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<+ heri LE . are widely
— — usedq, or example N
""ﬁ-'-"'*- -had onization
"""’JTerlthms (the Lund
S’[rlng Model) where
they snap through
guark-antiguark

creation.




; - The prebability of snapping a flux tube by guark-
antiguark creation (meson decay) is 1/N. The
string coupling is 1/N.

® Yet, the planar diagrams needed In the large N
limit are very difficult to sum explicitly.
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D=BIANES VS. Geomezg,__w

—
SRiIEElRanes (PolchinskMed string, theory hack: to
JENEENNES/ N the mid-907s;
- A stac gf MPidlegllat S-geiglas el Zas el
SHPEISYImmEetIc SU(N) gauge: theory ini 4 dimensions.
REISERCIEaEsS & curved background of 10-d theory.
Of ijs"uperstrings (artwork by E.Imeroni)

s _ (1IN e ey o (1 PN e a2
ds* =1+ oy (—( dx”)” + (dz')*) + [ 1 + 1 (d-‘r‘ + r=d€);)
=

= Wwhich for small r approaches EUEMNESK

e Successful matching of graviton absorption by D3-
pranes, related to 2-point function of stress-energy
tensor In the SYM theory, with a gravity calculation in
the 3-brane metric (IK; Gubser, IK, Tseytlin) was a
precursor of the AdS/CFT correspondence.



.. Con formal Invarianc ——
= g il —4 SU(N)‘@M-—theory theory there are

3 el ol al SUpENiiela; ZLCOUPIEd o e
WNEARSU( \ SYWVIFtHECR/AWItFSUREOENTE
Tr /I 2 ZB]
IME \j Aptetic Freedom Is canceled by the
S4if Hields; the beta function is exactly zero!
H e, the theory IS Invariant under scale

= F, formatlons Xk -=> A x¥ . It Is also invariant

ﬁ—

= _néler space-time inversions.

= f‘_ ?uch)a theory is called a Conformal Field Theory
CET
® The IN=4 SU(N) SYM is also invariant under the

SU(4) R-symmetry. Its full super-conformal
symmetry is SU(2,2|4).




“The AdS/CET dualityss

— Maldacena; Gubs_er IK, Polyakov:
Sellziiels conformal gauge theony in 2 dimensions te

JrrmJ AR O SR AR T eNSItterspace times'a 5=
C orrg- space. For the 2N=4 SYM theory this
SOIIEICIISPECE IS & S-sphere realizing the SU(4) R-

S /m etry

S S0(2,4) geometrical symmetry of the AdS
;ace realizes the conformal symmetry of the
gauge theory.

-». The d- dlmensmnal AdS space Is a hyperboloid

g
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SNiien a gauge theory: is strongly Wﬂae =
EOIUSToI curvattiresefithe"dual Ad d of the
SEURCOIMPACH space,becomes Iarge L* [y

AR VAASY B

Y

I J" IE@IY/ IR suchl a weakly curved

gc'": ouind| can be studied in the effective
er) grravity approximation, which allows for
:; aost Off explicit calculations. Corrections to It

.f"leoceed In powers of

® Feynman graphs instead develop a weak
coupling expansion in powers of A. At weak
coupling the dual string theory becomes difficult.



ugM‘&‘nt operatorsinrthe CET, ane| in
IMEEIOEORE COoNliespPoNdeEnce Wlth.ﬂe,lﬂ,s'(‘c‘)r w——
exir.e'-- edl objects)! int AdS:
ccligpansios s clatamligeel oatgelgleigs s
i ;-dual fielad; e.q. fer scalar operators




Eoi"nebrane Dualities
-

SN IGNEGCUGCE e number of ?ﬁpersymmetrles |
I r\rJJ/f = We may. place the Stack of N

. r

D3-0rarias 2"""'66-06 =filelt
corlg £ W ose pase Is a 5-d Einstein space
\( ".—

:- rfsx = dr® + 12 :1'5}

Tel; fm@ e near-horizon limit of the

> grrt;-" round created by the N D3-branes,

_ esindithe space AdS: x Y, with N units

= of RR S5-form flux, Whose radlus IS given
by

e This type 1B background Is conjectured to
pbe dual to the IR limit of the gauge theory
on N D3-branes at the tip of the cone X.




