IMPLICATIONS OF PARTICLE PHYSICS FOR COSMOLOGY

Jonathan Feng University of California, Irvine 28-29 July 2005 PiTP, IAS, Princeton

Graphic: N. Graf

OVERVIEW

- This Program anticipates the coming revolution in particle physics: LHC in 2007
- We are living through a period of scientific revolution in a closely allied field: cosmology
- These 3 lectures are devoted to explaining how these two might be related

REFERENCES AND DETAILS

Little cosmology background assumed. There are many reviews. See, for example:

- Jungman, Kamionkowski, Griest, hep-ph/9506380
- Bergstrom, hep-ph/0002126
- Bertone, Hooper, Silk, hep-ph/0404175
- Feng, hep-ph/0405215

OUTLINE

LECTURE 1

The Universe Observed, WIMP Cosmology

LECTURE 2

WIMP Detection, WIMPs at Colliders

LECTURE 3

Gravitino Cosmology, SuperWIMPs at Colliders

THE UNIVERSE OBSERVED

- For the first time in history, we now have a complete picture of the Universe
- How did this come about?
- The evidence (in 5 slides or less):

Rotation Curves

Galaxies and galactic clusters rotate

- Expect $v_c \sim r^{-1/2}$ beyond luminous region
- Instead find $v_c \sim \text{constant}$
- Discrepancy resolved by postulating dark matter

• In the universe, there's more than meets the eye

• Constrains the total amount of matter: $\Omega_{\rm M} = \rho_{\rm M} \ / \ \rho_{\rm c}$ $\rho_{\rm c} \text{ is the critical density}$

Recessional Velocities

 The universe is expanding

- Constrains the acceleration of expansion: $\Omega_{\Lambda} - \Omega_{\rm M}$ "Attractive matter vs. repulsive dark energy"

Cosmic Microwave Background

 δT/T << 1: The universe is isotropic and homogeneous on large scales

- Constrains the geometry of the universe: $\Omega_{\Lambda} + \Omega_{M}$ "total energy density"

Now

Big Bang Nucleosynthesis

- At t ~ 1 s, T ~ 1 MeV, universe cooled enough for nuclei to start forming
- The abundance of each light species is fixed by η, the baryon-to-photon ratio
- These determinations are consistent*, constrain $\Omega_{\rm B}$
 - the amount of baryons

Synthesis

Remarkable agreement

Dark Matter: $23\% \pm 4\%$ Dark Energy: $73\% \pm 4\%$ Baryons: $4\% \pm 0.4\%$ [vs: 0.2% for Σ m = 0.1 eV]

Remarkable precision (~10%)

Remarkable results

Historical Precedent

Eratosthenes measured the size of the Earth in 200 B.C.

- Remarkable precision (~10%)
- Remarkable result
- But just the first step in centuries of exploration

Big Problems

- What is dark matter?
- What is the distribution of dark matter?
- How did structure form?
- What is dark energy?
- Why is the cosmological constant so small?
- How did the universe begin?

- Why are there 3 large spatial dimensions?
- Why matter and no antimatter?
- Why are all energy densities roughly comparable now?
- What is the source of the highest energy cosmic rays?

These are difficult to answer with cosmology and astrophysics alone.

PARTICLE PHYSICS AT THE ENERGY FRONTIER

DARK MATTER

Known DM properties

- Stable
- Non-baryonic

Cold*

DM: precise, unambiguous evidence for new particles

Dark Matter Candidates

- The Wild, Wild West of particle physics: primodial black holes, axions, warm gravitinos, neutralinos, Kaluza-Klein particles, Q balls, wimpzillas, superWIMPs, self-interacting particles, self-annihilating particles, fuzzy dark matter,...
- Masses and interaction strengths span many, many orders
 of magnitude
- But independent of cosmology, we expect new particles:
 electroweak symmetry breaking

Electroweak Symmetry Breaking

 $m_h \sim 100 \text{ GeV}, \Lambda \sim 10^{19} \text{ GeV} \rightarrow \text{cancellation of 1 part in } 10^{34}$

At $M_{\text{weak}} \sim 100$ GeV we expect new physics: supersymmetry, extra dimensions, something!

Thermal Relic DM Particles

(1) Initially, DM is in thermal equilibrium: $\chi\chi \leftrightarrow \overline{f}f$

(2) Universe cools: $N = N_{EQ} \sim e^{-m/T}$

(3) χs "freeze out":*N* ~ const

Thermal Relic Abundance

The Boltzmann
 equation:

 n ≈ n_{eq} until interaction rate drops below expansion rate:

$$n_{\rm eq} \langle \sigma v \rangle \sim H$$

$$(mT)^{3/2} e^{-m/T} \qquad T^2/M_{\rm Pl}$$

 The universe expands *slowly*! Mass *m* particles freeze out at *T* ~ *m*/25

• Final $N \sim 1/\sigma_A$.

