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1. From LEP to the LHC

References:
e E Gianotti and M. Mangano, “LHC physics: the first one-two year(s)...”, hep-ph/0504221.
e M. Kado and C. Tully, “The Searches for Higgs Bosons at LEP”, ARNPS (2002) 52:65-113.

An interesting comparison can be made between the experimental approach to the
Higgs boson searches at LEP with those under preparation for the LHC. After early
experimental measurements closed the door to the possibility of a Standard Model
Higgs boson with a mass in the range ) — 60 GeV, a new era of direct searches for on-
shell diboson(ZH) production began in 1996 when LEP increased the center-of-mass
energy above ~ 160 GeV and continued through 2000 to the ultimate LEP energy
reach of \/s = 209 GeV. During this time, the event signatures were categorized
according to the decay modes of the predicted Higgs boson and the well-studied
decay widths of the Z boson, as shown in Figure 1.
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Figure 1: Topologies involved in the search for the standard-model Higgs boson at
LEP2, missing energy, lepton pairs, 777, four-jets.
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Coverage was essentially complete (~ 90%) achieving a maximum detection effi-
ciency with varying degrees of sensitivity to the observation of a Higgs boson above
Standard Model background processes with similar experimental signatures. The
closest “Higgs-like” backgrounds came from ZZ production with at least one Z bo-
son decaying to bb, noting the finite and non-Gaussian detector resolution on the
measurement of the dijet bb-mass. An example four-jet event is shown in Figure 2.

Many analysis techniques were used to quantify the agreement of the overall con-
tributions of Standard Model processes to the Higgs search background predictions,
and in all cases the level of agreement was exceptional with comparably small the-
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Figure 2: ALEPH four-jet event.

oretical and experimental uncertainties. Therefore, background systematic uncer-
tainties have little contribution to the overall search sensitivity. An important aspect
of the LEP searches was the use of full-event discrimination that was sensitive to
event counting as well as properties such as reconstructed mass. The final LEP mea-
sure of the Higgs search data quantified both mass and rate information, as shown
in Figure 4, where the presence of a Higgs boson signal formed a minimum in the
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likelihood ratio.
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Figure 3: Cross section measurements Figure 4: LEP-combined SM Higgs
by the L3 Experiment at LEP2. Search Data.
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LEP was thoroughly limited by statistics at the highest achievable energies as the
ZH cross section turns on rapidly above threshold, as shown in Figure 3. With
four LEP experiments, sensitivity to a 60 fb cross section at the kinematic limit of
mpy = /S — my was achieved with ~ 200 pb~' delivered per experiment. In
the missing energy channel of the Higgs search, some contribution to the sensitivity
came from WW fusion, a process whereby both the incoming positron and electron
covert to neutrinos radiating W bosons which fuse to form the Higgs boson, as shown
in Figure 5. This exceptional process becomes a larger fraction of the total Higgs
production rate with increasing beam energy. An example missing energy event is
shown in Figure 6.
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Figure 5: Diagrams of the Higgs-strahlung and weak boson fusion processes of
Higgs boson production at LEP2.
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Figure 6: L3 missing energy event.

At the LHC, the approach of creating a full matrix of predicted Higgs production
and associated decay processes is still a necessary starting point for the construc-
tion of the analyses, while judicious choices of processes are needed to accommo-
date the triggering capabilities of the experiment. There is less reliance on singular
search channels in particular for channels involving jets and transverse missing en-
ergy. Search channels with multijet QCD backgrounds tend to be more inclusive
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in order to simultaneously fit the dominant Standard Model background fractions.
Some backgrounds are necessarily estimated using data-based samples as opposed
to Monte Carlo simulation. The possibility of concurrent signals such as from mul-
tiple Higgs bosons and the presence of SUSY particle production also warrant wider
event sample scrutiny, not to mention the large experimental challenges of commis-
sioning the detector in all necessary aspects of the measurement.

The justification for the many experimental “warning flags” for LHC analyses is
discussed in the following sections. The many possible manifestations of the Higgs
boson discovery and crucial first measurements are also discussed.

1.1. Probing Deep within the Proton

The first step towards understanding phenomenology at the Large Hadron Collider
is to quantify the influence of the proton parton distribution functions(PDF).

PDFs describe the fraction of the proton momentum « carried by the quarks, anti-
quarks (by flavor) and gluons at a scale (? in momentum transfer corresponding to
the hard collision.
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1.1.1. Parton Model for Proton-Proton Collisions

The initial kinematics are described by the incoming proton momentum, P=7 TeV,
and partons 7 with longitudinal momentum fractions, x; (0 < z; < 1). The 4-
momenta and center-of-mass energy are approximated by:

P12 = SULQP S = L1TxoS = TS (1)

and the rapidity 1 is given by
1 E+p. 1 =
=—-In|=—"| ==-ln— 2
y= i (F) =5 @

with T2 = ﬁeiy.

Exercise: Show rapidity differences Ay are invariant under longitudinal boosts.

