# IMPLICATIONS OF PARTICLE PHYSICS FOR COSMOLOGY

Jonathan Feng University of California, Irvine 28-29 July 2005 PiTP, IAS, Princeton

Graphic: N. Graf

# OUTLINE

#### **LECTURE 1**

The Universe Observed, WIMP Cosmology

#### **LECTURE 2**

WIMP Detection, WIMPs at Colliders

#### **LECTURE 3**

Gravitino Cosmology, SuperWIMPs at Colliders

#### WIMP Detection: No-Lose "Theorem"



#### Correct relic density → Efficient annihilation then → Efficient scattering now → Efficient annihilation now

### **Direct Detection**

- Most satisfying detection: recoils from dark matter bumping into detectors
- Two strategies:
  - Few event detection (background discrimination)
  - Annual modulation (statistics, systematics)



### **Direct Detection: Current**

 Spin-independent scattering most promising for SUSY

Goodman, Witten (1984)

- Theorists:  $\chi q$  scattering
- Expts: χ nucleus scattering
- Meet in middle:
  χp scattering



#### **Direct Detection: Future**



#### **Indirect Detection**



Dark Matter annihilates in <u>the center of the Sun</u> to a place <u>neutrinos</u>, which are detected by <u>AMANDA, IceCube</u>. some particles an experiment





Dark Matter annihilates in <u>the galactic center</u> to a place <u>photons</u>, which are detected by <u>HESS, GLAST, ...</u>. some particles an experiment



Typically  $\chi\chi \not\rightarrow \gamma\gamma$ , so  $\chi\chi \rightarrow f\bar{f} \rightarrow \gamma$ 







## WIMPS AT COLLIDERS

What can colliders add to our understanding?

 Cosmology can't discover SUSY



 Particle colliders can't discover DM



Lifetime >  $10^{-7}$  s  $\rightarrow$   $10^{17}$  s ?

#### WIMPS AT COLLIDERS

- Choose a concrete *example*: neutralinos
- Choose a simple model framework that encompasses
  many qualitatively different behaviors: mSUGRA

- Relax model-dependent assumptions and determine parameters
- Identify cosmological, astrophysical implications



### Neutralino DM in mSUGRA



Cosmology excludes much of parameter space ( $\Omega_{\gamma}$  too big)

Cosmology focuses attention on particular regions ( $\Omega_{\chi}$  just right)

 $m_{1/2}$ 

#### Choose 4 representative points for detailed study

Baer et al., ISAJET Gondolo et al., DARKSUSY Belanger et al., MICROMEGA

### SYNERGY IN DM STUDIES



# BULK REGION LCC1 (SPS1a)

 $m_0$ ,  $M_{1/2}$ ,  $A_0$ ,  $tan\beta = 100$ , 250, -100, 10 [  $\mu$ >0,  $m_{3/2}$ > $m_{LSP}$  ]

• Correct relic density obtained if  $\chi$  annihilate efficiently through light sfermions:



 Motivates SUSY with light χ, *Ĩ*



Allanach et al. (2002)

### PRECISION MASSES

- LHC: See below
- ILC: Exploit all properties: kinematic endpoints, threshold scans
  - variable beam energy
  - e<sup>-</sup> beam polarization
  - e<sup>-</sup>e<sup>-</sup> option





|                 | m  [GeV] | $\Delta m  [\text{GeV}]$ | Comments                                                                                                                                                                                       |
|-----------------|----------|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ±<br>1          | 176.4    | 0.55                     | simulation threshold scan , $100  \mathrm{fb}^{-1}$                                                                                                                                            |
| $\frac{\pm}{2}$ | 378.2    | 3                        | estimate $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^{\mp}$ , spectra $\tilde{\chi}_2^{\pm} \to Z \tilde{\chi}_1^{\pm}, W \tilde{\chi}_1^0$                                                           |
|                 | 96.1     | 0.05                     | combination of all methods                                                                                                                                                                     |
| $\frac{0}{2}$   | 176.8    | 1.2                      | simulation threshold scan $\tilde{\chi}_2^0 \tilde{\chi}_2^0$ , 100 fb <sup>-1</sup>                                                                                                           |
| 03              | 358.8    | 3-5                      | spectra $\tilde{\chi}_{3}^{0} \to Z \tilde{\chi}_{1,2}^{0}, \ \tilde{\chi}_{2}^{0} \tilde{\chi}_{3}^{0}, \ \tilde{\chi}_{3}^{0} \tilde{\chi}_{4}^{0}, 750 \text{ GeV}, > 1000 \text{ fb}^{-1}$ |
| 04              | 377.8    | 3-5                      | spectra $\tilde{\chi}_{4}^{0} \to W \tilde{\chi}_{1}^{\pm}$ , $\tilde{\chi}_{2}^{0} \tilde{\chi}_{4}^{0}$ , $\tilde{\chi}_{3}^{0} \tilde{\chi}_{4}^{0}$ , 750 GeV, > 1000 fb <sup>-1</sup>     |
| R               | 143.0    | 0.05                     | $e^-e^-$ threshold scan, 10 fb <sup>-1</sup>                                                                                                                                                   |
| L               | 202.1    | 0.2                      | $e^-e^-$ threshold scan 20 fb <sup>-1</sup>                                                                                                                                                    |
| e               | 186.0    | 1.2                      | simulation energy spectrum, 500 GeV, 500 fb $^{-1}$                                                                                                                                            |
| R               | 143.0    | 0.2                      | simulation energy spectrum, 400 GeV, 200 fb <sup>-1</sup>                                                                                                                                      |
| L               | 202.1    | 0.5                      | estimate threshold scan, 100 fb <sup>-1</sup> [36]                                                                                                                                             |
| 1               | 133.2    | 0.3                      | simulation energy spectra, 400 GeV, 200 fb <sup>-1</sup>                                                                                                                                       |
| 2               | 206.1    | 1.1                      | estimate threshold scan, 60 fb <sup>-1</sup> [36]                                                                                                                                              |
| 1               | 379.1    | 2                        | estimate <i>b</i> -jet spectrum, $m_{\min}()$ , 1TeV, 1000 fb <sup>-1</sup>                                                                                                                    |