'=---'f_

'-' € mngson Skenderis; Gubser

N
Irace Anomaly. = s
-0 CET there are two

_f_r leading large N values

s

5 In stiper-conformal theories the
anomalies are related to the
spectrum of R-charges of the
chiral fermions: Anselmi, Freedman,

Grisaru, Johansen

. (JTIE — 5TrR)
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> Tl roviaes basic checks of the duglities,
SERIRIeE IN=4 SYIVIstheory: the: @'éﬁZ;Tnos
peVeRE1 whllestnegennion fieldsifiom
ENZichiral multiplets have R=-1/3!
SSiiice it R=0, we find a=c, and

Qb)

b

9

‘3'.'?. y —  — Y TRJ _ \*3 1 1 3 1/3 3\ ﬁ;‘vg —1
S ¢ = C= oo i = (V- }ﬁ( +3(-1/3)%) = ]

(the radius of Y Is fixed so that Fisswms

® For large N the two calculations of
anomaly coefficients agree.




Orbifold'€ones
NG u Sllverstel%awrence Nekia

Trie ijo ST SEL Ol EXaiIE: -
oroerIgd 9V CONEST LAt aie oroIiolc
R/ WHErE I IS a subgroup of the
roxgwun Leup SU(4).

FOf rloek“ rornifields, all group elements
Celf) | Tought 10 the form

> For %, orblfolds the n-th group element

_—-;"' EleIed oy three Integers m; defined
= odl Kk x=nmJ/K .

: j Ifimone of the eigenvalues of the

“generator = 1, then all SUSY is broken;

iffone of the elgenvalues = 1, then
N=1 SUSY is preserved; if two of the

eigenvalues = 1, then /N=2 SUSY is
preserved.

Vafa

(&

0

2miry

R

—-’

0
0
0

e—2mi(z1+22+23)




= Thesactiony
coorellpreiiesye

e n-th twisted sector on 3 complex

/ P of the cone is a fixed point that
8 moved in the basic near-horizon limit.)

‘A_Well known example of a freely-acting orbifold Is Z,
“Withrm=1. Since one of the eigenvalues of the

enerator = 1, I.e. BESEGEE)] , this orbifold preserves
=1 SUSY. - 5




ilction off the quiver gange ..
theOI’i'éS Poeuglas, Meere

NGEHERR 0N -branes at the tip of
JARisound by applying projections to
WErD(INK) gauge theory on the covering



iy the supersymmetric examples, such as C=/Z, o ther
sonNields the conebrane dualities have been c)0 |
AIEs &S thieroughly, @g_the maxineliyss

SUPESymmetric case.

But wirerl el SUSY IS (rwen ProklEms mayramses
Wrlgal Le orbifold ' breaks alll SUSY and is not fireely

2ACTIe); "n ienfthe weakly curved background AdS; x S>/I

S um_fte due te the presence of tachyons that have
(m_’ 5 and therefore violate the BF bound.

S BT or freely acting orbifolds, the negative zero-point
—r—,-::. el rgy IS compensated by the large stretching of the
twrsted sector closed strings in the compact space.
_H_ence, at large radius, there are no bad tachyons.” This
makes fireely acting orbifolds particularly interesting from
AdS/CET point of view.

® Yet, before the formal decoupling limit, the non-SUSY
freely acting orbifolds have closed-string tachyons
localized at the tip of the cone.

e
;..



th'f‘rlng Zero-Point Eergy..

light-Cone Greem=Schwarz,
he giield compiex\word sneet. ‘
eEE stand fermions.
2 Jm_ﬂ A=t twisted sector the
'hdary conditions on the
rmlons G I/ (0 + 27) = 2™/ RY (o)

-a nd On the bosons
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Weak cou Img analysis of nen-SUSy:
. guivers —

- |

VIVAECERLWOrKWIth Dymarsky anc Roildan (lep-
rn/OJOJO)j U050 SZ)NECEISICEISYUIVERRTEaUUE
ifl2ory ol el Stack of D2branes at the tip of a cone Ré/T°
WHEIE "th rbifold greup I' breaks all' the supersymmetry.