Answer:
E — E' =~FE +v8p, and pl, = v8E + yp.
Therefore,
1 E E 1 1
J =Lt (’V +v8p. + +7pz) i <ﬂ>
2 YE +vBp, — vBE — p. 2 1-0

Therefore, AR = \/A¢? + Ay? is an invariant angular measure. Note, in the limit of massless particles

E+p,=p(l+p./p)=p(l=+cosh)
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= —Intan —
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where 7 is the pseudo-rapidity.

1+ COSG)

For computing transverse components of momenta, note the relationship sin @ = 1/ cosh.

PDF distributions are fits to experimental data and theoretical extrapolations. An
online source for these databases is:
http://durpdg.dur.ac.uk/hepdata/pdf3.html
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http://durpdg.dur.ac.uk/hepdata/pdf3.html

LHC parton kinematics
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FigUIE 7: The PDF distributions for Figure 8: Regions of Q2 and = to be
Q? = 4m§, showing that the Tevatron probed at the LHC.

had to be a pp collider for the top quark

to be discovered in 1995.
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The relationships (1) and (2) can be tested against the rapidity distributions of 1V
and Z boson production at the Tevatron. Using max. x = 1, the Z boson can be
produced for rapidities satisfying

my
> ——— ¢
— 1.96 TeV

which gives y < 3, as shown in Figure 10.

1 ! 3)

The TV boson rapidity has a charge asymmetry due to the larger x-values of the
u-(anti)quarks in the (anti)proton compared to d-(anti)quarks, as shown in Figure 9.
At the LHC, the Z bosons will be peaked backward and forward, corresponding to
which proton supplied the (low x) antiquark for the ¢g annihilation.
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Figure 9: Charge asymmetry of W Figure 10: Rapidity of Z bosons pro-
bosons at the Tevatron. duced at the Tevatron.
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1.2. More Orders of Magnitude than EWK to GUT

proton - (anti)proton cross sections
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The LHC will begin taking data in 2007 with an initial target luminosity of £ =
2 x 10%em~2s~!. Approximately 400 1/, 100 Z bosons and 2 tt pairs will be
produced per second.
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1.2 More Orders of Magnitude than EWK to GUT

Experiments handle the large spectrum of rates with trigger systems. For instance,
low pr dijet production is the dominant process at hadron colliders. While at the
same time, high p, dijets probe the smallest length scales.
section over a range of 10 orders of magnitude is important as it yields a running

value of a,(Q?).
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different jet py threshold and prescales (only every N events recorded).

Measuring the cross
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Figure 11: Dijet trigger prescales.
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Figure 12: Dijet events from triggers.
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Figure 13: Trigger turn-on curves.
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Figure 14: Dijet cross section.
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The actual cross section measurement is a piece-wise assembly of several separate
triggers. Only fully efficient regions of the trigger are kept and the lowest trigger
is dropped from the analysis. The turn-on curve for a trigger is a function of the
jet resolution and detector uniformity. In these examples, the dijet mass spectrum
1s covered down to 500 GeV with prescales, and only 2 TeV dijet resonances are in
unprescaled trigger regions.

All datasets are heavily affected by the trigger or triggers used to select them. The
trigger path defines a narrow sieve through which a tremendous downpour of multijet
QCD events could pass, most of which as instrumental backgrounds to be defined
loosely as anomalous measurements due to finite detector resolution or coverage.
Tables 15 and 16 show initial estimates for the hardware and software online trigger
thresholds, respectively, for the CMS experiment.

The total acceptance rate to tape for an LHC experiment is ~ 150 Hz (event sizes
are ~ 1 MByte). The rate of leptonic W decays alone exceeds the bandwidth. The
rate of Z boson dileptons is ~ 10 Hz. If we had purely electroweak processes, then
the triggers could manage this task easily. However, the rate of dijet bb produc-
tion where at least one B-hadron semileptonically decays is over 10° Hz exceeding
the hardware trigger limitations. Dijet bb production is a lepton factory. Therefore,
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Table 15-1 Level-1 Triaer table at low luminosity. Thresholds corresnond to values with 95% efficiency. Table 15-24 High-Level Trigger requirements at low luminosity. The thresholds correspond to the values in Ey
% Y p ! Y or Py with 95% efficiency (90% efficiency for muons). There is no actual threshold in the HLT selection for T-jets,

so the threshold shown is that of the corresponding Level-1 Trigger requirement.

Ti Threshold Rate Cumulative Rate
rgger (GeV or Gevic) (kH2) (kH2) Threshold Rate Cumulative Rate
Trigger (GeV or GeVic) (Hz) (Hz)
Inclusive isolated electron/photon 29 33 33 Indlusive dectron 2 3 3
Di-glectrong/di-photons i 13 43 Di-glectrons i 1 %
Inclusive isolated muon 14 27 70 Indusive photons % ! ®
Di-photons 40,25 5 43
Di-muons $ 09 19 Inclusive muon 19 25 68
Single tau-jet trigger 86 22 101 Di-muons 7 4 72
Twotaurjets 59 10 109 Inclusive T-jets 86 3 75
o Di-t-jets 59 1 76
Ljet, 3jets 4-ets 177,86, 70 30 125 )
Ljet* Egmiss 180* 123 5 81
H*ENS 887 46 23 U3 1jet OR 3{etsOR 4ets 657, 247, 113 9 &
Electron* Jet 245 08 551 Electron* Jet 19%45 2 %0
. o Inclugive bjet 27 5 9%
Minimum-bias (calibration) 09 160 OLSVEDIES
Calibration and other events (10%) 10 105
TOTAL 160 TOTAL 105

