Supersymmetry IV Hitoshi Murayama (Berkeley) PiTP 05, IAS

Plan

Mon: Non-technical Overview what SUSY is supposed to give us Tue: From formalism to the MSSM Global SUSY formalism, Feynman rules, soft SUSY breaking, MSSM Wed: SUSY breaking how to break SUSY, mediation mechanisms Thu: SUSY at colliders basic reactions, signatures, and how do we know it is SUSY? Fri: SUSY as a telescope supersymmetry breaking, GUT, string

e+e- Linear Collider

Large Hadron Collider (LHC)

ø proton-proton collider 14TeV energy (cf. 2TeV @ Fermilab) Onder construction at CERN, Geneva Turn on in 2007 Finally reaching the energy Fermi told us about in 1933!

Higgs at ATLAS

Supersymmetry

Tevatron/LHC will discover

Can do many precision measurements at LHC

New physics looks alike

missing ET, multiple jets, b-jets, (like-sign) leptons

 \widetilde{g}

 \widetilde{W}^+

 P_8^0

W

 P_{8}^{0}

Receese

b

 W^+

+Universal extra dimension, little Higgs with T-parity

Task

Why do we live in a cosmic superconductor? We can eliminate many possibilities at LHC
 But new interpretations necessarily emerge
 Race will be on:
 theorists coming up with new interpretations experimentalists excluding new interpretations \Rightarrow A looong process of elimination Orucial information is in details
 Orucial information
 Orucial
 Orucial information
 Orucial
 Oruc \Rightarrow Reconstruct the theory from measurements

The Other Half of the World Discovered Geneva, Switzerland

As an example, supersymmetry "New-York Times level" confidence still a long way to "Halliday-Resnick" level confidence

"We have learned that all particles we observe have unique partners of different spin and statistics, called superpartners, that make our theory of elementary particles valid to small distances."

Multiple Wavebands in Astronomy

X-Ray (NASA/CXC/SAO/G.Fabbiano et al.)

Optical (NASA/STScl/B.Whitemore)

Infrared (ESA/ISO/L.Vigroux et al.)

Radio (NRAO/VLA)

Telescopes vs Accelerators

aim	need	telescopes	accelerators
probe deeper	better resolution	better mirrors, CCD	higher energy
better image	better exposure	larger telescopes, more time	more powerful beams (luminosity)
full understanding	multiple probes	visible, radio, X-ray, infrared, UV, gamma	protons, electrons, neutrinos

Linear Collider

- Selectron-positron collider
- e⁻, e⁺ point-like with no structure
- Well-understood environment
- Linear instead of ring to avoid synchrotron loss
- Super-high-tech machine
- Accelerate the beam over >15km
- Focus beam down to a few nanometers and make them collide

ILC

LHC

ILC e

e

 elementary particles
 well-defined energy, angular momentum

ø uses its full energy

can produce particles democratically

can capture nearly full information

LHC VS ILC

(oversimplified)

total energy	I4TeV	0.5-1 TeV	
usable energy	a fraction	full	
beam	proton (composite)	electron (point-like)	
signal rate	high	low	
noise rate	very high	low	
analysis	specific modes	nearly all modes	
events	lose info along the beams	capture the whole	
status	under construction	needs to finish design	

Reconstruct Lagrangian from data

Specify the fields @ mass \odot SU(3)xSU(2)xU(1) quantum numbers mixing of states
 Specify their interactions SU(3)xSU(2)xU(1) quantum numbers determine gauge interactions Yukawa couplings
 Trilinear and quartic scalar couplings

Reconstruct Lagrangian from data

Specify the fields o mass \odot SU(3)xSU(2)xU(1) quantum numbers mixing of states
 Specify their interactions SU(3)xSU(2)xU(1) quantum numbers determine gauge interactions Yukawa couplings
 Trilinear and quartic scalar couplings