Must also verify insensitivity to all other parameters

### BULK RESULTS

- Scan over ~20 most relevant parameters
- Weight each point by Gaussian distribution for each observable
- ~50K scan points

Battaglia (2005)



• (Preliminary) result:  $\Delta \Omega_{\chi} / \Omega_{\chi} = 2.2\% (\Delta \Omega_{\chi} h^2 = 0.0026)$ 

#### **RELIC DENSITY DETERMINATIONS**



Parts per mille agreement for  $\Omega_{\chi} \rightarrow$  discovery of dark matter

# FOCUS POINT REGION LCC2

 $m_0, M_{1/2}, A_0, \tan\beta = 3280, 300, 0, 10 [ \mu > 0, m_{3/2} > m_{LSP} ]$ 

- Correct relic density obtained if  $\chi$  is mixed, has significant Higgsino component to enhance



### FOCUS POINT RESULTS

•  $\Omega_{\chi}$  sensitive to Higgsino mixing, charginoneutralino degeneracy

Alexander, Birkedal, Ecklund, Matchev et al. (2005)



(Preliminary) result:  $\Delta \Omega_{\chi} / \Omega_{\chi} = 2.4\%$  ( $\Delta \Omega_{\chi} h^2 = 0.0029$ )

#### **RELIC DENSITY DETERMINATIONS**



Parts per mille agreement for  $\Omega_{\gamma} \rightarrow$  discovery of dark matter

#### **CO-ANNIHILATION REGION LCC3**

 $m_0, M_{1/2}, A_0, \tan\beta = 210, 360, 0, 40 [\mu > 0, m_{3/2} > m_{LSP}]$ 

• If other superpartners are nearly degenerate with the  $\chi$  LSP, they can help it annihilate



Griest, Seckel (1986)

- Requires similar  $e^{-m/T}$  for  $\chi$  and  $\tilde{\tau}$ , so (roughly)  $\Delta m < T \sim m_{\chi}/25$
- Motivates SUSY with  $\tilde{\tau} \rightarrow \tau \chi$  with  $\Delta m \sim \text{few GeV}$

### **CO-ANNIHILATION RESULTS**

Dutta, Kamon; Nauenberg et al.; Battaglia (2005)



(Preliminary) result:  $\Delta \Omega_{\chi} / \Omega_{\chi} = 7.0\% (\Delta \Omega_{\chi} h^2 = 0.0084)$ 

#### **RELIC DENSITY DETERMINATIONS**



% level agreement for  $\Omega_{\chi} \rightarrow$  discovery of dark matter

- The bottom line: LHC and International Linear Collider can discover WIMPs and determine their properties at the % level.
- These allow precise predictions of relic densities from high energy physics, which we can compare to cosmological data.
- What do we learn?

#### **IDENTIFYING DARK MATTER**



### SYNERGY IN DM STUDIES



### ILC IMPLICATIONS

ILC  $\rightarrow \Delta m < 1$  GeV,  $\Delta \sigma / \sigma < 10\%$ 









$$\frac{d\Phi_{\gamma}}{d\Omega dE} = \sum_{i} \underbrace{\frac{dN_{\gamma}^{i}}{dE}\sigma_{i}v\frac{1}{4\pi m_{\chi}^{2}}}_{\psi} \underbrace{\int_{\psi}\rho^{2}dl}_{\psi}$$

ParticleAstro-PhysicsPhysics

Halo profiles are poorly understood, controversial near the galactic center

## LECTURE 2 SUMMARY

- If a WIMP is part of dark matter, the LHC and the ILC together can measure its properties precisely
- Comparison of predicted and observed relic density can lead to discovery (finally!) of the identity of dark matter, or require the existence of another component
- Comparison of predicted and observed detection rates will tell us about the distribution of dark matter in the galaxy, structure formation