SUSY Higgs Searches at the Tevatron/LHC

Chris Tully

PiTP IAS Princeton, Summer 2005

Preferences from Mw and mtop

- § Error on m_{top} no longer dominates
 - $M_{top} = 172.7 \pm 2.9$ GeVNew CDF/D0 Mass
 Combination
- § W self-energy
 may be decisive
 once Mw
 improved.

New Top Mass Combination

- § This includes new preliminary measurements
 (based on 320 pb⁻¹) from CDF/D0 which simultaneously fit the jet energy scale with the hadronic W mass constraint
- § The correlated systematical error is of order ~1.7 GeV

SUSY Guidance

 Lightest Higgs mass compatible with high tanβ region for wide range of stop mixing

Large b-Production

§ But how well known...

Use Leptonically Decaying Z's as a probe!

MSSM Higgs b(b) Search

§ $b(b)\phi \rightarrow b(b)bb \phi = h/A \text{ or } H/A$

- § At least 3 b-tagged jets
- § Data-derived background shape

b(b)φ Limits: tan²β Enhancement

Enhancement depends on loop corrections (Δ_b) and SUSY parameters:

$$\sigma \times BR_{SUSY} = 2 \times \sigma_{SM} \times \frac{\tan^2 \beta}{(1 + \Delta_b)^2} \times \frac{9}{9 + (1 + \Delta_b)^2}$$

b(b) Projections

Tevatron will probe below

$$\tan \beta = m_t$$
 $\frac{1 \text{ fb}^{-1}}{2 \text{ fb}^{-1}}$
 $\frac{4 \text{ fb}^{-1}}{8 \text{ fb}^{-1}}$

Projection based on existing analysis:
Doesn't include proposed b-tag improvements

Higgs Decays to τ-leptons

τ-IdentificationMethods (CDF)

Method yields a rich sample of taus with the expected visible masses and track multiplicities from $Z \rightarrow \tau\tau$

h/H/A→ττ Search

§ Visible Mass is the final search variable:

MSSM Higgs→ττ Search

§ tanß Exclusion Limits:

b(b)q

Higgs→ττ Projections

§ Higgs→ττ and
 b(b)φ will reach
 similar sensitivities
 at the same time

Opens up exciting prospects for learning more about SUSY as y_b and y_τ see different loop-corrections

Charged Higgs from top quark decay

- § Predicted to substantially modify top quark Branching Ratios at high and low tanβ
- § Additional sensitivity in lepton + τ channel

$H^+ tan\beta$

Exclusion

Posterior Probability Density

Br(t→H+b) Exclusion for Br(H+→tn)=1 § Range of Exclusions Br<0.4 to Br<0.7 depending on MSSM parameters

MSSM Higgs Searches

- § Two Higgs doublets model
 - 5 Higgs bosons:
 - § 2 Neutral scalars h,H
 - § 1 Neutral pseudo-scalar A
 - § 2 Charged scalars H[±]
- § In the MSSM Higgs sector masses and couplings are determined by two independent parameters
- § Most common choice:
- $\S \tan \beta$ ratio of vacuum expectation values of the two doublets
- § M_A mass of pseudo-scalar Higgs boson

300 300 Maximal stop mixing H, $\tan \beta = 2$ 250 250 M_{SUSY}= 1 GeV $M_{HIGGS} \left(GeV/c^2 \right)$ H, $\tan \beta = 20$ 200 200 H^{\pm} , tan β = 20 H^{\pm} . tan β = 2 150 150 h, tan β = 20 100 100 h, tan β = 2 50 50 100 125 150 175 200 225 250 M_{Δ} (GeV/c²)

> In the MSSM: Mh ≲ 135 GeV

Neutral MSSM Higgs bosons

- § Decoupling limit (M_A≥200 GeV)
 - § h behaves SM-like
 - § Standard model searches directly apply
 - § MH~MA~MH±
- § $M_A=O(M_Z)$ and large tanß
 - § H behaves similarly to SM Higgs (SM searches apply)
- § In other cases for large tanβ and M_A<200 GeV
 - § A → WW,ZZ never allowed at tree level
 - § h,H→ WW,ZZ highly suppressed
 - $\S\ h,H,A$ almost exclusively decay into bb and $\tau\tau$
- § Large M_A small tanβ
 - § H,A decays almost 100% into tt
 - § for lower masses (200-300 GeV) also H \rightarrow hh and A \rightarrow Zh
- § If SUSY particles are light the Higgs bosons may decay into s-particles