Two-body kinematics

In the CM frame of two particles of mass m₁ and m₂

$$E_{1} = \frac{\sqrt{s}}{2} \left(1 + \frac{m_{1}^{2}}{s} - \frac{m_{2}^{2}}{s} \right)$$

$$E_{2} = \frac{\sqrt{s}}{2} \left(1 + \frac{m_{2}^{2}}{s} - \frac{m_{1}^{2}}{s} \right)$$

$$p_{1} = p_{2} = \frac{\sqrt{s}}{2} \sqrt{1 - \frac{2(m_{1}^{2} + m_{2}^{2})}{s} + \frac{(m_{1}^{2} - m_{2}^{2})^{2}}{s^{2}}}$$

$\tilde{\mu} \rightarrow \mu \chi^0$

So In the smuon rest frame $\hat{p}_{\mu} = \frac{m_{\tilde{\mu}}}{2} \left(1 - \frac{m_{\tilde{\chi}^0}}{m_{\tilde{\mu}}^2} \right) (1, \sin \hat{\theta}, 0, \cos \hat{\theta})$ In the lab frame $\gamma_{\tilde{\mu}} = \frac{E_{\tilde{\mu}}}{m_{\tilde{\mu}}} = \frac{\sqrt{s}}{2m_{\tilde{\mu}}} \qquad \beta_{\tilde{\mu}} = \sqrt{1 - \frac{4m_{\tilde{\mu}}^2}{s}}$ muon momentum in the lab frame $p_{\mu} = \frac{m_{\tilde{\mu}}}{2} \left(1 - \frac{m_{\tilde{\chi}^{0}}}{m_{\tilde{\chi}^{0}}} \right) \left(\gamma_{\tilde{\mu}} + \gamma_{\tilde{\mu}} \beta_{\tilde{\mu}} \cos{\hat{\theta}}, \sin{\hat{\theta}}, 0, \gamma_{\tilde{\mu}} \cos{\hat{\theta}} + \gamma_{\tilde{\mu}} \beta_{\tilde{\mu}} \right)$ Therefore, the muon energy is $\frac{\sqrt{s}}{4} \left(1 - \frac{m_{\tilde{\chi}^0}^2}{m_{\tilde{\mu}}^0} \right) \left(1 - \beta_{\tilde{\mu}} \right) < E_{\mu} < \frac{\sqrt{s}}{4} \left(1 - \frac{m_{\tilde{\chi}^0}^2}{m_{\tilde{\mu}}^0} \right) \left(1 + \beta_{\tilde{\mu}} \right)$ $\frac{d\sigma}{dE_{\mu}} \propto \frac{d\sigma}{d\cos\hat{\theta}} = \text{constant}$ E_{II}

$\tilde{\mu} \rightarrow \mu \chi^0$

 fit to the kinetic distribution

 $m_{\tilde{\mu}} = 132.0 \pm 0.3 \text{ GeV}$ $m_{\tilde{\chi}^0} = 71.9 \pm 0.1 \text{ GeV}$

LHC/LC synergy

Reconstruct Lagrangian from data

Specify the fields

© mass

 Spin⇒Klein-Gordon, Dirac, Majorana, gauge
 SU(3)×SU(2)×U(1) quantum numbers
 mixing of states
 Specify their interactions
 SU(3)×SU(2)×U(1) quantum numbers determine gauge interactions
 Yukawa couplings
 trilinear and quartic scalar couplings

