IMPLICATIONS OF PARTICLE PHYSICS FOR COSMOLOGY

Jonathan Feng University of California, Irvine 28-29 July 2005 PiTP, IAS, Princeton

Graphic: N. Graf

OUTLINE

LECTURE 1

The Universe Observed, WIMP Cosmology

LECTURE 2

WIMP Detection, WIMPs at Colliders

LECTURE 3

Gravitino Cosmology, SuperWIMPs at Colliders

GRAVITINO COSMOLOGY

- Let's consider a dark matter candidate with completely different, but equally rich, implications for particle physics and cosmology.
- There is one other class of particles with all the virtues of WIMPs: SuperWIMPs

Well-motivated stable particle

Present in "¹/₂" of parameter space

- Naturally correct relic density
- ...and more

Spectacular collider signals There is already cosmological evidence for it (BBN, small scale structure, ...)

The prototypical superWIMP is the gravitino (also axinos, quintessino, other similar candidates)

Gravitinos

- SUSY: graviton $G \rightarrow$ gravitino \tilde{G}
- Mass: expect ~ 100 GeV 1 TeV (high-scale SUSY breaking)
- *Ĝ* interactions:

$$-\frac{i}{8M_{\rm Pl}}\bar{\tilde{G}}_{\mu}\left[\gamma^{\nu},\gamma^{\rho}\right]\gamma^{\mu}\tilde{B}F_{\nu\rho}$$

Couplings grow with energy, but are typically extremely weak

GRAVITINOS: THE FIRST SUSY DM

Pagels, Primack (1982) Weinberg (1982) Krauss (1983) Nanopoulos, Olive, Srednicki (1983)

Khlopov, Linde (1984) Moroi, Murayama, Yamaguchi (1993) Bolz, Buchmuller, Plumacher (1998)

- Original ideas: If the universe cools from $T \sim M_{\rm Pl}$, gravitinos decouple while relativistic, expect $n_{\tilde{G}} \sim n_{\rm eq}$.
- Stable:

Unstable:

$$\Omega_{\tilde{G}} < 1 \Rightarrow m_{\tilde{G}} < 1 \text{ keV}$$

(cf. neutrinos)

 $BBN \rightarrow m_{\tilde{G}} > 10-100 \text{ TeV}$

 $\tau_{\tilde{G}} \sim \frac{M_{\rm Pl}^2}{m_{\tilde{\sigma}}^3} \sim 1 \ \mathrm{yr} \left[\frac{100 \ \mathrm{GeV}}{m_{\tilde{C}}} \right]^3$

Pagels, Primack (1982)

Weinberg (1982)

Both inconsistent with TeV mass range.

Gravitino Production: Reheating

- More modern view: gravitino density is diluted by inflation.
- But gravitinos regenerated in reheating. What happens?

$$\sigma_{\rm SM} n \sim T \gg H \sim \frac{T^2}{M_{\rm Pl}} \gg \sigma_{\tilde{G}} n \sim \frac{T^3}{M_{\rm Pl}^2}$$

SM interaction rate >> expansion rate >> \tilde{G} interaction rate

• Thermal bath of SM particles: occasionally they interact to produce a gravitino: $f f \rightarrow f \tilde{G}$

Gravitino Production: Reheating

The Boltzmann
 equation:

$$\frac{dn}{dt} = -3Hn - \langle \sigma v \rangle \begin{bmatrix} n^2 - n_{eq}^2 \end{bmatrix}$$

Dilution from $f \tilde{G} \to f \bar{f} \qquad f \bar{f} \to f \tilde{G}$

Ω

• Change variables: $t \to T$ $n \to Y \equiv \frac{n}{s}$

• New Boltzmann
$$\frac{dY}{dT} = -\frac{\langle \sigma_{\tilde{G}} v \rangle}{HTs} n^2 \sim \langle \sigma_{\tilde{G}} v \rangle \frac{T^3 T^3}{T^2 TT^3}$$