ANTIST 5 it, the gauge theory seems conformal because
irig kel beta functions for all single-trace operators

VeS|t fThe candidate string dual is AdS; x S°/I". Kachru,
;;;FC*' Verste ein; Lawrence, Nekrasov, Vafa; Bershadsky, Johanson

\Afe’\/er dimension 4 double-trace operators made out
= 'bf twisted single-trace ones, f O, O_,, are induced at one-

“loop: Their planar beta- functlons have the form
Br=art+2yfA+ 1
p, =0




- & _I' - - -

= ,;g |but|ons of the same order (for the coupling
"'..%"”* nstant of order 1). They cannot be ignored in
= he leading large N limit.

* |nifact, the tree-level potential of the SU(N)k
guiver theories (with the interacting U(1)’s
decoupled) contains such double-trace terms.




on the U(2N) N = 4 SYM where the Zs is generated by —I in SU(4)
accompanied by conjugation with v = diag(Iy, —In). What is the

| gauge group and field content? Is this a freely acting orbifold?

b) In this gauge theory, calculate the one-loop Coleman-Weinberg
potential as a function of the eigenvalues of the adjoint scalars.
What are the operators that pick up one-loop beta functions?




If D=y2- a = 0, then there is no real fixed
QoI fOr:

ANCIEESIOiAporbifolds with global SU(3)
SYIE t at-are freely actingron the 5-

o IETEIN 35, the group action; Inrthe
iuEmentaliof SU(4

. N -3
r(¢g") = diag(wy, wi, wi, wg ) Wi = e

rlerg ]5‘: plot efia one-loop SU(N)* gauge
WEBIYAdISCIImInant, D, and of the ground
JE,_,;JP PSEESing mZ2 on the cone without
UIENBEDANES. n=1, ..., k-1 labels the
"Fvvr ied sector, and x= n/k.

r_SImpIest fireely acting non-susy example
== j'§'Z AWhere there are four induced double-
trace coupllngs




= For more com'plicated

' tube The

' stablllty/mstability regions
agree between one-loop
gauge theory and string
theory.

e
=1

=
-
I

|

=
[

L=
T




SeARVIRenEsSUSY anelian erdifeld contains unpstanie
SPEIEo)S. JIhIS appears to remove all st —
ormuk- qmversTrom@ ISt of |

garit batlvely conformeal gauge theorles

Tre gme 0)0)0) )izl [LIAIGTIC)ALS €

soEnmal Invariance preusely In these twisted
SECENSWhHErE there exist closed-string tachyons
Jowh/f ‘at the tip of R°/I". Thus, a very simple
CoNEspondence emerges between perturbative
Sgcl ge theery and free closed string on an

= Grbifold. Why? Perhaps, in the presence of
..w-:‘iachyons the standard AdS/CFT decoupling

-

~ argument may fail.

® The AdS; x S°/I" background is tachyon-free at
large racflus Could i1t have some instabilities? If
not, then there Is a transition from instability to
stability as A Is Increased.
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2 Wrete _end‘ﬁ?ﬁ‘t of the R row’P

o (er]er?rc oflocalizack e
SIEOLES out the tip of the cone. adams

PHICHIISK J .) T/ersteln

SNIE  galge theory on D3-branes at a
s J00th point is =4 SYM. Hence, a

,, atural conjecture Is that the gauge

~ theory flows from the non-SUSY SU(N)X
- guiver gauge theory to the A#=4 SU(N)

SYM. Dymarsky, Franco, Roiban, IK (work in progress)
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PB-Dranes on the Conifoldl
——

.