What's the constant of proportionality?

• Impose a natural relation: $\sigma_A \sim g^2/m^2$

Remarkable "coincidence": even without the hierarchy problem, cosmology tells us we should explore the weak scale

STABILITY

- We've assumed the new particle is stable. Why should it be?
- In many theories, dark matter is easier to explain than no dark matter

WIMP COSMOLOGY

 Weakly-interacting massive particles: "Candidates you could take home to mother." – V. Trimble

• Many examples, some even qualitatively different

The prototypical WIMP: neutralinos in supersymmetry
 Goldberg (1983)

Neutral SUSY Particles

	U(1)	SU(2)	Up-type	Down-type		
Spin	<i>M</i> ₁	<i>M</i> ₂	μ	μ	$m_{ ilde{ ext{v}}}$	<i>m</i> _{3/2}
2						G
						graviton
3/2		Nlauto)	Ĝ
		Neutralinos: $\{\chi \equiv \chi_1, \chi_2, \chi_3, \chi_4\}$			$\langle 4 \rangle$	gravitino
1	В	W ^o				
1/2	Ĩ	Ŵ٥	$ ilde{H}_u$	$ ilde{H_d}$	ν	
	Bino	Wino	Higgsino	Higgsino		
0			H _u	H _d	ĩ	
					sneutrino	

R-parity and Stable LSPs

• One problem: proton decay

- Forbid this with R-parity conservation: $R_p = (-1)^{3(B-L)+2S}$
 - SM particles have $R_p = 1$, SUSY particles have $R_p = -1$
 - Require $\Pi R_p = 1$ at all vertices
- Consequence: the lightest SUSY particle (LSP) is stable!

What's the LSP?

- High-scale → weak scale through RGEs.
- Gauge couplings increase masses;
 Yukawa couplings decrease masses
- "typical" LSPs: χ , $\tilde{\tau}_R$

Particle physics alone \rightarrow neutral, stable, cold dark matter

Cosmologically Preferred Supersymmetry

Typically get too much DM, but there are generic mechanisms for reducing it

Extra Dimensional Dark Matter

Servant, Tait (2002); Cheng, Feng, Matchev (2002)

- Consider 1 extra spatial dimensions curled up in a small circle
- Particles moving in extra dimensions appear as a set of copies of normal particles.

 A problem: many extra 4D fields; some with mass n/R, but some are massless! E.g., 5D gauge field:

$$V_{\mu}(x^{\mu}, y) = \underbrace{V_{\mu}(x^{\mu})}_{\text{good}} + \sum_{n} V_{\mu}^{n}(x^{\mu})\cos(ny/R) + \sum_{m} V_{\mu}^{m}(x^{\mu})\sin(my/R)$$
$$V_{5}(x^{\mu}, y) = \underbrace{V_{5}(x^{\mu})}_{\text{bad}} + \sum_{n} V_{5}^{n}(x^{\mu})\cos(ny/R) + \sum_{m} V_{5}^{m}(x^{\mu})\sin(my/R)$$

• A solution...

• Compactify on S^1/Z_2 instead (orbifold); require

 $y \to -y$: $V_{\mu} \to V_{\mu}$ $V_5 \to -V_5$

• Unwanted scalar is projected out:

$$V_{\mu}(x^{\mu}, y) = \underbrace{V_{\mu}(x^{\mu})}_{\text{good}} + \sum_{n} V_{\mu}^{n}(x^{\mu})\cos(ny/R) + \underbrace{\sum_{m} V_{\mu}^{m}(x^{\mu})\sin(my/R)}_{m}$$
$$V_{5}(x^{\mu}, y) = \underbrace{V_{5}(x^{\mu})}_{\text{bad}} + \sum_{n} \frac{V_{5}^{n}(x^{\mu})\cos(ny/R)}{V_{5}(x^{\mu})} + \sum_{m} V_{5}^{m}(x^{\mu})\sin(my/R)$$

Similar projection on fermions → chiral 4D theory, …

Appelquist, Cheng, Dobrescu (2001)

KK-Parity

- An immediate consequence: conserved KK-parity (-1)^{KK} Interactions require an even number of odd KK modes
- 1st KK modes must be pair-produced at colliders

Appelguist, Cheng, Dobrescu (2001) Macesanu, McMullen, Nandi (2002)

 LKP (lightest KK particle) is stable – dark matter!

KK Dark Matter Relic Density

Servant, Tait (2002)

LECTURE 1 SUMMARY

- The revolution in cosmology has produced remarkable progress and remarkable problems
- Cosmology and particle physics both point to the weak scale for new particles
- $\Omega_{\rm DM}$ highly constraining
- Searches not yet constraining, but prospects promising
- Next time: what will colliders tell us?