
c ).

O(N2
c )

O(N3
c )

So Resonance widths O(1/Nc).
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5 Field Theory Limit: T0 → ∞
Imaginary x+: τ ≡ ix+ > 0

iS → −
∫

dτ

∫ p+

0

dσ
1
2
(
ẋ2 + T 2

0 x′2)
Field theory limit forces x′ = 0, freezing almost all
worldsheet degrees of freedom.

T Duality: (q′, q̇) = (ẋ,−T 2
0 x′)

iS = −
∫

dτ

∫ p+

0

dσ
1
2
(
q′2 + T−2

0 q̇2
)

→ −
∫

dτ

∫ p+

0

dσ
q′2

2
for T0 → ∞

Field theory limit leaves all worldsheet degrees of
freedom intact. Still almost none of these degrees of
freedom are dynamical!

We shall exploit this fact to construct a worldsheeet
system to reproduce the sum of the planar diagrams
of a wide range of quantum field theories.
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6 QFT Lightcone Worldsheet

Bardakci-Thorn(NPB626:287,2002)
Master Formula for Massless Propagator:

0

T

p+p, =

0

T

p+

q(  ,  )σ τ

exp
{
− T

2p+
p2

}
=

∫
�(0,τ)=0
�(p+,τ)=�

DcDbDq eiS0

iS0 =
∫ T

0

dτ

∫ p+

0

dσ

(
b′c′ − 1

2
q′2

)

• Dirichlet b.c.’s. Cf. string in momentum space

• Represent a field quantum as a composite of
String Bits

• Total p+ = (Number of bits)×m.

0-24



Derivation of Master Formula

Define path integral on a lattice:

(σ, τ) → (im, ja)∫
dσdτq′2 → a

m

∑
i,j

(qj
i+1 − qj

i )
2

∫
dσdτb′c′ → a

m

∑
i,j

(bj
i+1 − bj

i )(c
j
i+1 − cj

i )

DqDcDb →
∏
ij

(
dqj

i

dcj
idbj

i

(2π)d/2

)

Recall the formula for Gaussian integration over num-
bers:∫

dx1 · · · dxn exp

⎧⎨⎩−
∑
ij

xiAijxj −
∑

i

Bixi

⎫⎬⎭ =

det 1/2(πA−1) exp

{
−1

2

∑
i

Bix
c
i

}

where 2
∑

j Aijx
c
j + Bi = 0.

For Grassmann integration the prefactor is the in-
verse of that for numbers.
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The two prefactors cancel in our master formula.

To get the exponent we just find the stationary point
of the action:

q′′ = 0, q(0) = 0, q(p+) = p

q(σ) =
σ

p+
p,

∫
dτdσq′2 = Tp2/p+

c(σ) = b(σ) = 0

Generalization of ghost path integral:∫ M−1∏
i=1

dcidbi

2π
exp

{
a

m

[
b1c1

η
+

bM−1cM−1

ξ

+
M−2∑
i=1

(bi+1 − bi)(ci+1 − ci)
]}

=
M

ηξ

(
1 +

η + ξ − 2
M

)( a

2πm

)M−1

The original integral corresponds to ξ = η = 1. Thus
the modification supplies a factor

1
ηξ

(
1 +

η + ξ − 2
M

)
(2)

on each time slice it occurs.
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The ghost modification is localized on the bound-
aries of the worldsheet, but can be used to intro-
duce important physical effects that at first glance
are non-local on the worldsheet.

• A massive propagator requires the additional
factor

e−Tµ2/2p+
= lim(1 − aµ2/2mM)N

which will be produced by choosing

ξ = 1, and η = 1 − aµ2/2m

• A factor m/p+ = 1/M must be inserted at
the beginning of each propagator. This can be
produced by choosing either ξ = 1, η = ∞ or
vice versa on the initial time-slice of the prop-
agator, depending on which boundary is at the
interaction point.
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Worldsheet Diagram on x+, p+ Grid:
σ = im, τ = ja

• Ising-like spin at each site: sj
i = ±1

• P j
i ≡ 1+sj

i

2 = 0, 1

• Internal boundaries (solid lines) correspond to
a row of + spins. Bulk (dotted lines) is a sea
of − spins. For example

−   −   −   −   −   −   −   −   −   −   −   −   −   −

−   −   −   −   −   −   −   −   −   −   −   −   −   −

−   −   −   −   −   −   −   −   −   −   −   −   −   −

−   −   −   −   −   −   −   −   −   −   −   −   −   −
−   −   −   −   −   −   −   −   −   −   −   −   −   −

−   −   −   −   +   +   +   +   −   −   −   −   −   −

−   −   −   −   −   −   +   +   +   +   −   −   −   −

is a two loop diagram.
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• A factor of coupling g for each spin flip along
a horizontal line.