MSSM Higgs Couplings to Fermions

Higgs couplings to fermions:

- proportional to mass \rightarrow 3rd generation favored
- $tan \beta$ enhances couplings to down-type fermions

MSSM Higgs Production

h,H Production and Decay

Decoupling region

Large $tan\beta$ mainly bb, $\tau\tau$ decays

Large tanß hbb, Hbb (and Abb) production dominates

MSSM h,H Decays

MSSM Production Processes

h Discovery from SM Higgs Searches

• In a large part of the MSSM parameter space SM Higgs searches are effective to find the MSSM h boson

- § In the decoupling region in the house i
- § Search for H, A and H[±]
- § For large tanβ exploit the large cross section of Higgs boson production in association with a bb pair
 - § $bbH,A \rightarrow bb\tau\tau$
 - § bbH,A → bbµµ
 - § bbH,A → bbbb (very difficult)

bbH,A → bbττ

bbH,A → bbTT

- § for MH \lesssim 400 GeV § $\tau\tau \rightarrow \ell \nu\nu \ell \nu\nu$
 - § $\tau\tau \rightarrow \ell vv$ had v
 - Higher mass also add

§ TT \rightarrow had $\sqrt{\nu}$

- § From the cross section measurement it is possible to extract the value of tanβ
- § tanβ uncertainty due to variation of SUSY parameters (m_h^{max} scenario) in a range ±20% is ~15%

Higgs Width in the MSSM

bbH,A → bbμμ

H,A→µµ

- § low rate, BR(H→μμ) ~10⁻³
- § high efficiency
- § precise mass measurement
 (μμ mass resolution ~1%)
- § Main backgrounds:

$$\S Z/\gamma^* \rightarrow \mu\mu$$

$$\S tt \rightarrow \mu\mu X$$

§ Selection requires 2 muons, tagging and central jet veto

5σ discovery contours

H,A Discovery Contours

§ 5σ discovery regions in the mh^{max} scenario

Charged Higgs bosons H[±]

MH± <mt-mb

§ Mainly produced in top decays tt→tH[±]b

includes top decays

$MH\pm > mt+mb$

§ Mainly produced in association with a t quark (gb→tH±)

§ BR(H[±] \rightarrow tb)~100% for small tan β

§ $H^{\pm} \rightarrow$ tb decay dominates but BR ($H^{\pm} \rightarrow \tau \nu$) still sizeable for large tan β

Analyses are in progress for the mass region MH± ~ mtop

Charged Higgs Search H[±]→ TV MH± <mt-mb MH± >mt+mb

- § $tt \rightarrow bH^{\pm}bW \rightarrow b\tau\nu b \ell \nu$ § $tt \rightarrow b\tau\nu bqq$
- § Use transverse MT mass built with τ jet + missing ET
- § tt background has MT < MW
 </p>

- § gb \rightarrow tH[±] with H[±] \rightarrow TV and t \rightarrow bqq
- § Exploit helicity correlations
- § Similar endpoint of MT at MW for the background
- § MT can also be used for Higgs mass measurement

Charged Higgs boson Discovery Contours

5σ discovery regions for the mh^{max} scenario

Higgs boson visibility in the

 $\frac{MSSM}{\text{5}\sigma \text{ discovery regions for the } m_h^{\text{max}} \text{ scenario}}$

- 4 Higgs observable
- 3 Higgs observable
- 2 Higgs observable
- 1 Higgs observable

(Charged Higgs only counted once)

> All the plane is covered but there is a large area where only h can be seen

MSSM Higgs bosons and SUSY particles

§ References:

```
§ J.F.Gunion and H.E.Haber,
Higgs Bosons in Supersymmetric Models,
Nucl. Phys. B272 (1986) 1.
Nucl. Phys. B278 (1986) 449.
Nucl. Phys. B307 (1988) 445.
Errata, hep-ph/9301205
```

 If SUSY particles are lighter than Higgs bosons we could have a rich variety of decays, including:

$$-A,H \rightarrow c_{20}c_{20}$$

$$-H^{\pm} \rightarrow c_{2,30}c_{1,2}^{\pm}$$

$$-h \rightarrow c_{10}c_{10}$$

SUSY Decays of the Higgs

MSSM Higgs coupling:

Most promising decay channel:

SUSY Decays of the Higgs

Example discovery reach:

Similar Ideas for H[±]