Figure 15: Level-1 Trigger Table. Figure 16: High-Level Trigger Table.

the only way to control the single and dilepton triggers is to require the leptons
to be isolated from jets, as most “soft-lepton”-tagged b-jets will contain the lepton
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within AR < 0.5 separation. Jet directions are difficult to reconstruct at hardware-
level, so most online 1solation criteria are based on “hollow cones’ centered on the
lepton candidate, either in the calorimeter at level-1 or including the tracks at the
higher-level software trigger. Lepton isolation criteria will have to fight against in-
efficiencies from underlying event, pile-up and magnetic field spreading of low pp
pions.

The trigger rates at the LHC startup will be a major test of the preparatory work in
progress at the CMS and ATLAS experiments. If the initial trigger rates exceed ex-
pectation, methods to tighten isolation criteria to control the rate will be invaluable.
Directly raising the thresholds on jets and leptons will cut into vital Higgs boson
signal efficiencies.

1.3. Multijet QCD Backgrounds

With such a high rate of multijet events, a single electron trigger, for example, will
select some number of jets as electrons. This can be due to fragmentation or de-
tector response fluctuations or other, that are difficult to model with finite Monte
Carlo simulation statistics. Data-driven estimates are required for singly-important
selection criteria, for example, a high py isolated electron.
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Figure 17: To verify the MC prediction for the signal efficiency ¢,;,, the data-to-MC
efficiencies are compared using a “tag and probe” method on Z — ee data.

One technique to determine the normalization of the multijet background is to apply
a “matrix method” from simultaneous equations sensitive to the differences in be-
havior when tightening electron identification. One defines two samples, tight and
loose. The efficiency for a true isolated electron to pass the tight cuts is given by €,
and for multijet background to pass a fake electron, the efficiency is €gcp. The set
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of linear equations are therefore:

Nloose — NSig + NQCD

. 4
= ESZ'QNSZQ + GQC’DNQCD ( )

3
e
T

|

The efficiency €,;,, may be taken from Monte Carlo simulation after data-to-MC
scale factors are applied, see “tag and probe” in Figure 17. Note, the normalization
depends on the jet multiplicity in the event.

The efficiency for fake electrons to pass the tight cuts is measured directly from
data. For example, for signals with transverse missing energy, the low F'r region
will be dominated by background, and €gcp 18 the ratio of tight to loose events in
this background-enhanced sample, as shown in Figure 18.

The value of €gcp can depend strongly on shape and threshold parameters in the
trigger selection. The background shape is taken directly from the background-
enhanced sample and added to the prediction with the matrix method normalization,
as shown in Figure 19.
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x2 / ndf 14.28 /9
Prob 0.1126
Uocen 0.1155 + 0.0051

tightloose ratio
0o
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Figure 18: Ratio of tight to loose as a function of /1 where extrapolation to the low
W1 region gives a stable value for €gcp.
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Figure 19: Example of the leptonic W transverse mass from the Tevatron in events
with at least one D-tagged jet. Background shape from QCD multijets is in grey with
a normalization determined from the “matrix method”.
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2. Standard Model Higgs Search

Folding the Higgs production cross sections and branching fractions (Figs. 20 and
21) against the trigger and selection efficiencies, a preliminary list of relevant search
channels for a low mass Higgs search can be formed. This is given in Table 1. Of

Production Inclusive Weak WH/ZH ttH
DECAY (including boson
gg fusion) fusion
H>vy YES YES YES YES
H—->bb YES
H>1t YES
H->oww* YES YES YES

H%ZZ*, 7> e+e-, ,e=e!|_| YES
H->Zy, 7> €2, €=e,p very low

Table 1: The most important SM Higgs channels for m g below the WW-threshold.

the channels in the left-most column, only the diboson decays of the Higgs are suf-
ficiently clean to be detected inclusively within corresponding specific trigger paths.
The columns to the right are a set of exclusive decay channels where identification
of associated production particles give at least an order of magnitude improvement
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in signal to background separation, relative to the inclusive searches. The exclusive
channels have unique sensitivities to 3" generation Higgs couplings, tree-level elec-
troweak couplings and more precise mass and partial decay width measurements.

In the 20 GeV mass range between the WW and ZZ-thresholds, the inclusive WW
channel is the dominant decay mode with substantial statistics to form a transverse
mass measurement of the Higgs. Above the ZZ-threshold, the four-lepton decay is
the golden channel for Higgs discovery with low backgrounds and high resolution
mass reconstruction in a mixture of pairs of dielectron and dimuon decays.

At the highest masses, the dropping production cross sections are compensated by
the addition of hadronic W and Z decay modes. The high p boson signature has
lower backgrounds and the dijets begin to merge, providing a clear massive monojet
signature. Similarly, the neutrino decays of high pr Z bosons provide a substan-
tial transverse missing energy. These highly boosted diboson decays provide Higgs
boson search coverage up through 1 TeV where the width of the Higgs becomes
comparable to its mass and the electroweak scattering of massive weak bosons will
begin to form resonances in a semi-strong coupling regime.
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2.1. High Mass Resolution Search Channels

Figure 20: SM Higgs Production
Cross Sections.