EConifold is a CaTIabl Yau S-10ld cone X

-_— —.d

CI@SLFG AN\ A IENCE <A} Z_;...-___o 0)
of Iex Variables.

J 5- ase Y IS a coset T+ which has
mmetny SU(Z)AXSU(Z)B that rotates the
~s and also U(1), : D=

= _- -The Sasaki-Einstein metric on T+ is

610

=

® The topology of T1 Lis 82 X S3.



L= e N=1"SCFT on the D3=branes at the,apex of
WENGBRIfold has.gauge group SU(N) —
selpled to bifundamental chiral superfields A,

AT (NN andBrBowin [N - kowittens o

SNIIENRECharge of each fields is 22. This insures
BEHEranemaly cancellation.

o T ji'que SU(2),xSU(2), invariant, exactly

_-T'rginal guartic superpotential is added:

e W = eeM tr A; B, A; B

'.' .

e
_-I-“-"
-
—___--_‘_

= This theory also has a baryonic U(1)
symmetry under which A, -> e@ A,; B,-> e B, ,

and a Z, symmetry which interchanges the A’s
with the B’s and implements charge conjugation.
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sEIalIson with a Z, Orbifold @uivers

SNE ynjo ast N=2 SUSY guiver has k=2;
= =1, m;=0. e gauge group IS
AC rr SU(N)xSU(N) Ut In addition to the
of i) idamentals A, B;, there Is one adjoint

= Ghiral superfield for each gauge group,
ﬁlﬁ;ﬁwth superpotential [ u NS Np
—» Addlng a Z, odd mass term

and integrating out the adjoints, we obtain

the superpotential of the conifold theory,

m



Problem 2

In a supersymmetric field theory, the trace anomaly coefficients
a and ¢ are given by the formulae

_ 3 3 1 3 _
== (3TR*—3TeR) | == (9TeR® —5ThR) |

where R refers to the U(1)r charges, and the trace is over all the
chiral fermion fields.

a) Calculate a and ¢ in the following two gauge theories: the
N = 2 supersymmetric Z5 orbifold quiver, and in the A" =1 SCFT
on N D3-branes at the conifold.

b) For AdSs x Y with N units of RR 5-form flux, it was found

at leading order in NV that

NZ2x3
a=C= ————

4vol(Y') ’

where the radius of Y is normalized so that R;; = 4g;; on Y. Com-
pare this formula with the gauge theory results of part a).
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Prf,c-p

SWARNEE ] tool IS to add torthe N
D3-0raras VDSl 8 el el
VEIRIIE S7 at the tip of the
corlifellel s

IERIOFalgeometry dual to the
Jrltlf 5 theory on these branes is

ﬂ_égsy varped deformed conifold (i,
= ﬁmsbo

'-f1a—h*”ﬁﬂ—hh%?—wffl—mmﬁmﬁ

e Conformal Symmetrx

74 IS the metric of the deformed
conifold, a simple Calabi-Yau
space defined by the following
constraint on 4 complex variables:




StifegNeoreticcApproach, ie

SNNEpossible to generalize.
irle Aels COIMTESPONEUENCE
[ESUCHe Way/ that the guark-
bk potentiall is linear
ZErge distance.

I Cartoon” of the necessary
B HELrIC IS

® [he space ends at a
maximum value of z where
the warp factor Is finite.
Then the confining string
tension IS  [EElE—.

Qmad’




The warp factor is finite at the ~end:of
SPEcE’ (=0, aswreguined forthemss
confinement: h(t)= 2% v I(t)

[ &

. rcothar — 1 10/2 2 _8/3

I(t) = / da - ——(sinh 2z — 22)1/3 | v = 219/3(g . Ma')2e78/3
Jt sinh® x '

I—l-

| r e ‘Standard warp factor a , which
= easures the string tension, Is identified
""” Wlth h(t) 2 and is minimized at t=0. It

blews up at large t (near the boundary).

® The dilaton Is exactly constant due to the
self-duality of the 3-form background
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ihe radils- uared of the S3 at t= -
IESLIING UNIts. *-"- -

.