Number of flips =
∑
ij

1 − sj
i s

j+1
i

2

• Dirichlet b.c.’s on solid lines:

P j
i P j−1

i a

2mε
(qj

i − qj−1
i )2;

ε → 0 forces b.c.’s.

• Can identify an effective dynamical tension

P j
i P j−1

i a2

m2ε
∼ T−2

eff (s),

(Ising spin dependent) string tension.

Cf. AdS radius (φ) dependence of tension
in AdS/CFT correspondence on light-cone:

p− =
1
2

∫ p+

0

dσ
[P2 + e2φx′2 + eφ(Π2

φ + φ′2)
]
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7 Worldsheet System for φ3

Tfi = lim
ε→0

∑
sj

i=±1

∫
DcDbDq

exp

⎧⎨⎩ln ĝ
∑
ij

1 − sj
is

j−1
i

2
− d

2
ln (1 + ρ)

∑
i,j

P j
i

⎫⎬⎭
exp

⎧⎨⎩− a

2m

∑
i,j

[
P j

i P j−1
i

ε
(qj

i − qj−1
i )2 + (qj

i+1 − qj
i )

2

]⎫⎬⎭
exp

⎧⎨⎩ a

m

∑
i,j

[
Aijb

j
ic

j
i + Cij(b

j
i+1 − bj

i )(c
j
i+1 − cj

i )
]⎫⎬⎭

exp

⎧⎨⎩ a

m

∑
i,j

[
−Bijb

j
i c

j
i − Dij(b

j
i+1 − bj

i )(c
j
i+1 − cj

i )
]⎫⎬⎭

• Aij , Bij, Cij , Dij are Polynomials in the spin
variables s or P located within 2 lattice steps
from (i, j).
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Definitions:

DcDbDq ≡
N∏

j=1

M−1∏
i=1

dcj
idbj

i

2π
dqj

i

P j
i ≡ 1 + sj

i

2
; ρ =

µ2a

md − µ2a
; ĝ2 =

g2

64π3

[ m

2πa

] d−4
2

Aij =
1
ε
P j

i P j−1
i + P j+1

i P j
i − P j−1

i P j
i P j+1

i +

(1 − P j
i )(P j

i+1 + P j
i−1) + ρ(1 − P j

i )P j−1
i−1 P j

i−1

Bij = (1 − P j
i )P j−1

i P j−2
i P j

i+1 +

(1 − P j
i )
(
P j

i+1P
j+1
i+1 (1 − P j−1

i+1 ) + P j
i−1P

j+1
i−1 (1 − P j−1

i−1 )
)

Cij = (1 − P j
i )(1 − P j

i+1)

Dij = (1 − P j
i )(1 − P j

i+1)P
j−1
i P j−2

i
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Comments:

• Worldsheet system that sums QFT planar di-
agrams is a two-dimensional dynamical sys-
tem of scalar fields q(σ, τ), Grassmann ghosts
b(σ, τ), c(σ, τ), and Ising spins s(σ, τ).

• These degrees of freedom have a fairly compli-
cated but local worldsheet action.

• The scalar and ghost fields enter the world-
sheet action quadratically, but with coefficients
that depend on the Ising spins.

• The role of “string tension” in this worldsheet
system is played by a quantity that depends
on the Ising spin configuration. Its “value”
fluctuates locally and can’t be regarded as a
fixed parameter.

• The fluctuating string tension is the crucial dif-
ference between the string description of a field
theory and the Nambu-Goto string. We can
hopefully trace the well-known short-comings
of the Nambu-Goto string for describing hadrons
to this difference.
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8 Gauge Cubic Vertex

21

=
ga

4mπ3/2
p+
3

(
p∧2
p+
2

− p∧1
p+
1

)

Here v∧ ≡ (v1 + iv2)/
√

2, v∨ = (v∧)∗.