Figure 21: SM Higgs Decay
Branching Fractions.

The sub-threshold decay of the Higgs boson to ZZ* is kinematically similar to the
semileptonic b-quark decay in that dominantly one Z boson is nearly on-shell and
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the second Z boson has a mass corresponding to the remaining ()* of the decay.
Therefore, a 130 GeV Higgs boson will decay into a ~ 90 GeV and a less than
40 GeV pair of Z bosons. The soft Z boson decay into leptons is problematic in
terms of lepton backgrounds and reconstruction efficiency. Ultimately, low pr lep-
ton detection and diminishing Z Z* branching fraction limit this channel to above
130 GeV.
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Figure 22: Dilepton mass distributions for H — ZZ* — 2e2u, my = 130 GeV,
on the left for dielectrons and on the right for dimuons. The low mass dimuons are
enhanced because of the high muon reconstruction efficiency at low py.

Background to H — 4/ comes from tt dilepton decays with both b-jets producing
leptons from semi-leptonic decays. Similarly, the process Zbb is also a background
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with a Z decaying to leptons and each b-jet producing a lepton (for background
studies replace “D” everywhere with lepton). Note, leptons from B-hadron semilep-
tonic decay can be partially removed using impact parameter techniques (4¢ vertex
probability) as well as lepton isolation.

The above-threshold H — ZZ decay has background from on-shell ZZ produc-
tion, as shown in Figure 23. The number of selected signal and background varies
strongly with mass as shown in Figure 24 with a corresponding signal significance
shown in Figure 25. With a mass resolution of 1.0 — 1.2%, the direct measurement
of the width [y becomes possible above ~ 200 GeV as shown in Figure 26.
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Figure 23: The H — ZZ* — 2e2u mass distributions before (top) and after
(bottom) final selections for my = 130 GeV (left) and my = 200 GeV (right).
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2.1

High Mass Resolution Search Channels
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Figure 26: Direct measurement of the Higgs width becomes possible above
~ 200 GeV in the H — 2e2p channel.



PiTP, IAS Princeton, Tully, Summer 2005 33 2.1 High Mass Resolution Search Channels

In addition to being a dominant discovery mode, the H — Z 7 — 4/ decay mode
is a powerful probe of the spin, parity and C'P. The most general production vertex
is given by
ig Mz
cos By

X C
—€
M3

14 b v g
<aguvelf€2 + Mgplup2velf€2 ,uvpapfl)p2> (5)
Z

where the first term corresponds to the SM scalar, the second to a non-SM scalar and
the third to a non-SM pseudoscalar. C' P-violation would be present for admixtures
of non-zero a, b and ¢ in equation (5). The experimental observables are the az-
imuthal and polar angular distributions. The azimuthal angle ¢ is measured between
the two planes defined by the leptonic decays of the two Z bosons in the Higgs rest
frame, as shown in Figure 27. This yields a distribution

F(¢) =14 acos¢ + Bcos2¢p . (6)
The polar angle distribution has the form
G(0) = T(1+ cos®0) + Lsin*0 . (7)

One defines the asymmetry R = ﬁ;—? to better distinguish the models. The helicity
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Figure 27: Definition of decay angles in Higgs reset frame.

amplitude of the | ZZ) state to be in the |00) state is predicted to be

M2 — 2M2

TOO = QM% Z for MH > 2MZ . (8)

5
The value of R for a S¢F = 0% state is B = 5020 Ji and for a S¢C = 0~ state,
00

R = —1. The predicted values of R for SM Higgs production are given in Figure 28.
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Figure 28: Standard Model prediction for R.
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The H — -y decay is naturally expected to rise and then drop off on approaching
the WW-threshold. This can be seen from the loop-diagrams of Figure 29 which
have )* ~ 4M§/. The negative interference between the top (fermion) and W

Figure 29: Loop diagrams for /I — ~~y decay.

boson loops decreases the partial decay width by ~ 10%.

The contributions to the total Higgs production cross section at my = 120 GeV are
given in Table 2. The irreducible backgrounds, i.e. those with two real photons in
the final state, come from:

® gg — 27 (Box diagram)
® qq — 27 (Born diagram)
® pp — 27 + jets with two prompt photons

while the reducible backgrounds come from neutral jets (or hard 7°’s) that fake one
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o (gg fusion)(pb) 36.4
o (IVB fusion) (pb) 4.5
o (HW, HZ, Hqgq) (pb) 3.3
Total(pb) 44.2
BR (H—vy) 2.19x10°3
Inclusive ¢ x BR (fb) 96.8

Table 2: Cross section and branching fraction for i — ~.

or two photons in the processes pp — v + jet and pp — jets, respectively. The
process of two neutral jets faking a pair of high energy photons cannot be reliably
simulated with Monte Carlo techniques. Data-driven techniques will be needed to
estimate these backgrounds through the process of tightening photon isolation vari-
ables using sideband regions of the reconstructed Higgs mass, as in Figure 30.
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Figure 30: Reconstruction mass distribution for // — ~~y scale up by x20 on top
of simulated background predictions. The statistics on the background predictions
are low.
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The overall selection efficiency for Higgs decays to photons at my = 120 GeV
is ~ 32% with contributions listed in Table 3. The corresponding backgrounds
for this selection are given in Table 4 with large uncertainties in the pp — jets
contribution. For 1 fb~! of integrated luminosity and a 2.5 GeV mass window, the

expected number of I — 77y events is 22 for a background of 535 events, giving
an S/ B ~ 1%.

