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Three-dimensional pure quantum gravity, 
with the Einstein-Hilbert action

has been studied from many points of view, 
but its status is fundamentally unclear.

I will be making a highly tentative effort to 
reconsider it.   (thanks to J. Maldacena)



My main motivation for doing so is the BTZ 
black hole.  With negative cosmological 
constant, there are black holes in 2+1 
dimensions.   Since pure gravity in 2+1 
dimensions is “trivial,” i.e. it has no 
propagating modes, we might hope to get 
an exact description of the quantum theory 
of these black holes. At least above 1+1 
dimensions, where propagating modes 
have complicated interactions, there is no 
hope to get an equally precise black hole 
model in a theory that is not “trivial.”



The first observation that we might make 
about this theory is that even though on 
dimensional grounds it appears to be 
unrenormalizable by power counting,

it is actually finite in perturbation theory –
modulo a field redefinition and a 
renormalization of the cosmological 
constant.



This is so for the same reason that the 
theory is “trivial.” In 2+1 dimensions, the 
Riemann tensor                    can be 
expressed in terms of the Ricci tensor
which in turn, using Einstein’s equations, 
can be expressed as a multiple of the 
metric tensor            So finally, on shell, 
the only possible counter-term is the 
volume of spacetime, that is, a 
renormalization of the cosmological 
constant.



What I have just said is valid regardless of 
how one formulates perturbation theory, 
but actually, there is a natural formulation 
in which no renormalization or field 
redefinition is needed.

This comes from the fact that classically, 
2+1-dimensional gravity can be expressed 
in terms of gauge theory.  The spin 
connection      is an                        gauge 
field.           can be combined with the 



“vierbein” to make a gauge field of 
gauge group                         if the 
cosmological constant is negative (and a 
similar group otherwise).  We just combine

and         into a 4 x 4 matrix

As long as the vierbein is invertible, the 
usual transformations under local Lorentz



transformations and diffeomorphisms
combine together as gauge 
transformations of     .    This statement 
actually has an analog in any dimension.  
What is special in 2+1 dimensions is that 
the Einstein-Hilbert action can be 
expressed in a gauge-invariant form

as a Chern-Simons interaction.
(Achucarro and Townsend 1987, EW 1988)        



From this point of view, perturbation theory 
is renormalizable by power counting, and 
is actually finite, since there are no 
possible local counterterms (and the 
cosmological constant is a structure 
constant of the gauge group).  

It is pretty clear that the gauge theory 
description of gravity is valid in 
perturbation theory – since it is valid 
classically – and perturbation theory will 
not take us out of the classical region of 
invertible vierbein.



But nonperturbatively there is a real 
question, as in gauge theory we will have 
to allow a non-invertible vierbein.

My own view in 1988 was that the gauge 
theory description was correct 
nonperturbatively, and one had to allow a 
degenerate vierbein to make sense of the 
quantum theory.

This view was criticized fairly convincingly,



especially by N. Seiberg, who argued that in 
0+1 and 1+1 dimensions, where we do 
know how to make sense of quantum 
gravity, we take seriously the invertibility of 
the vierbein at the quantum level.

There is, however, another problem with the 
idea “gauge theory=gravity in 2+1 
dimensions” that seems even more acute.



A few years after the gauge theory 
interpretation of 2+1-dimensional gravity 
was proposed, it was appreciated that for 
the case of negative cosmological 
constant, there is a black hole in this 
“trivial” theory 
(Banados, Teitelboim, Zanelli, 1992)
and developments in the AdS/CFT 
correspondence (beginning with 
Strominger 1997) made it clear within a 
few years that this should be taken 
seriously.  



The BTZ black hole has a horizon of positive 
circumference and a corresponding 
Bekenstein-Hawking entropy.  If, therefore, 
pure 2+1-dimensional gravity does 
correspond to a quantum theory, this 
theory ought to have a huge degeneracy 
of black hole states  -- which we are not 
going to be able to get in a reasonable 
way from topological field theory (though 
some attempts have been made).



Before going on, let us discuss what we are 
going to aim for in trying to solve 2+1-
dimensional gravity.  

First of all, I am only going to consider the 
case of negative cosmological constant.  

Currently there is some suspicion that 
quantum gravity with              doesn’t exist 
nonperturbatively (in any dimension) with 
positive cosmological constant.  One 
reason for this is that it does not appear 



to be possible, with              , to define 
precise observables.  This is natural if it is 
the case that a world with positive 
cosmological constant (like the one we 
may be living in) is always unstable.