— — — __,_

WHENIG: Vs ar0e,the cunvatures;are
ST EVERYW. ere, and'the SUGRA solution
S 'ehruo *m selving” this confining gauge
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AN malouslllght gjugbﬁﬁ‘s-—-

o Rear at small t. In the supergravity limit
Jerg. M) their mass scales are

T g ™ :‘""q_-'l-f (m glueball ]“

= ' & TTlglueball ™~ TME K ™ z
Gglue s 4 '; 11’({

e
_,.-.—.
-
-___-—-'
___'-lr

| rT)rder to eliminate the anomalously light bound
tates we need a small g, M, which requires a
departure from the SUGRA limit.

® Even for small g, M, SUGRA becomes reliable in
the UV (at large t)

.,....|.
T

- -

e —



= . : _
Bg running Of couplings:
Harge radius asympiotic Selution IS
ZCLENZECR YA OFATMIC UEVIAtIONS
JAdSS X THL ik, Tseytiin
-"'?'near-AdS radial coordinate Is

_ 39, Md

wa In ( r/ro )



HISEIEnsIatestinto 1og
WRRIREReIthe gauge.
sENEIINGS through
o Tria ywWelfoufeleio)puelaietis
EIIRIENVI=01 solution
Jogrm% mlcally

- ‘-
e e

:emarkably, the 5-form

____-—l

~ filux, dual to the

Aaumber of colors, also
changes logarithmically 3

Nese(r) =N +—c,i U”ln(r /1)

with: the RG scale.



f t S, the explanation i the dual

tL XS U(k=L)M), SYVI theoryACoLpled ™
sNgliitincamental chlral superflelds A, A,
,A JeVEIFpHEneenen; callied a

| , takes place: k repeatedly.
Cr nges o) VAN as a result ofi the Seiberg
ac allty IK, Strassler

' —

— (dlagram of RG flows from a review by M. Strassler)

|—

Q.UJ

-

— —
e —
—".F-"E—
i, ——
—
i : il B

__.—-—_

== o SUEM) x SU([k—1]M) t’
- n=<l1 -

F"a‘uf-'-' g-g,

% & SUEM) x SU(fk—1]M) n<<l

SUE—2]M) x SU{Tk—1]M) % \
ne<<l

F=)

g~g, g =<
&

-~ .
_ 0 & SUR=2]M) x SU(=1]M)  § <

P’ﬁ.P’ g~

u_

SUk—=2]M) x SU([k—3]M) % ’

F"a‘uf-'-' £~g,



YP:a Dualrties

PEcAding hehaviorisinot limited to, the
iolsREcEAtlymanNRfinitesamilyacf
;;;CY CONES oVer Sasaki-Einstein spaces
| zé of topoelogy’ S? x S° have been

A% = ()2 + ()2 + (e¥)? + (e

e’ = §{"h — cosfdo + y(dB + cosbBdo))



AR0eEs Bei'fWeen two smaller

Sots orv(y): KR

q° (Bp + +/4p? — 3¢>
\tll(} P j) — P S—— —————
3p? (qu — 2p?2 + p/4p? — 34>

r 6 U(N)2IO SCFT’s on N D3-
nes at the tip of the cones

— 'have also been constructed.

- Benvenuti, Franco, Hanany, Martelli, Sparks

s For example, here is the gquiver
diagram for the SCFT dual to
AdS; x Y43

o
i‘-’-:.
:"-'-"'




S

~crlelfefeks from a=MaximizalionEs

IEsconftormal mvarlance condItions do not
UIyACETETmMINE the R-Charges. Le
ri/—,< R=Y, R,=1-(x+y)/2, R,=1+ (x-y)/2

Chnlque of a-maximization Intriligator, Wecht

= 1 ._ S R—
- *--__-‘ =5 ( 4}} + 2pg + 3 q + (2p — q)V4p* — 3¢
:rﬁi—;_..:':'ﬂ:-;: - 11'“ "