• Simple: *Y* ~ reheat temperature

Bounds on $T_{\rm RH}$

 10^{2} $<\sigma v >$ for important production EΠ processes: 10 $|\mathcal{M}_{i}|^{2} / \frac{g^{2}}{M^{2}} \left(1 + \frac{m_{\tilde{g}}^{2}}{3m_{\tilde{g}}^{2}}\right)$ process im_₹=1 GeV $4(s+2t+2\frac{t^2}{s})|f^{abc}|^2$ $+ q^b \rightarrow \tilde{q}^c + \tilde{G}$ $-4(t+2s+2\frac{s^2}{t})|f^{abc}|^2$ $+ \tilde{g}^b \rightarrow g^c +$ 10 GeV 1 $2s|T^{a}_{ii}|^{2}$ $\tilde{q}_i + g^a \rightarrow q_j +$ $-2t|T^{a}_{ii}|^{2}$ ຊີ ຊີ $+q_i \rightarrow \tilde{q}_i + G$ 50 $-2t|T^{a}_{ii}|^{2}$ $q_i \rightarrow q_i \rightarrow g^a + \tilde{G}$ $-8\frac{(s^2+st+t^2)^2}{st(s+t)}|f^{abc}|^2$ $\tilde{g}^a + \tilde{g}^b \to \tilde{g}^c + \tilde{G}$ 250 GeV $-4(s+\frac{s^2}{t})|T^a_{ji}|^2$ $q_i + \tilde{g}^a \to q_j + \tilde{G}$ $-2(t + 2s + 2\frac{s^2}{t})|T_{ji}^a|^2$ $\tilde{q}_i + \tilde{g}^a \to \tilde{q}_j + \tilde{G}$ 0.01 I $q_i + \bar{q}_j \rightarrow \tilde{g}^a + \tilde{G} - 4(t + \frac{t^2}{s})|T_{ji}^a|^2$ $\tilde{q}_i + \tilde{\tilde{q}}_i \rightarrow \tilde{g}^a + \tilde{G} \left[2(s+2t+2\frac{t^2}{s}) |T_{ii}^a|^2 \right]$ $T_{\rm RH} < 10^8 - 10^{10} \, {\rm GeV}$; constrains 10⁻³ inflation, leptogenesis 10⁹ 1010 10^{8} 1011 \tilde{G} DM if bound saturated T_₽/GeV (introduce new scale).

Bolz, Brandenburg, Buchmuller (2001)

Gravitino Production: Late Decay

- What if gravitinos are diluted by inflation, and the universe reheats to low temperature?
- G not LSP
 G LSP

- No impact implicit assumption of Lectures 1 and 2
- A new source of gravitinos

SuperWIMPs

- Early universe behaves as usual, WIMP freezes out with desired thermal relic density
- A long time later...

all WIMPs decay to gravitinos

 Gravitinos inherit WIMP density, but are superweakly interacting – superWIMPs

Gravitino naturally have right relic density

SuperWIMP Signals

- SuperWIMPs escape all conventional DM searches
- But late decays $\tilde{\tau} \to \tau \ \tilde{G}, \ \tilde{B} \to \gamma \ \tilde{G}, \ ..., \ have cosmological consequences$
- Assuming $\Omega_{\tilde{G}} = \Omega_{\rm DM}$, signals determined by 2 parameters: $m_{\tilde{G}}$, $m_{\rm NLSP}$

$$\begin{split} \text{Lifetime} & \text{Energy release} \\ & \Gamma(\tilde{\ell} \to \ell \tilde{G}) = \frac{1}{48\pi M_*^2} \frac{m_{\tilde{\ell}}^5}{m_{\tilde{G}}^2} \left[1 - \frac{m_{\tilde{G}}^2}{m_{\tilde{\ell}}^2} \right]^4 & \zeta_{\text{i}} = \varepsilon_{\text{i}} \; B_{\text{i}} \; Y_{\text{NLSP}} \\ & \Gamma(\tilde{B} \to \gamma \tilde{G}) = \frac{\cos^2 \theta_W}{48\pi M_*^2} \frac{m_{\tilde{B}}^5}{m_{\tilde{G}}^2} \left[1 - \frac{m_{\tilde{G}}^2}{m_{\tilde{B}}^2} \right]^3 \left[1 + 3 \frac{m_{\tilde{G}}^2}{m_{\tilde{B}}^2} \right] & \text{i} = \text{EM, had} \\ & Y_{\text{NLSP}} = n_{\text{NLSP}} \; / \; n_{\gamma}^{\text{BG}} \end{split}$$

Big Bang Nucleosynthesis

Late decays may modify light element abundances

Fields, Sarkar, PDG (2002)