After photon +tracker isol | +Ecal isol
selection
50% 35.3% 32.1+0.3%

Table 3: Higgs selection efficiency for H — v, my = 120 GeV.

Box Born v+ jets v+ jets Jets Total Hoyy (M=120 GeV)
(fb/GeV) | (fb/GeV) | 2prompt | 1 prompt (fb/GeV) | (fb/Gev) eff. in window of 2.5
(fb/GeV) + 1 fake GeV (%)
(fb/GeV)
32 46 52 42 41 214 22.7

Table 4: Estimated background expectations per unit of mass window (fb/GeV) for
the H — ~yy inclusive search. A typical mass window is 2.5 GeV.
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The predicted H — -y search sensitivity depends strongly on the calorimeter res-
olution, as shown in Figures 31 and 32. Part of the resolution contribution is from
primary vertex assignment which correctly assigns the signal vertex in ~ 83% of
the events. The current technique consists of assigning the vertex with the highest
pr track in the event as the [/ — -y signal vertex.

L B e e e e e

s o o STV
B Higgs signal (x10) —
= Background .

, , S
70— mm Higgs signal (x10)
I Background

Events/bin
Events/bin
3

1 TTT

8
T
s b b b bere by

110 115 120 125 130 135 140 145 150 155
M, (GeV) M,, (GeV)

‘PUS 110 115 120 125 130 135 140 145 150 155

Figure 31: Comparison of signal and Figure 32: Comparison of signal and
background distributions in H — 27 background distributions in H — 2y
for a calorimeter mass resolution of for a calorimeter mass resolution of
Omy = (00 MeV at my = 120 GeV. 0, = 900 MeV at my = 120 GeV.
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The gluon-gluon fusion loop-diagram for Higgs production is necessarily a high Q*
process due to the top quark mass. It was proposed in Reference [S.Abdullin et al.,
PLB 431: 410-419, 1998] that the search for pp — H — 7 + jet should have a
higher signal-to-background ratio than the inclusive search, as shown in Figure 33.
The backgrounds are suppressed with a cut on V'§ > 300 GeV, as in Figure 34. This
channel also benefits from a more efficient primary vertex-jet assignment, using the
tracks of the high p jet to assign the signal vertex.

g

(central jet) (central jet)

q(valence) /

H " . H

q(valence)

Figure 33: Two leading diagrams for  — 27 + jet production. The diagram on
the right is g weak boson fusion production of the Higgs boson.
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Figure 34: Distribution of the differential cross section in V/§ for the H — 2v+ et
signal(S) and background(B) processes.
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The reduced background-level in f — 2v+ jet and in the weak boson fusion Higgs
production will provide a flatter background shape on which to measure the mass of
a light Higgs boson, as shown in Figures 35 and 36. Table 5 lists the predicted
inclusive I — 2+ and exclusive i — 27 + jet cross sections and background

levels after event selection from an ATLAS analysis.

Mass Signal: gg — H | Signal: VBF | Bkg: Real yyj | Bkg: Fake yvyj
(GeV) (fb) (fb) (ib) (fb)
110 | inclusive 24.16 1.68 1152.16 112.42
exclusive 4.66 1.61 33.91 10.36
120 | inclusive 23.97 1.83 803.63 90.77
exclusive 5.25 1.89 29.89 9.17
130 | inclusive 22.37 1.94 598.08 79.20
exclusive 4.69 1.82 22.93 6.59
140 | inclusive 18.35 1.94 45417 68.89
exclusive 3.15 1.35 13.44 4.22

Table 5: Inclusive H — 27 and exclusive H — 27 4+ jet cross sections and

background levels after event selection.
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Figure 35: Comparison of signal and Figure 36: Comparison of signal and
background distributions in the inclu- background distributions in / — 2v+
sive H — 27 search, my = 130 GeV. jet, my = 130 GeV.
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2.2. JetMET-Oriented Low-Mass Channels