( 1p* = 2pg + 3¢ + (20 + @) V4P — 3¢°

:ﬂq

= Remarkably, this gives the trace anomaly
agreeing with the AdS/CFT |IEG—_—_EGTS

Benvenuti et al; Bertolini, Bigazzi, Cotrone



Acdiien: o D5-branes
vvr:r.pcr— the .S? modifies: g
DENGLIVEr diagram; o f

Pprfgr S EIENSETRETTFE TN
SIRIE BIgUest gaLge group
ives the 'same quiver with
INE=SINEIVIL This fact Is
= Ne essary fior the existence of
-_’**"*a’self-smllar cascading RG

~ flow.

® The gravity duals of these
cascades include the ISD 3-
form field strength. Herzog, Ejaz, 1k




REG By arsinglenwar
0, Which however

=" _(fharacterlstlc of the cascade
~ proeduces a naked singularity

In the IR. Is there a smooth
solution with the above large
I behavior?

) — .,-'.f 9 ..-'-f P 9 9 — .
ds®> = B~V “dry + hY (dr® 4+ r°dQ )

g Fs =d(h™Y) Ad'z + «[d(h™Y) A d'z]

4

(14 2y1)(1 + 292) In(ys — v)
2(b—-1)



IR amor.of the .Con
R

> Herd te ynemiceldeformetionsof therconifold:

ENOENS: the solution; smooth, and explains the IR

Yzl Jc 10l the gauge theory.

D|m -L-;'. in the IR. The
= J/ f iIcally’ generated confinement scale IS

i -

e
"_--—' —
-_..'.-— -_"__-_._._
"'-.Ta- 'T:

=
_'-.
—

— * The pattern of IS the same
as in the SU(M) SYM theory: Z,,, -> Z,

® Yet, the IR gauge theory Is somewhat more
complicated.



Tl

RAlergauge. theony, casca,desﬁGWn N tor
W)X SUM). Thi%U(ZI\/I) gauge group

A= eiriNe A% JONe

a1t " TaN . IN,

Ei'\"'_,
B=e, iy B, ..BX

qpaq AN, AN,

= symmetry under which A, -> e'@ A; B, -> e'a B,.
- IHence, we observe confinement without a mass
gap: due to

there exist a Goldstone boson and its massless

scalar superpartner. There exists a baryonic
branch ofi the moduli space




.

* -

SRIENKS, selution IS part of a modull spacerol;
sontining SUGRA backgrounds, ==\
defor I

Pairinl, A:lrr L or]

> To ]Ji oK them we need to use the PT ansatz:

r."HIU—H 1/2 “dr,dr,, + ¢ rf“

- Gubser, Herzog, 1K; Buttl, Grana, Minasian,

9

dst = (e? 4 a’e™9)(ef 4+ e3) +e79 Z (€ — 2ae;e;) + v~ (&5 + dt?)

5 ﬂu- = x g, a, vV, and the dilaton are functions of the
== .-_radlal variable t.

= Additional radial functions enter into the ansatz
for the 3-form field strengths. The PT ansatz
preserves the SO(4) but breaks a Z, charge
conjugation symetry, except at the KS point.



GIVPZ Used the method! of SU(R) -
STICLE es toderive the completerset ofi =
)| Uiatiens:.

-® A-t Iarge t the solution ap :)roaches the KT
~cascade asymptotlcs '




- The resolulimm'_meter U is, propertional

u_ﬂ('aﬂ

rmJ r lmJJ\

i T

'°“c ~-'on But we always have the
= Cascade’ asymptotics at large t.

'_ IHere are plots of the string tension (a
string at the bottom of the
threat IS an chromo-
electric flux tube) and of the dilaton
profiles as a function of the modulus U=In
|€| Dymarsky, IK, Seiberg



“BPS Domain Walls

2=

wrapped OVET: the 3-

2 0)0) 010 O 5 fC)cl :
.,_maln wall separatlng Wo
[EIC ,g’[ Vacua of the theory

U" U?

oo
@)

*""- prowdes a check on the choice of
~ the UV boeundary conditions, and
on the numerical integration
procedure necessary away from
the KS point.

e Analytic proof?



rmrImJ dels Withr very: flat

goianiels -'as proven ter be: difficult.