After WMAP

- $\eta_D = \eta_{CMB}$
- Independent ⁷Li measurements are all low by factor of 3:

$${}^{7}\text{Li/H} = 1.5^{+0.9}_{-0.5} \times 10^{-10} \quad (95\% \text{ CL}) \ [27]$$

$${}^{7}\text{Li/H} = 1.72^{+0.28}_{-0.22} \times 10^{-10} \ (1\sigma + \text{sys}) \ [28]$$

$${}^{7}\text{Li/H} = 1.23^{+0.68}_{-0.32} \times 10^{-10} \ (\text{stat} + \text{sys}, 95\% \text{ CL}) \ [29]$$

⁷Li is now a problem

Jedamzik (2004)

BBN EM Constraints

- NLSP = WIMP → Energy release is dominantly EM (even mesons decay first)
- EM energy quickly thermalized, so BBN constrains (τ , ζ_{EM})
- BBN constraints weak for early decays: hard γ, e⁻ thermalized in hot universe
- Best fit reduces ⁷Li: 🙂

Cyburt, Ellis, Fields, Olive (2002)

BBN EM Predictions

- Consider $\tilde{\tau} \to \tilde{G} \tau$ (others similar)
- Grid: Predictions for $m_{\tilde{G}} = 100 \text{ GeV} - 3 \text{ TeV} \text{ (top to bottom)}$ $\Delta m = 600 \text{ GeV} - 100 \text{ GeV} \text{ (left to right)}$
- Some parameter space excluded, but much survives
- SuperWIMP DM naturally explains ⁷Li !

Feng, Rajaraman, Takayama (2003)

BBN Hadronic Constraints

• BBN constraints on hadronic energy release are severe.

Dimopoulos, Esmailzadeh, Hall, Starkman (1988) Reno, Seckel (1988) Kaw

Jedamzik (2004) Kawasaki, Kohri, Moroi (2004)

- Neutralino NLSPs highly disfavored: hadrons from $\chi \to Z \tilde{G}, \ h \tilde{G}$

destroy BBN. Possible ways out:

- Kinematic suppression? No, $\Delta m < m_z \rightarrow BBN EM$ violated.
- Dynamical suppression? $\chi = \tilde{\gamma}$ ok, but unmotivated.
- For sleptons, cannot neglect subleading decays:

 $\tilde{l} \rightarrow l Z \tilde{G} , \ \nu W \tilde{G} \qquad \tilde{\nu} \rightarrow \nu Z \tilde{G} , \ l W \tilde{G}$

BBN Hadronic Predictions

Feng, Su, Takayama (2004)

Despite $B_{had} \sim 10^{-5} - 10^{-3}$, hadronic constraints are leading for $\tau \sim 10^5 - 10^6$, must be included

Cosmic Microwave Background

- Late decays may also distort the CMB spectrum
- For 10⁵ s < τ < 10⁷ s, get "μ distortions":

$$\overline{e^{E/(kT)+\mu}-1}$$

μ=0: Planckian spectrum μ≠0: Bose-Einstein spectrum Hu, Silk (1993)

Current bound: |μ| < 9 x 10⁻⁵
 Future (DIMES): |μ| ~ 2 x 10⁻⁶

GRAVITINOS AT COLLIDERS

• Each SUSY event may produce 2 metastable sleptons Spectacular signature: highly-ionizing charged tracks

Current bound (LEP): $m_{\tilde{1}} > 99 \text{ GeV}$

Tevatron Run II reach: $m_{\tilde{1}} \sim 180$ GeV for 10 fb⁻¹

LHC reach: $m_{\gamma} \sim 700$ GeV for 100 fb⁻¹

Drees, Tata (1990) Goity, Kossler, Sher (1993) Feng, Moroi (1996)

Hoffman, Stuart et al. (1997) Acosta (2002)

Guaranteed Rates from Cosmology

- Cosmology implies model-independent guaranteed rates for collider signals
- WIMPs

Birkedal, Matchev, Perelstein (2004)