There are three exclusive channels in the low mass Higgs search which compete
with the H — 7 sensitivity at my = 120 GeV. These are ttH (H — bb), gqgH
(H — 77)and qqgH (H — WW?* — 2{2v), as shown in Figure 37. All of
these channels involve jets and transverse missing energy in the final state, and are
therefore “JetMET”-related analyses. The resolution of jet pr measurements are
roughly an order of magnitude lower (worse) than corresponding electron, muon or
photon measurements, as shown in Figure 40. The lower measurement resolution
reduces the reconstruction efficiency of low pp jets and introduces fake jets formed
from low energy background sources.
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Figure 37: ATLAS Higgs search sensitivity in the low mass channels.
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The cross section for ¢t production at the LHC is ~ 833 pb (or a factor x 100 larger
than at the Tevatron) and therefore an abundant source of events. Figure 38 shows a
mock commissioning plot from 150 pb~! of simulated initial data. The cross section
for associated Higgs production tt H is ~ 0.7 pb, three orders of magnitude smaller.
The tt H search channel suffers from several sources of efficiency loss from branch-
ing fractions for tf — ¢ + jets and H — bb (total branching fraction ~ 20%),
single-lepton trigger inefficiency, event selection when requiring exactly six jets,
jet reconstruction, combinatorics of b-jet assignment, dijet bb mass resolution and
b-tagging efficiency to the fourth power, €; &~ 11%. Figure 39 shows the recon-
struction turn-on efficiency for jet reconstruction at an instantaneous luminosity of
L = 2 x 10 ¢m~%s~! in the CMS calorimeter. At parton-level, the efficiency
for the ttH channel decreases from 89%, 60%, 30% to 11% for corresponding pr
cuts on all partons of 10, 20, 30 and 40 GeV. Therefore, the use of tracking and other
techniques to sharpen the jet reconstruction efficiencies are essential to maintain low
thresholds.
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Figure 38: The three-jet hadronic top mass expected from calorimeter commission-
ing with 150 pb~" of data.
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Figure 39: Turn-on curve of jet recon-
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Figure 40: Calorimeter jet resolutions.
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An example distribution of the reconstructed Higgs mass in the H — bb decay
mode in ¢t H events is shown in Figure 41. The background shoulder is partially
due to the ¢£Z background with Z — bb. The bb dijet mass resolution is expect to
be ~ 12 — 15% and therefore separating m, and my will be limited by detector
resolutions and calibrations. There is a broad contribution to the mass distribution
from t1bb production from QCD interactions, having more theoretical uncertainties
in the shape and cross section than the ¢£Z process.

B0 T N L A R RSN PRI
= B | + M=115 GeV/e® (ATLFAST, 30 fb™)
3 i - + e {tH + backgrounds 1
o100 LATN - ttbb (QCD+EW) .
C '\\\ “ [2] inclusive tt ]
50 |- \ N .
N : : \ ARG
0 50 100 150 300 350 400
m,_ (GeV/C )

Figure 41: Higgs mass reconstruction in the ¢¢H search.

Another JetMET-related channel is the weak boson fusion production qgH of the
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Higgs boson with the / — 77 decay. In the decay of the Higgs to 7-leptons, a
mass reconstruction technique involving the transverse missing energy aides in the
separation of the large background from Z — 77+ jets. Only ~ 80% of the tau en-
ergy is visible in the calorimeter, the remainder is lost to neutrinos. Figure 42 shows
how the transverse missing energy can be projected onto the 7-lepton momentum
directions to recover part of the undetected tau energy. An example /I — 77 mass
resolution for my = 120 GeV is shown in Figure 43,

Collinear approximation : m_<< p; *:

= miss
Emiss EviXijert + Eyo X, jete = Eqx

T =
jet1 Tt EviVier VB2 Yijerr = Eqy

Xejet = Si_n(er jet) C_Os(d)z jet)
Yejer = SIN(D; jer) SIN(P. jer)

E.=E . +E

T T jet v

Figure 42: Mass reconstruction technique for H — 77.

The effectiveness of using the measured //1 depends on the i/t resolution and reso-
lution tails. Generally, the technique in Figure 42 requires a large Higgs pr in order
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Figure 43: Reconstructed 77-mass using the F'r projection technique in the H —
7T channel.

to avoid false solutions. An example of E't resolution tails is given in Figure 44
for QCD dijet events, and a similar plot for the resolution as a function of the scalar
> Er in Figure 45. The cumulative QCD ' tails set the lowest thresholds that can
be used in the trigger, which is =~ 1 Hz for a 100 GeV threshold. For events with
no intrinsic F'r, the direction of the measured Fr is correlated to the jet and lep-
ton directions, as the mismeasurement of energetic objects is a leading source of pr
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imbalance. The construction of an / significance, or a simple requirement on the
minimum angular separation of the missing energy direction and the nearest jet or
lepton, can substantially reduce backgrounds from intrinsically low [/t processes.

80
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Figure 44: Transverse missing energy Figure 45: Transverse missing energy
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The selection efficiency for a pair of 7-leptons, such as from H — 77 decay,
has a substantial contribution from hadronic 7 decays, as shown in Table 6. The

Final States | BR
TeTh 22%
TuTh 22%
ThTh 41%
TeTy 3%
TeTe 6%
TuTy 6%

Table 6: Tau pair final states.

identification of hadronic tau decays relies on the narrowness and isolation of the
tau jet. Figures 46 and 47 show the definition and performance, respectively, of a
“shrinking cone” method for separating tau jets from QCD jets. Due to the finite
mass of the tau, a higher py boost will result in a narrower jet of particles from its
decay. The dominant 1-prong and 3-prong decays of the tau and the expected visible
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mass distribution can be seen selected tau candidates, as shown in Figures 48 and
49 with Tevatron data.