Spin

production angle
 distribution well
 above the threshold:

spin 1/2

spin 0

 $(1+\cos\theta)^2$

sin²0

θ

"New particle" has spin 1/2

"New particle" has spin 1

Smuon production • $e^+e^- \rightarrow \tilde{\mu}^+\tilde{\mu}^- \rightarrow (\mu^+\tilde{\chi}^0_1)(\mu^-\tilde{\chi}^0_1)$ • once masses known, you can solve kinematics up to a two-fold ambiguity • muon momenta measured: $p_{1,2}^{\mu} = (E_{1,2}, \vec{p}_{1,2})$ • neutralino momenta: $q_{1,2}^{\mu} = (\frac{\sqrt{s}}{2} - E_{1,2}, \vec{q}_{1,2})$

neutralino mass constraint: \$\vec{q_1}{2} = (\vec{v^2}{2} - E_{12})^2 - m_{\vec{z}}^2\$
smuon mass constraint: \$\left(\frac{\sqrt{s}}{2}\right)^2 - (\vec{p_1} + \vec{q_1})^2 = m_{\vec{\mu}}^2 \leftarrow \vec{p_1} \cdot \vec{q_1}\$
momentum conservation:
\$\vec{q_2}{2} = (\vec{p_1} + \vec{p_2} + \vec{q_1})^2 = (\vec{p_1} + \vec{p_2})^2 + \vec{q_1}^2 + 2\vec{p_1} \cdot \vec{q_1} + 2\vec{p_2} \cdot \vec{q_1} \leftarrow \vec{p_2} \cdot \vec{q_1}\$
Now know \$|\vec{q_1}|\$, \$\vec{p_1} \cdot \vec{q_1}\$, \$\vec{p_2} \cdot \vec{q_1}\$

So Know \vec{q}_1 up to a two-fold ambiguity

 threshold behavior non-relativistic limit:
 L, S separately conserved

 $m_{\tilde{\mu}} = 132.0 \pm 0.09 \text{ GeV}$ $m_{\tilde{\chi}^0} = 71.9 \pm 0.05 \text{ GeV}$

Reconstruct Lagrangian from data

Specify the fields o mass ⊚ spin⇒Klein-Gordon, Dirac, Majorana, gauge SU(3)xSU(2)xU(1) quantum numbers mixing of states Specify their interactions SU(3)xSU(2)xU(1) quantum numbers determine gauge interactions Yukawa couplings
 Trilinear and quartic scalar couplings

gauge quantum numbers

polarization

✓ Use polarized electron beam
 ✓ can ignore mz²≪s
 ✓ e_R couples only to B_µ
 ✓ e_L couples to B_µ+W_µ⁰

 $\propto (g'^2 Y_f)^2$

 $\propto (g'^2 Y_f + g^2 I_{3f})^2 / 4$

Reconstruct Lagrangian from data

Specify the fields o mass ⊚ spin⇒Klein-Gordon, Dirac, Majorana, gauge SU(3)xSU(2)xU(1) quantum numbers mixing of states
 Specify their interactions SU(3)xSU(2)xU(1) quantum numbers determine gauge interactions Yukawa couplings
 Trilinear and quartic scalar couplings

Disentangle mixings

gauginos, higgsinos

Scharged ones "charginos" $(\tilde{W}^{-} \tilde{H}_{d}^{-}) \begin{pmatrix} M_{2} & \sqrt{2}m_{W} \sin\beta \\ \sqrt{2}m_{W} \cos\beta & \mu \end{pmatrix} \begin{pmatrix} \tilde{W}^{+} \\ \tilde{H}_{u}^{+} \end{pmatrix}$ Scharged ones "neutralinos" $(\tilde{B}, \tilde{W}^{0}, \tilde{H}_{d}^{0}, \tilde{H}_{u}^{0}) \begin{pmatrix} M_{1} & 0 & -m_{Z}s_{W}c\beta & m_{Z}s_{W}s\beta \\ 0 & M_{2} & m_{Z}c_{W}c\beta & -m_{Z}c_{W}s\beta \\ -m_{Z}s_{W}c\beta & m_{Z}c_{W}c\beta & 0 & -\mu \\ m_{Z}s_{W}s\beta & -m_{Z}c_{W}s\beta & -\mu & 0 \end{pmatrix} \begin{pmatrix} \tilde{B} \\ \tilde{W}^{0} \\ \tilde{H}_{d}^{0} \\ \tilde{H}_{u}^{0} \end{pmatrix}$