Recer)i J theery constructions
HWevine D=branes. Dvali, Tye, .

ed defermed conifold |s
_._em edded into a string
= compactification. An anti-D3-brane is
_added at the bottom to break SUSY

and generate a potential. A D3-brane
rolls in the throat. Its radial
cooerdinate plays the role of an :
inflaton. Calabi-Yau
Kachru, Kallosh, Linde, Maldacena, McAllister, Trivedi

image throat



L relat*éti-suggestlon for D-brane

y - m—
Jf] ” cl (A. Dymarsky, IK, N. Seiberg) =

—

N C] rlrp, compactification; the
U(I)Olr o st gatgeaE It L0)]
EVEIEIIOPOUIes parameter ¢ .

Trils mrr 25 the throat a
WelgdEHREEToRmed conifiold.

Tt e @be D3-brane potential

-on tl ISTSpace: Isiasymptotically

=Tzt if we ignore effects of

'—'Cﬁmpactlflcatlon and D7-branes.

= Jihe plots are for two different
-values of U=C.

® No anti-D3 needed: In presence
of the D3-brane, SUSY Is broken
by the D-term &. Related to the
~D-term Inflation’ Binetruy, Dvali;
Halyo




ML

!
---_,Aype superpotentlal W =Wy + A(X)e™

.'Where X denotes the D3-

Effecis gi Bif-erziplesieigele
CorfgzEe ufication generically.
5001 Efle flatness of the

oore al Nen-perturbative
ffele (S treduce the KKLT-

prane position. In any warped
throat D-brane inflation

model, it IS Important to
calculate A(X).

[oll" D-brane igf@gn?r

warped throat



_nerturbative suerotentlal x exp( -5
JEPENES On the D3-brane Iocatlon through the
vvrlrorre Welume

- J 1 __ throat apprOX|mat|on the warp factor
> Ife calculated and integrated over a 4-
"‘CyCIQ eprICItIy Baumann, Dymarsky, Klebanov, Maldacena, McAllister,

Murugan

® [For a class of conifold embeddings

Arean, Crooks, Ramallo (w,=z,+iz,, €tcC.)

the result Is




s formula applies both to » wrapped DA
Orelfleg el tO*H’V% s Eudﬁi@@!ﬁ)’

=G)ethe, latter case, Ganoer showed that A has a
JJmoJe ZETONVIENTtENDS=RINE aPPrOaCNES the
seycle. Qur result agrees with this.

we navﬁ ‘also carried out such calculations for 4-

G/ les: Wlthln the Calabi-Yau cones over YP.9 with
= H_.ng: Ogous results: A(X) is proportional to the

_ mbedding equation raised to the power 1/x.
== ,T-hls appears to be a general rule for 4-cycles In
the throat.




gilie dependence of the non-pertur

IOF‘HCJO ential’e branM ‘d‘"
S Ccompac |f| ation effects, give
E=SCale COlreCtions to the nflaton

SO/me flne -tuning’ Is generally needed to
: Cel different corrections to the D3-
F'" =rane potential. This is currently under
= mvestlgatlon with D. Baumann, A.
Dymarsky, J. Maldacena, L. McAllister and

P. Steinhardt.




Jrnua dualities for confining gauge theorles give a
EVVEC geometrical view of such important phenomena as
=0 mensional transmutation, chiral symmetry breaking,
—ar -*quantum deformation of modull space. We have also

E.) Embeddlng gauge/string dualltles Into string

~ compactifications offers new possibilities for modeling
Inflation. In particular, D3-branes on resolved warped
deformed conifolds may realize D-term inflation.

e Calculation of non-perturbative corrections to the inflaton

potential I1s Important for determining If these models can
produce slow-roll inflation.
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