—signal
seed track —— isolation

) !"'l. ‘ l
o |
5 o Tau Jot
6]
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o._. 0 i

Sig L B PN
i = .05
not associated <o e i

IR o e
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7 0D)j obj
Ecluster [GGV] Ezlusjter [GeV]

Figure 46: Tau Cone Definitions. Figure 47: Jet/Tau Separation.
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The triggering of qqH with H — 77 relies on good hardware tau isolation tech-
niques. Nominally, the signal signature is a four-jet final state with low Fr and
therefore has a potentially overwhelming multijet QCD background. However, the
kinematics of the forward-jets and the narrowness of the tau jets suppresses the mul-
tijet background. The pseudo-rapidity distributions of the jets and taus are plotted in
Figure 50.

An important background for the ¢qH search in the decay H — 77 are tt events in
the dilepton decay mode. The jets coming from this process are more central than
forward-tagging jets from weak boson fusion and can be b-tagged if they are within
the tracker acceptance, or || < 2.4 for CMS. Forward-tagging jets are light quark
jets as they originate from valence quark scattering, see Figure 33. Therefore, the use
of a central jet veto can be very powerful in reducing ¢¢ backgrounds. However, with
~ 5 multiple interactions at an instantaneous luminosity of £ = 2 x 10**cm ?s™!
(including single and doubly diffractive events), there are a number of minbias jets
in every event with a pp spectrum extending above 30 GeV. To maintain an effective
central jet veto, the jets must be assigned to a vertex using the tracking information.
The tracks of the central 7-jets define the primary vertex, and therefore the jets from
the non-signal vertices are ignored in the central jet veto. Jet-vertex assignment will
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be important for all LHC measurements to reduce the effects of pile-up.
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Figure 50: Forward-jet and 7-lepton pseudo-rapidity distributions in the gqH pro-
cess with H — 7.
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2.3. Inclusive Dilepton Analysis

The H — WWW decay mode has a branching fraction of ~ 8% at my = 115 GeV
that grows steadily to a maximum of 96% right below the ZZ-threshold. The lep-
tons from Higgs— W IV tend to point in the same direction, as shown in Figure 51.
This provides a natural search variable, namely A, the azimuthal angle between
the leptons. The high opening angle backgrounds come from Z — 77 where both
T-leptons decay leptonically, as shown in Figure 52. The backgrounds in the recon-
structed dilepton mass 1, shown in Figure 53 and 54 from the Tevatron, depend on
the flavor combination of the leptons, where the et channel has substantially lower
backgrounds from Drell-Yan and Z — (/.

W+ e
e > ——>—>

— < —{——
v W- e

Figure 51: Leptons from H — W W decay tend to point in same direction.
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Figure 52: The azimuthal opening angle between leptons in the / — WV channel
from the Tevatron.
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Figure 53: Reconstructed dilepton Figure 54: Reconstructed dilepton

mass in H — W W — ee channel.

mass in  — WW — eu channel.



PiTP, IAS Princeton, Tully, Summer 2005 62 2.3 Inclusive Dilepton Analysis

The ¢, WW and Z — 77 backgrounds to the H — W W search have differ-
ing dilepton kinematics, jet multiplicities and missing energy distributions. As it
will be particularly difficult to fully separate samples with differing jet multiplicities
and missing energy distributions, it is likely that a simultaneous “inclusive” dilepton
analysis will be applied. An example analysis from the Tevatron is shown in Fig-

ure 56. In addition, the LHC will have new backgrounds such as flavor excitation
production of gb — tW, as shown in Figure 55.

b t g t

g w b w

Figure 55: Flavor excitation processes contributing to the dilepton event selection.
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Figure 56: The 2D distributions of jet multiplicities and transverse missing energy

for tt, WW and Z — 77 in addition to instrumental and other backgrounds.
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Without direct mass reconstruction, as here only the transverse mass is available,
a successful search in this channel requires an accurate normalization of standard
model contributions to the dilepton event selection and well-described signal kine-
matics. The transverse mass distribution for H — WW at myg = 160 GeV is
shown in Figure 57. The effect from higher-order corrections on signal kinematics,
the Higgs pp distribution, is shown in Figure 58 and is a source of uncertainty on
the dilepton distributions.
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Figure 57: Transverse mass distribution Figure 58: Leading-order event simu-
inthe H — WW — euvv channel lations are reweighted for higher-order
with forward-tagging jet requirements. corrections to the event kinematics.
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In the sub-threshold region of the I — W W decay, the requirement of forward-jet
tagging, according to the kinematics of qqH production, results in a factor of 10
reduction in background, thereby opening up the low mass search in this channel.
Similarly, if the second lepton pr is too low, then the forward-jets must be included
in the trigger decision in order to reduce events from W + jets and multijet QCD
background as these would dominate in a single lepton trigger. Forward jets have
a transverse momentum of roughly half the W mass, as expected from massive W
propagators in the fusion process. The measurement of gqZ production will be
an important benchmark for understanding forward jets at the LHC. The tagging
jets occur in the pseudo-rapidities 1.5 < |n| < 4.5 as shown in Figure 50 with
corresponding energies of ~ 300 GeV or higher. Figure 59 shows an 1-¢ map of
a qqH event with identified forward jets. There is a slow narrowing of jets with
energy, according to the Q° of the jet production, that goes approximately as £~ '/%.
Therefore tagging jets have a narrower energetic core than backgrounds consisting
of boosted low energy jets, minbias pile-up and reminants from the underlying event.
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forward
jets