If that is so, then a world with              
doesn’t really make sense as an exact 
theory in its own right but (like an unstable 
particle) must be studied as part of a 
larger system. 



Whether that is the right interpretation or 
not, since I do not know how to define any 
precise observables, I don’t know what it 
would mean to try to solve 2+1-
dimensional gravity with                  , since 
it isn’t clear what we’d want to compute.



With zero cosmological constant, above 2+1 
dimensions, there is a meaningful 
observable: the S-matrix.

In 2+1 dimensions without matter fields, we 
have no local propagating fields, and also 
no black holes if the cosmological constant 
is zero.  So there is no S-matrix, and 
again, there is no clear picture of what one 
wants to calculate in trying to solve the 
theory. 



With negative cosmological constant, there 
is an analog of the S-matrix, namely the 
dual conformal field theory.   It captures 
the asymptotic information that is 
analogous to the S-matrix in the 
case.    Not only does this make sense in 
2+1 dimensions, but in fact one of the 
precursors of the AdS/CFT 
correspondence was the work of Brown 
and Henneaux (1986) on 2+1-dimensional 
gravity.



Brown and Henneaux showed that the 
Hilbert space of 2+1-dimensional gravity, 
with 

-- the ellipses refer to the fact that this result 
isn’t affected by matter fields – has an 
action of a left- and right- moving pair of 
Virasoro algebras with 

In our modern understanding, this is part of 
a much richer structure – the dual CFT 



What it means to solve quantum gravity with
is to find the dual CFT. 

And to repeat, we focus on the case
because that is the only case in which we 
know what it would mean to solve the 
theory.                    



This formulation makes obvious a statement 
that from a classical point of view looks 
rather surprising.   When we look at the 
classical action, 

it appears that      , which is the 
cosmological constant in Planck units, is a 
free parameter.   But the formula for the 
central charge                                    
shows that this cannot be the case.



According to the Zamolodchikov c-theorem, 
in any continuously variable family of 
conformal field theories in 1+1 dimensions, 
the central charge c is a constant.

Hence it cannot depend on a variable 
parameter such as              .  It must be 
that 2+1-dimensional quantum gravity 
makes sense at most  only for certain 
values of              .



Of course, Zamolodchikov’s theorem has an 
important technical assumption – the 
theory must have a normalizable and 
SL(2)-invariant ground state.  This 
assumption is valid in 2+1-dimensional 
gravity, with Anti de Sitter space being the 
classical approximation to the relevant 
quantum state.

(This assumption in Zamolodchikov’s
theorem has been overlooked in some 
claims about 2+1-dimensional gravity.)



I should remark that the statement that 
cannot be continuously varied is not 

limited to pure gravity – it holds for the 
same reason in any theory of 2+1-
dimensional gravity plus matter that has a 
sensible Anti de Sitter vacuum.   For 
example, in the string theory models 
whose CFT duals are known,           is 
expressed in terms of integer-valued 
fluxes, which gives a direct explanation of 
why it cannot be varied.



So we are only going to aim to solve the 
theory for negative cosmological constant, 
and even then, only for certain values of 

.  But what are the right values?

I don’t have any rigorous way to determine 
this.  But there is a simple picture that 
gives us a plausible heuristic way to try to 
find the right values, and it turns out that 
this gives interesting values.



We are just going to take at face value the 
gauge theory description of 2+1-
dimensional gravity.  First of all, in addition 
to         , there is really a second 
dimensionless parameter, since one can 
add to the action a multiple of the Chern-
Simons invariant of the spin connection:

Here       is an integer for topological 
reasons. 



So the theory really depends on two 
parameters, namely               and        .

We understand why the second has to be an 
integer, but we want to know why the first 
one cannot vary continuously (which 
would contradict the c-theorem).  

If we just take at face value the gauge 
theory interpretation of 2+1-dimensional 
gravity, it gives an explanation of why the 
parameters only take special values, and 
the values it selects prove to be 
interesting.



We use the fact that the gauge group
is essentially the same as

The two                        gauge fields are
and the action is a sum



If we take the gauge theory description 
literally, then both         and         are 
quantized to integer values for topological 
reasons.  Moreover, from the formulas of 
Brown and Henneaux, combined with the 
gravity/Chern-Simons relation, the central 
charges turn out to be  

This is an interesting result, because 
holomorphic factorization is possible in 2d 
CFT precisely for these values of c.



A further hint of holomorphic factorization is 
simply the fact that the Chern-Simons 
action is the sum of a “left” part and a 
“right” part.   