Pair production invisible \rightarrow radiate jet or photon

WMAP
$$\Omega_{\rm dm} \Rightarrow \begin{pmatrix} x \\ x \end{pmatrix} \begin{pmatrix} e^- \\ e^+ \end{pmatrix} \begin{pmatrix} e^+ \\ e^- \end{pmatrix} \begin{pmatrix} x \\ e^- \end{pmatrix} \begin{pmatrix} e^+ \\ e^- \end{pmatrix} \begin{pmatrix} x \\ e^- \end{pmatrix} \begin{pmatrix} e^+ \\ e^- \end{pmatrix} \begin{pmatrix} x \\$$

$$\sigma(ij \to X\bar{X}; \hat{s}) = \frac{\eta_{ij} v_X^2 (2S_X + 1)^2}{4(2S_i + 1)(2S_j + 1)} \sigma(X\bar{X} \to ij; \hat{s}) = \frac{\eta_{ij} (2S_X + 1)^2}{4(2S_i + 1)(2S_j + 1)} \kappa_{ij} \tau_{an} v_X^{2n+1}$$
$$\kappa_{ij} = \sigma(X\bar{X} \to ij; \hat{s}) / \sigma_{tot}$$

WIMP guaranteed rates not promising

Guaranteed Rates from Cosmology

SuperWIMPs

Feng, Su, Takayama (2004)

Stau pair production visible and spectacular!

WMAP
$$\Omega_{\rm dm} \Rightarrow \tilde{\tau} \longrightarrow e^{-} e^{+} \to \tilde{\tau}$$

 $\tilde{\tau} \longrightarrow e^{+} e^{-}$ $\tilde{\tau}$

LHC sensitive to many annihilation channels: u, d, s, c, b

SuperWIMP guaranteed rates much more promising

Slepton Trapping

- Cosmological constraints →
 - Charged slepton NLSP
 - τ_{NLSP} < year
- Sleptons can be trapped and moved to a quiet environment to study their decays

Feng, Smith (2004) Nojiri et al. (2004)

 Crucial question: how many can be trapped by a reasonably sized trap in a reasonable time?

28-29 July 05

Trap Optimization

- To optimize trap shape and placement:
- Consider parts of spherical shells centered on cosθ = 0 and placed against detector
- Fix volume V (ktons)
- Vary ($\Delta(\cos\theta), \Delta\phi$)

Slepton Range

 Ionization energy loss described by Bethe-Bloch equation:

$$\frac{dE}{dx} = Kz^2 \frac{Z}{A} \frac{1}{\beta^2} \left[\ln\left(\frac{2m_e c^2 \beta^2 \gamma^2}{I\sqrt{1 + \frac{2m_e \gamma}{M} + \frac{m_e^2}{M^2}}}\right) - \beta^2 - \frac{\delta}{2} \right]$$

 Use "continuous slowing down approximation" down to β = 0.05

m₇ = 219 GeV

Model Framework

- Results depend heavily on the entire SUSY spectrum
- Consider mSUGRA with $m_0 = A_0 = 0$, $\tan\beta = 10$, $\mu > 0$ $M_{1/2} = 300, 400,..., 900 \text{ GeV}$

Large Hadron Collider

Of the sleptons produced, O(1)% are caught in 10 kton trap

10 to 10⁴ trapped sleptons in 10 kton trap (1 m thick)

International Linear Collider

Sleptons are slow, most can be caught in 10 kton trap Factor of ~10 improvement over LHC

What we learn from slepton decays

• Gravitational decays are simple:

$$\Gamma(\tilde{\ell} \to \ell \tilde{G}) = \frac{1}{48\pi M_*^2} \frac{m_{\tilde{\ell}}^5}{m_{\tilde{G}}^2} \left[1 - \frac{m_{\tilde{G}}^2}{m_{\tilde{\ell}}^2} \right]^4$$

- Measurement of $\Gamma \rightarrow m_{\tilde{G}}$
 - → $\Omega_{\tilde{G}}$. SuperWIMP contribution to dark matter
 - \rightarrow F. Supersymmetry breaking scale
 - → BBN in the lab
- Measurement of Γ and $E_I \rightarrow m_{\tilde{G}}$ and M_*
 - \rightarrow Precise test of supergravity: gravitino is graviton partner
 - → Measurement of G_{Newton} on fundamental particle scale
 - \rightarrow Probes gravitational interaction in particle experiment

LECTURE 3 SUMMARY

- There are two classes of DM candidates that naturally give the correct relic density: WIMPs and SuperWIMPs
- SuperWIMPs have spectacular, but completely different implications for cosmology, colliders
- If any of this is right, there will be a rich program of cosmology at colliders
- Is any of this right? We'll see soon !