Figure 59: An 77-¢ map of a qqH event with identified forward jets.
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As shown in Figure 37, the q¢H channel with I — WIV/* loses sensitivity when
the effective 1/ * mass goes below ~ My /2. To continue the H — W W * search
down to lower masses, the W H production channel can be used. In this channel,
there are two nearly on-shell W bosons in the W H — WW W™ process. The
hard dilepton p; spectra in this channel increase trigger efficiencies and open up
the possibility of a same-sign dilepton search for half of the sample. This signa-
ture has very low physics backgrounds especially for dissimilar lepton flavors in the
e 1* channel. The soft third lepton may be above reconstruction thresholds, espe-
cially for muons, and therefore introduce the trilepton signature. The trilepton and
same-sign dilepton searches are high purity analyses and have mainly diboson and
instrumental backgrounds. The rejection of the Z peak in the W W V™ signature is
effective in removing diboson backgrounds, as shown in Figure 60. The Z H pro-
duction mechanism would be another source of enhanced triple boson production.
The performance of the W/ TV* same-sign dilepton search has been studied at the
Tevatron for the low mass Higgs search and has the most stringent cross section
exclusion, as plotted in Figure 61.
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Figure 60: Presence of a Z peak in dilepton combinations from ZZ and WZ back-
grounds are rejected in the trilepton W H — WW W™ channel. The ZZ back-
grounds with Z — 77 fall into the signal region as indicated by the boxed region.
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Figure 61: Overall summary of Standard Model Tevatron Higgs searches
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2.4. Boosted Dibosons from Heavy Higgs Decay

As shown in Figure 26, the natural width of the Higgs boson exceeds 100 GeV for
a mass of my = 600 GeV and above, and the total production rate drops to below
1 pb with a significant fraction of the total rate coming from qqH production. To
cover this heavy mass region, additional decay channels of H — WIW and Z7
need to be utilized. The highly boosted W and Z bosons coming from an 800 GeV
Higgs boson decay will have collimated decay products, as drawn in Figure 62 for
the strong WW scattering process. The hadronic decays appear as single jets in the
detector. The mass of the single jet can be used to identify the jet as originating
from a W or Z boson, as shown in Figure 63. The qqH production mode with
H—WW — lvjjand H — ZZ — ({37 decay modes benefit from the higher
branching ratios of the hadronic boson decay, and the identification of a massive
single jet is an effective part of the event signature. A similar high branching ratio
decay channel is the H — Z/ — {(lvv in qqH production. This provides a large
transverse missing energy signature as shown in Figure 64.
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Figure 62: Heavy Higgs production and Figure 63: Single-jet W mass recon-
strong WW scattering event signature.  struction.
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Figure 64: Transverse missing energy distribution in H — 7/ — {({vv channel

without (left) and with (right) requiring forward-tagging jets from weak boson fusion
production.
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2.5. From 115 GeV to1 TeV

An overview of the Standard Model Higgs search sensitivity with the CMS experi-
ment is shown in Figure 65.
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Figure 65: Estimates of the statistical significance of the Standard Model Higgs
boson searches with 30 fb~! of integrated luminosity.
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The LHC Higgs search has a broader variety of possible analyses than those de-
veloped at LEP. Furthermore, the experimental challenges are starkly different in
the different search topologies and mass ranges. The high mass resolution channels
depend strongly on the calibration and alignment of the tracking, calorimeters and
muon spectrometers and are subject to intense commissioning efforts. The JetMET-
related search channels must contend with the low pp jet reconstruction efficiencies
and fake rates. The usage of the transverse missing energy in these channels is
also subject to commissioning and the effects of detector noise, jet mismeasurement
response tails and minbias pile-up. For weak boson fusion search topologies, the
forward-tagging jets will be nearly the highest pseudo-rapidity jets used for analysis
in hadronic collisions, creating an uncertainty in the reliability of simulations of the
jet backgrounds in the forward regions. In cases where the search channel depends
on efficient 7-lepton triggering or on single lepton triggers plus jets, techniques for
data-driven background calculations must be applied to correctly account for multi-
jet QCD backgrounds and instrumental backgrounds enhanced by the trigger selec-
tion. Inclusive analyses, such as the dilepton analysis, will have to address a wide
variety of standard model processes, some never measured before. The same-sign
dilepton and trilepton searches will address rare backgrounds processes with un-
known contributions from fake and misreconstructed leptons, requiring data-derived
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estimates. Heavy Higgs searches will require dedicated treatment of highly boosted
W and Z boson decays.

In general, the understanding of the searches starts at high pr and moves towards
lower masses. It would not be surprising in the LHC Standard Model Higgs search to
see a rapid exclusion for Higgs boson masses above mpy ~ 150 GeV and extending
up to 500 GeV, and then followed by more detailed experimental efforts as discussed
here to cover the low mass region down to my = 115 GeV and the high mass region
up to 1 TeV.
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