Analogous production mechanism for H[±]:

Analogous decay mode:

$$H^{\pm} \to \chi_{2,3}^{0} \chi_{1,2}^{\pm} \to 3l + E_{T}^{0}$$

→ only 3 leptons, need to reconstruct additional top (t→bjj)

Invisible decays of the Higgs Boson

- § Weak boson fusion production is the most sensitive process
- § Trigger on forward jets + missing E_T
- § Selection:
 - § forward jet tagging, central jet-veto,
 M(jet jet)
 - § lepton veto, missing E^T

§ Δφ jet-jet small

If we do not require gaugino mass unification and M1<<M2

MX can be rather small and

BR(h $\rightarrow \chi \chi$) can be very large

MSSM Higgs bosons and SUSY particles

- § Higgs bosons could be produced in gauginos decays:
 - $4 \chi_2 \rightarrow h,H,A \chi_1$
 - $\star \chi_1 \pm \rightarrow H^{\pm} \chi_1$
- § Different cascades possible involving heavier gauginos
- § Search for h,H → bb
- § Neutralinos and charginos would be copiously produced in the decays of squarks and gluinos

Possible to observe SUSY \rightarrow h,H,A with h,H,A \rightarrow bb

Higgs Production in Sparticle Cascades

Scenario 1 (big cascades)

Scenario 2 (little + big cascades)

More Possibilities

Scenario 3 (big cascades)

$$\frac{\tilde{g}}{\tilde{q}} (1200 \text{ GeV})$$

$$-\tilde{q}} (800 \text{ GeV})$$

$$-\tilde{\chi}_{4}^{0} \tilde{\chi}_{2}^{*} (375 \text{ GeV})$$

$$-\tilde{\chi}_{3}^{0} \tilde{\chi}_{2}^{0} (150 \text{ GeV})$$

$$-\tilde{\chi}_{1}^{0} (110 \text{ GeV})$$

Scenario 4 (little cascades)

h à bb production in squark/gluino cascades

Inclusive reconstruction of Higgs decays is simply a matter of combinatorics

SUSY events are readily selected from jets and missing E_T

Perfect marriage of SUSY and Higgs at the LHC!

Lightest Higgs Boson

• Lightest Higgs boson is SM-like for large M_A

$$\tan 2\alpha = \tan 2\beta \begin{pmatrix} M_A^2 + M_Z^2 \\ M_A^2 - M_Z^2 \end{pmatrix}$$

$$M_A \approx M_H \approx M_{H^{\pm}} \text{ (decoupling limit)}$$

 Given the difficulty of detecting the h→bb decay at the LHC, the Tevatron provides a potentially essential probe of this low mass channel

Tevatron Low Mass Higgs Search

§ Maximum sensitivity requires a combination of CDF/D0 search channels:

§ WH $\rightarrow \ell \nu bb$, ZH $\rightarrow \nu \nu bb$ & $\ell \ell bb$, WH $\rightarrow WWW^*$,

ℓ nbb Search (CDF)

enbb Search (DØ)

• μνbb in Progress...

Expect 0.14 ± 0.03 WH 4.29 ± 1.03 Wbb 5.73 ± 1.45 tt+other Total 10.2 ± 2.4 events Observe 13

Missing Energy Channel (CDF)

§ Two Control Regions:

Min. 1 lepton

No leptons

§ No Leptons + $\Delta \phi(\cancel{E}_T, 2^{nd} \text{ Jet}) < 0.4$ (QCD H.F.)

§ Min. 1 Lepton LAMET and Lot) 0.4 (Top, EWK, QCD)

Control Region 1

Missing Energy Event (CDF)

Double tagged eventDi-jet invariant mass = 82 GeV

Second Jet E_T = 54.7 GeV

Missing Energy Channel (CDF)

Process	Signal Region
QCD multi-jet	2.6 ± 1.7
TOP	2.1 ± 0.4
Di-boson	1.1 ± 0.2
W + h.f.	3.7 ± 2.6
Z + h.f.	3.2 ± 1.2
Mistag	7.0 ± 1.0
Total Expected BCK	19.7 ± 3.5
Observed	19

Selection cut	ZH 120 (288.9 pb ⁻¹)
Di-jet mass cut (100,140)	0.126±0.016

Missing Energy Channel (DØ)

- § Cross-efficiency important
 - § WH $\rightarrow \ell$ nbb (lost ℓ)
 - § ZH→nnbb
- § 3x Larger WZ/ZZ Signal
 - § Similar dijet bb mass peak