 $e^+e^- \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^- \rightarrow (\tilde{\chi}_1^0 l^{\pm} \mathbf{v}_l) (\tilde{\chi}_1^0 q \bar{q}')$

 $\tilde{\chi}_2^0 \tilde{\chi}_2^0 \longrightarrow (\tilde{\chi}_1^0 l^+ l^-) (\tilde{\chi}_1^0 l'^+ l'^-)$ e

Model-independent parameter determination

Chargino/neutralino mass matrices have four parameters M₁, M₂, μ, tanβ
Can measure 2+4 masses
can measure 10x2 neutralino cross sections σ_{L,R}(e⁺e⁻ → χ̃⁰_i χ̃⁰_j) σ_{L,R}(e⁺e⁻ → χ̃⁺_i χ̃⁻_j)
can measure 3x2 chargino cross sections
depend on masses of ν̃_e, ẽ_L, ẽ_R

inputfit M_2 152 GeV152 ±1.8 GeV μ 316 GeV316 ±0.9 GeV $\tan \beta$ 33 ±0.7 M_1 78.7 GeV78.7 ±0.7 GeV

Stop

 $(\tilde{t}_L^* \ \tilde{t}_R^*) \begin{pmatrix} m_{\tilde{Q}_3}^2 + m_t^2 & (A_t - \mu^* \cot\beta)m_t \\ (A_t^* - \mu \cot\beta)m_t & m_{\tilde{t}}^2 + m_t^2 \end{pmatrix} \begin{pmatrix} \tilde{t}_L \\ \tilde{t}_R \end{pmatrix}$

Reconstruct Lagrangian from data

Specify the fields © mass ⊚ spin⇒Klein-Gordon, Dirac, Majorana, gauge SU(3)xSU(2)xU(1) quantum numbers mixing of states
 Specify their interactions SU(3)xSU(2)xU(1) quantum numbers determine gauge interactions Yukawa couplings
 Trilinear and quartic scalar couplings

Interaction

Feynman rules

Single gauge coupling constant gives all of these Feynman vertices

 $\lambda \sim 1 \quad f \quad D^{a} \quad D^{a} \quad T^{a} \quad D^{a} \quad T^{a} \quad D^{a} \quad T^{a} \quad T^{a} \quad g^{2} \quad T^{a} \quad G^{a} \quad G^{a} \quad T^{a} \quad G^{a} \quad T^{a} \quad G^{a} \quad G^{a} \quad T^{a} \quad T^{a} \quad G^{a} \quad T^{a} \quad$

selectron production

 \tilde{e}_{R}^{+}

°e⁻₋

 $\widetilde{\chi}_{i}^{0}$

 $\mathcal{M} \propto \sin \theta$ $Y_{\tilde{B}}$ = $1 - 2\cos\theta\beta_f + \beta_f^2 + 4M_1^2/s$

gaugino coupling

Reconstruct Lagrangian from data

Specify the fields © mass ⊚ spin⇒Klein-Gordon, Dirac, Majorana, gauge SU(3)xSU(2)xU(1) quantum numbers mixing of states
 Specify their interactions SU(3)xSU(2)xU(1) quantum numbers determine gauge interactions Syntawa couplings Trilinear and quartic scalar couplings

Proof of supersymmetry

This way, you can show:
new particle has the same gauge quantum numbers as one of the SM particle
their spins differ by 1/2
it has a Yukawa coupling whose size is √2 times the known gauge coupling
You have reconstructed the supersymmetric Lagrangian from data!

Robust search capability

Degenerate case (AMSB)

- In anomaly mediation,
 M₂<M₁
- chargino (wino) nearly degenerate with neutralino (wino)
- decay products are soft and hard to see

Big Caveat

What energy is enough?

LHC will tell us