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In these lectures, I will describe the phenomenology of 
the Standard Model of particle physics.

I will discuss mainly processes seen in e+e- annihilation at 
CM energies from 10 to 200 GeV.

Later in the school, you will hear about proton-proton 
collisions at very high energy.  But e+e- reactions are 
much simpler, so this is a good place to start.

Even at 10 GeV, the energy is high enough that we can 
ignore the masses of most of the quarks and leptons.  
Then we can see the Standard Model gauge interactions in 
a pure form and relate phenomena directly to the 
Standard Model Lagrangian.



You know the Standard Model as

  a 4-d SU(3) x SU(2) x U(1) non-supersymmetric gauge theory

  that is chiral but anomaly-free

  in which masses are forbidden by SU(2) x U(1) symmetry

  and therefore arise only by spontaneous symmetry breaking.

Fine.  But, what do the particles of the Standard Model actually 
look like in the lab ?



Begin with the leptons:

Begin, in fact, with the simplest reaction involving leptons

                                         in QED 

At high energy, ignore all masses.   Then, 

helicity

is a Lorentz-invariant.  Fermions are described as

  left-handed                               right-handed
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The amplitudes for                           between states of definite 
helicity are very simple:
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These formulae lead to the regularities:

with                              .  The second formula sets the size of 
cross sections for all QED and electroweak processes.

Here are some examples of e+e- annihilation to leptons

and the related process of Bhabha scattering:
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A relativistic muon is a “minimum ionizing” particle, giving a 
continuous small energy loss in matter:

The muon is long-lived and essentially stable in high energy 
experiments.

Electrons emit hard gamma rays, and gammas convert to 
electron-positron pairs in a characteristic distance called a 
radiation length      . In heavy materials,     

The result is an electromagnetic shower:

An electromagnetic calorimeter collects the resulting ionization, 
which gives a measure of the total energy of the original particle.
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For the     lepton,

The    rapidly decays through weak interactions

This produces a variety of    events
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Leptonic reactions are modified by radiative corrections.

I would like to examine in particular the diagrams giving initial-
state radiation (ISR)
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In the limit in which the      and       are almost collinear, we can 
isolate the sigularity for      emission.  Its coefficient has the 
form:

and this leads to the following approximate expression
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These singular terms give enhanced radiation in directions 
parallel to the momenta of the initial state particles (ISR) and 
also parallel to the momenta of the final state particles (FSR).



Here is a BaBar hadronic event with ISR



In addition to the leptonic processes, we also have 

How do these reactions appear ?

Quarks are not seen in isolation.  If isolated quarks could be 
produced in e+e- annihilation, it would be obvious, because 
quarks carry fractional charge.
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A property of the strong coupling phase of gauge theories is that 
the gauge charge is permanently confined into gauge singlet 
states.

A way to picture this is that the electric flux of the gauge field 
cannot spread into the vacuum.   Since this flux is conserved, we 
have states such as

This object is a relativistic string.  It has 

As the string becomes longer, it becomes energetically favorable 
to create an additional       pair. 
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This leads to a first picture of the time development of a      
state created in e+e- annihilation:

Asymptotic freedom implies that all of these nonperturbative 
effects take place with no large momentum transfer.

Then, the final momenta are approximately collinear and 
parallel to the original quark directions.
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Thus, we expect

     the final states in                       should look like 
           jets of mesons and baryons

     the angular distribution of the axes of the jets should be

   
     the cross section for such jet-like events should be
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What do we see in such a jet ?   The components are:

   Long-lived charged hadrons:
        ‘s :
    Long-lived neutral hadrons:
    Short-lived hadrons with                        :

Charged particles appear as tracks.

   s  appear as energy deposited in an electromagnetic calorimeter

Hadrons appear as energy deposition in a hadron calorimeter thick 
enough to allow many hadron interaction lengths

so by choosing different materials, it possible to separately 
measure the various components of the jet
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Up to now we have ignored the asymptotically free QCD coupling

Let’s now compute the effects of order       :

These include diagrams with virtual gluons

and diagrams with 
real gluon emission:
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Notice that the gluon emission is singular as 
These are configurations in which the gluon is collinear with the 
antiquark or quark.

It is possible integrate up the total cross section by working in 
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The final result, and its generalization to higher orders, gives a 
small positive modification of the cross section for

Gluon emission at wide angles gives 

   3-jet events at a rate proportional to    

   4-jet events at a rate proportional to 

         etc.
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SLD 3-jet event



SLD 4-jet event
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If a large fraction of                         events contain gluon 
emissions, we need a systematic way to identify jets and to 
count the number of jets in an event.

Actually, since we only observe hadrons and not quarks, we need 
such a procedure anyway, to give a systematic way to compute, 
e.g., the orientation of the jet axis.

Among many possible ways to do this, a particularly useful one is 
based on thrust

                                                

The axis that gives the maximum (the thrust axis) is a reasonable  
definition of the event axis.

QCD predicts in leading order 
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Particle distribution from the 
thrust axis, from the BaBar 
experiment  ( ECM = 10.58 GeV)



For multi-jet events, we need a way to partition the hadrons in 
the event into jets.  Here is a particular method; later in the 
school, we will discuss other possible algorithms.

Let

Choose the 2 particles in the final state s.t.                   is 
minimal.  Merge them and replace them with 1 particle with 
                       .  Continue until

Then the resulting      can be taken as the operationally defined 
jet momenta.
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revealed as          is decreased.
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Thinking about how multiple gluons are emitted by a quark, 
we can arrive at a less naive model of how a           state in 
e+e- annihilation evolves into a state of many hadrons.

Define the fragmentation function:

   For a hadron     in the final state of e+e- annihilation, let

        longitudinal fraction

 Then let                                              

 be the probability of finding 
a hadron in the final state with         
         longitudinal fraction    .
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The variable  z  gives the fraction of the original quark energy 
that ends up in a final handron.  With QCD, we have studied the 
first stage of the degradation of the energy of the quark, due to 
gluon emission.

Let’s look again at the formula for gluon radiation

In the limit                       (q+g collinear;                         ), 
integrating over       , this becomes

This is the same radiation formula that we saw in QED.
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This calculation describes the emission of one approximately 
collinear gluon.  By repeating the process, we can describe 
multiple gluon emissions.  

These multiple gluons build up the structure of a quark jet.

The quark first emits hard gluons.  As we go to smaller      or 
smaller virtualities, the quarks and gluons emit further quarks 
and gluons.

p⊥



Each emission degrades the energy of the final hadrons.  This 
effect of collinear gluon emission from the quark is described 
by the Gribov-Lipatov equation

Here  P(z) is the splitting function
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The full dynamics of QCD contains a number of possible collinear 
splitting processes.   Each leads to a characteristic kernel, the 
splitting functions

Putting these effects together, we obtain the Altarelli-Parisi 
equations.  For example
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According to this equation, fragmentation functions 
evolve as a function of s.  This effect is observed.



PDG  (Biebel and Webber) compilation



Finally, we can ask about the value of       needed to explain 
the various QCD effects we have discussed in this lecture.

The hallmark of a gauge theory is that there is a single 
unified coupling constant.   Is experiment consistent with 
this ?
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We have now seen that the strong interactions at high energy 
show very directly the quark-gluon structure of an SU(3) gauge 
theory - QCD.

In the next lecture, we will examine the weak interactions at 
high energy.  We will see that these also reflect the gauge 
stuctures of the Standard Model.