On single time-slice of a single gluon,

〈q′(σ)〉 → 1
m
〈ql − ql−1〉 =

q(p+) − q(0)
p+

=
p

p+

◦ ◦◦
◦◦ ◦

1 12

23 3
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9 Gauge Quartic Vertex

When i and j are on same time slice,

1
m2

〈(qi+1 − qi)(qj+1 − qj)〉 =(
q(p+) − q(0)

p+

)2

+
1
a

[
1
m

δij − 1
p+

]

• − 1
a

1
p+ term exactly reproduces gauge quartic

vertex. This contribution allows gauge invari-
ance to be achieved locally on the worldsheet.

• 1
amδij term is a local δ(τ)δ(σ) worldsheet con-
tact term.
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10 Supersymmetry

S.Gudmundsson, C.Thorn, T.A. Tran, NPB649 (2003)
3 hep-th/0209102

• N = 1 SUSY: Add appropriate fermions. Ev-
erything works as with pure Yang-Mills.

• N = 2, 4 SUSY: First add 2, 6 “dummy di-
mensions”.

• These dummy dimensions are given true Dirich-
let b.c.’s: qextra = 0 on all worldsheet bound-
aries internal as well as external.

• The fluctuations of these dummy-dimensions
generates all the required quartic interactions
of extended SUSY, exactly as in pure Yang-
Mills.
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11 One Loop Self Energy

k1 = k0 + k

k0

l M

Free propagator and counter-term

∆0(q, q′) =
1

(q − q′)2 + µ2
0 + α(q2 + q′2) + β(q − q′)2

≡
∞∑

n=0

Zn+1

[(q − q′)2 + µ2]n+1
[ΠC.T]n (3)

ΠC.T. = δµ2 +
(

1
Z

− 1
)[

(q − q′)2 + µ2
]

−α(q2 + q′2) − β(q − q′)2 (4)
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Put g = Z3/2g0, and find

ZΠ0 =
g2

(4π)3

∫ ∞

0

dT

(T + δ)2

∫ 1

0

dx

exp
{−T

[
µ2 + x(1 − x)(q − q′)2

]}
exp

{
− δT

T + δ
(xq + (1 − x)q′)2

}
≡ g2

(4π)3

∫ ∞

0

dT

(T + δ)2

∫ 1

0

dxe−TH

Integrate by parts

ZΠ0 = − g2

(4π)3

∫ ∞

0

dT

T + δ

∫ 1

0

dx

[
H0(e−HT − e−µ2T )

+
δ2(xq + (1 − x)q′)2

(T + δ)2
(e−HT − 1)

]
− ZΠC.T.

ZΠC.T. = − g2

(4π)3

{
1
δ
−
∫ 1

0

dx

[
H0I(µ2δ)

+
1
2
(xq + (1 − x)q′)2

]}
H0 ≡ µ2 + x(1 − x)(q − q′)2

I(t) ≡
∫ ∞

0

e−utdu

1 + u t̃→0
ln

1
t
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Π(1) ≡ Z(Π0 + Π(1)
C.T.)

δ̃→0

g2

(4π)3

∫ 1

0

dxH0 ln
H0

µ2

which is finite and Lorentz covariant, depending only
on (q − q′)2.
At finite δ, Π1 depends also on q and q′. The large
momentum behavior of Π1 is quadratic, even with
q−q′ fixed. This ruins power counting when inserted
on propagators. For this reason we perturb about a
more general propagator

Z

µ2 + (q − q′)2 + ε(q2 + q′2)
, (5)

with fixed ε. We only set ε = 0 at the end of the
calculation. The changes are

Π(1)
δ̃→0

g2

(4π)3

∫ 1

0

dxHε ln
Hε

µ2

Hε = µ2 + x(1 − x)(q − q′)2 + ε[xq2 + (1 − x)q′2]

+
ε

1 + ε
(xq + (1 − x)q′)2
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Π(1)
C.T. = +

g2

(4π)3

{
1

(1 + ε)δ

−
∫ 1

0

dx

[
Hε

I(−µ2δ/(1 + ε))
(1 + ε)2

+
1

2(1 + ε)3
(xq + (1 − x)q′)2

]}

12 Two Loops

(a) (b) (c)
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13 Conclusions

• Worldsheet “template” for planar diagrams has
been set up for a whole range of interesting
theories, including QCD.

• QFT UV divergences require counterterms, which
(hopefully) have a local WS description.
WS locality limits counterterms on Light-cone
(Not limited by QFT locality)

• Possible computational break-through: Monte
Carlo studies of the worldsheet system for QCD
give a new numerical attack on large Nc QCD.
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