Mass (GeV)	105	115	125	135
Window	[70,120]	[80,130]	[90,140]	[100,150]
Data	4	3	2	2
ZH/WH	0.11	0.082	0.060	0.034
Total bkgd.	2.75 ± 0.88	2.19 ± 0.72	1.93 ± 0.66	1.71 ± 0.57
Expected limit (pb)	8.8	7.5	6.0	6.5
Limit @95% C.L. (pb)	12.2	9.3	7.7	8.5

WH->WWW* (CDF)

Same-Sign Dilepton Search

WH→WWW* (DØ)

§ WWW*→ℓ±ℓ±+X
§ Same-Sign Dileptons

§ Important bridge
across 130-160 GeV
"Gap" from H→bb
and inclusive
H→WW

§	Bac	kgro	oun	d	fro	m
_	Bacl WZ	$\Rightarrow \ell$	n	l	l	

	ee	e μ	μμ
Observed data	1	3	2
Total bkgd	0.70	4.32	3.72

H→WW (DØ)

Leptons from Higgs tend to point in same direction

WW cross section measured $\sigma_{WW} = 13.8^{4.3} \text{ (st.)}_{0.9}^{1.2} \text{ (sy.)} \pm 0.9 \text{ pb}$

Overview of CDF/DØ SM Higgs Searches

Prospects for SM Higgs Search

WH→evbb M _H = 115 GeV	DØ RunII 382 pb ⁻¹	HSS scaled to 382 pb ⁻¹ e-only
Dijet mass window	[85,135]	[100,136]
Dijet mass resolution	14 ± 1 %	10 %
Signal events (S)	0.12 ± 0.03	0.48
Background events (B)	2.37 ± 0.59	5.79
Significance (S/√B)	0.08	0.20

Current analyses sensitivities are lower than used for projections, but differences appear to be

Tevatron Higgs Search Summary

§ MSSM tanß enhancement searches

- § b(b)φ & Higgs→tt already sensitive to tanb~50-60
- § Plans to add b(b)f→b(b)tt
- § $t\rightarrow H^+b$, $H^+\rightarrow tn$ results (Plans to add $H^+\rightarrow cs$)

§ SM Higgs searches

- § Full complement of search channels with first results
- § Will be important to benchmark search sensitivity with
 WZ diboson production with Z→bb
- § ~1 fb⁻¹ to analyze by Fall

Backup Plots & Tables

Tevatron Performance

SM Higgs Production Processes

• Gluon fusion: gg → H

 $\sigma = 0.70 \text{ pb}$ for M(H) = 120 GeV/ c^2 with QCD NLO correction

• Higgsstrahlung: $q\overline{q} \rightarrow VH$

WH: σ = 0.16 pb

ZH: σ = 0.10 pb

Vector Boson fusion: qq → qqH

 $\sigma = 0.10 \ pb$

• Radiation off heavy quark: $q\overline{q} \rightarrow t\overline{t}H$, $b\overline{b}H$

 $\sigma=0.004~pb$

Z→bb (CDF)

ℓ nbb Search (CDF)

H→WW (DØ)

Improvements to b-tagging

- § Analysis depends on strongly on b-tag
- § Neural Net b-tagging

Operating Point	~ Fake Rate	~ b Efficiency
Tight	0.25 %	44 %
Medium	0.5 %	52 %
Loose	1.0 %	57 %
Loose ²	2.0 %	64 %
Loose ³	3.0 %	68 %
Loose ⁴	4.0 %	70 %

Z→ττ as a benchmark

§ DØ Neural Network Selection

- § Variables:
 - § Shower Profile
 - § Calorimeter Isolation
 - § Track Isolation
 - § Charged Momentum Frac
 - § Opening Angle
 - § Etc.
- § 3 Types:
 - * π-like
 - ρ-like
 - § Multi-prong

Missing Energy Channel (DØ)

- Trigger on event w/ large \mathbb{Z}_T & acoplanar jets
- Instrumental E_{T} backgrounds (Data-driven estimation)
 - Asymmetries computed: Asym (E_T, H_T) and Asym (Σ_T, H_T) are properties.

Missing Energy Channel (DØ)

No b-tag

Single b-tag

Double b-tag

H→WW (CDF)

Cluster mass:

$$M_C = \sqrt{(p_T^{11})^2 + M_{11}^2}$$

