Accelerator	Location	Process	CM Energy	Dates	Some Expts.	Major results
SPEAR	SLAC	e^-e^+	$3-6 \mathrm{GeV}$	72-90	Mark I, Crystal Ball	Charm, τ , jets
Petra	DESY	e^-e^+	$14-46 \mathrm{GeV}$	78-86	JADE, Tasso, Argus	gluon jets, b mixing
PEP	SLAC	e^-e^+	$29 {\rm GeV}$	80-90	Mark II, TPC, MAC, ASP	b-lifetime
$\mathrm{Sp}\overline{p}\mathrm{S}$	CERN	$p\overline{p}$	$540 { m GeV}$	81-90	UA1, UA2, UA5	W/Z
Tristan	KEK	e^-e^+	$50-64 \mathrm{GeV}$	87-95	Amy, Topaz, Venus	top has very high mass
SLC	SLAC	e^-e^+	$91~{\rm GeV}$	90's	SLC	polarized Z prod. (A_{LR})
LEP	CERN	e^-e^+	$91~{\rm GeV}$	89-96	Aleph, Opal, L3, Delphi	high statistics EW
Hera	DESY	ep	30 GeV on $900 GeV$	92-now	H1, Zeus, Hermes, HeraB	Proton structure, diffraction
Tevatron I	Fermilab	$p\overline{p}$	$900 {\rm GeV}$	87-96	CDF, D0	top and W mass
LEP II	CERN	e^-e^+	$91-210~{\rm GeV}$	96-00	Aleph, Opal, L3, Delphi	WW production, W mass
Tevatron II	Fermilab	$p\overline{p}$	$980 { m ~GeV}$	01 - 09?	CDF, D0	Higgs? Supersymmetry?
LHC	CERN	pp	$14 { m TeV}$	late 00's	Atlas, CMS, LHCb	Higgs? Supersymmetry?
ILC	??	e^-e^+	$500 { m ~GeV}$	late 10's	??	Higgs ? Supersymmetry?

Table 1: Collider experiments at the energy frontier (DORIS, CESR, BES, Belle, Pep II not included

The ALEPH Detector

等的过去时,而且是这些新闻的新闻的最后,在这些新闻的新闻的新闻的新闻的新闻的新闻的新闻的新闻的

Unroll in ϕ

E scale: 3 GeV

Detection of charged particles

When a relativistic charged particle passes through matter, it knocks electron out of atoms as it passes by. This is what we call 'Energy Loss' and it is reasonably independent of the particle or material type.

$dE/dx \sim 2 \text{ MeV/cm x } \rho \text{ [gr/cm^3]}$

this energy shows up as low energy electrons and photons and can be detected optically or electronically.

Scintillator

Electromagnetic showers

6.0.1 Basics of electromagnetic calorimetery

High energy photons and electrons interact two ways in high Z materials.

- Electrons can scatter from atomic electrons and ionize the material - we can detect this ionization but the electron energy does not change much. This is an incoherent process and scales as Z/atom or Z/A/gram of material.
- Both Electrons and photons can scatter off of the atomic nucleus. This a coherent scatter and scales as Z^2/atom or Z^2/A atom. The electron scatter is bremsstrahlung and the photon is pair-production of an e^-e^+ pair. The cross section for these interaction is approximately approximately independent of energy once the energy of the particles is $\gg m_e c^2$.

The mean free path for both processes is

$$X_0 \sim \frac{1}{4\alpha r_e^2 Z^2 \frac{N_A}{A}} \tag{21}$$

What happens when a high energy photon or electron hits some high Z material is illustrated in Figure After the first interaction 1 particle becomes 2, after the next, 2 particles become 4 etc. asymptotically there are slightly more electrons than photons.

Figure 19: A photon showers in material. One can expect a hard interaction (bremsstrahlung or pair production) every X_0 .

The number of particles/layer grows as 2^i where *i* is the number of X_0 you have traversed and the energy/particle drops by a factor of 2 each layer. At some point the energy/particle $(E_0/2^i)$ becomes close to m_ec^2 and the hard scatters stop. The critical energy is called E_c and is actually more like 10 MeV. You can use this to solve for the maximum number of radiation lengths N.

$$2^N = E_0 / E_c \tag{22}$$

What we detect is the ionization caused by the particles, which is proportional to the total path length.

$$L = \sum_{i=1}^{N} (2^{i} f_{e} X_{0}) = f_{e} X_{0} (2^{N} - 1) \sim f_{e} X_{0} E_{0} / E_{c}$$
(23)

where f_e is the electron fraction in the shower ~ 5/8. So the ionization observed is proportional to the incident energy. This is a nice linear detector.

3m * e-,gamma,e+ 10 GeV 0e+

Sampling Calorimeter

`Typical' Event in the D0 Detector

W^+W^- decay signatures

CDF II preliminary

Dataflow of CDF "Deadtimeless" Trigger and DAQ

Lepton+jets: DØ Template Method

Systematic

Uncertainties

Jet Energy Scale

Gluon Radiation

Signal Model

Jet Energy Resolution

Calibration

Background Model

b-tagging

Trigger Bias

∆mtop

(GeV/c2)

-5.3/+4.7

2.4

2.3

0.9

0.5

0.8

0.7

0.5

- Lepton + jets channel with b-tag using 'SVT' secondary vertex tagger
 - similar selection
 - one or more b-tagged jets
 - \geq 4 jets with p_T>15 GeV
 - No cut on low bias discriminant D_{LB}
- 60 tt candidates selected, S/B ~ 3/1

Lepton+jets: CDF Template Method

Higgs Branching Fractions from HDECAY

CDF PRELIMINARY

Run #123, Event #7, Dataset: StW812p3Digis1x1034/h300eemm