So in continuing, we are going to assume 
holomorphic factorization, and we will just 
try to describe the holomorphic part of the 
theory – a holomorphic CFT with central 
charge                   for some integer 



Now one simple fact is that the ground state 
energy of such a theory is

What other states are there?  Naively, none 
at all, since 2+1-dimensional gravity is 
“trivial.” However, this isn’t right.  At least 
there are the boundary excitations that 
lead to the Virasoro algebra of Brown and 
Henneaux.   



If there were no other excitations, the 
partition function in genus 1 would be

This function counts the excitations of the 
vacuum that can be made by acting 
repeatedly with the stress tensor and its 
derivatives.

But that cannot be the full answer, since this 
function is not modular invariant.



There must be some additional primaries, 
apart from the identity.  The partition 
function will then be

for some     .

Now we are going to interpret the fact that 
the theory is classically “trivial” to mean 
that we should make     as large as 
possible.



It turns out that the largest that    can be is
, and if this is the right value, 

then the partition function              is 
uniquely determined.  

My proposal is that this gives the partition 
function of the dual CFT, including the 
black holes. 



Riemann surfaces of genus 1 are 
parametrized by the “j-function”

It actually is more convenient to use

The fact that the partition function is modular 
invariant and has its only pole at

means that it is a polynomial in



More specifically,           is a polynomial in
of order   , since its pole at             is of 

order   .   So we have

with some coefficients     .  We can pick 
these coefficients to make           agree 
with the naïve function

up to order       .   



But then we have no control over the term of 
order      .  This is above the ground state 
energy by k+1 units, so it means that there 
will be primary fields of dimension

We interpret them as black holes, since the 
theory is “trivial” except for the black holes.



In fact, something nice happens.  The 
minimum classical black hole mass, in 
these units, is                  .  But the 
Bekenstein-Hawking entropy vanishes if 
the mass is precisely     .  So black holes 
of positive entropy exist precisely if the 
mass is greater than     , in perfect accord 
with the fact that, according to our 
proposal for the quantum theory, the 
lowest dimension of a primary (other than 
the identity) is  



Moreover, the partition function that I’ve 
described how to calculate, though I didn’t 
quite write down an explicit formula, gives 
a result for the black hole degeneracies
that agrees perfectly with the Bekenstein-
Hawking entropy.  From the way I’ve 
explained things, this may sound like a 
miracle, but it will seem less surprising if 
one is familiar with the “Farey tale” of

Dijkgraaf, Maldacena, Moore, and Verlinde
(1997)



Let us give an example.  If              , the 
partition function is simply the J-function 
itself, so

The number of black hole primaries of mass 
2 is therefore 196883.  The black hole 
entropy is therefore log(196883)=12.19…

The classical entropy of a black hole with 
k=1 and mass 2 is 4π=12.57...  So we are 
off by just a few percent.



This is the worst case.  If we increase k or 
the black hole mass, the semi-classical 
approximation to the black hole entropy 
quickly improves and it becomes 
asymptotically exact for large k.

But let us go back to k=1.
The number 196883 of black hole primaries 

at this low mass is a very special number.



Back in the 1970’s, the last of the sporadic 
(or exceptional) finite simple groups was 
constructed – the Fischer-Griess
“monster” or “friendly giant.” The lowest 
dimension of an irreducible representation 
of the monster is 196883.   John McKay 
noticed that this is very close to the 
coefficient of the third term in



After higher coefficients of the j-function 
were similarly found to be related to the 
monster, Frenkel, Lepowsky, and 
Meurman (1985) were led to conjecture 
the existence of, and to construct, a 
holomorphic conformal field theory with 
partition function our friend              

They also conjectured that their theory is the 
unique holomorphic CFT with this partition 

function.



If so – and the conjecture hasn’t been 
entirely proved – then the Frenkel-
Lepowsky-Meurman monster theory must 
be the dual CFT at k=1.

Thus, we can interpret the monster group as 
the symmetry of 2+1-dimensional black 
holes, at least at this value of k.



What about higher values of k?  It is not 
hard to show that the coefficients in the q-
expansion of the partition function can 
always be expressed in terms of 
dimensions of monster representations.  
So it is conceivable that the monster is a 
symmetry of 2+1-dimensional quantum 
gravity at every value of k.  But I don’t 
know how to show that this is true, or even 
to show that the CFT’s with the claimed 
partition functions do exist.



There is a close analog of all this in the 
supersymmetric case.  The allowed values 
of the central charge (in the holomorphic
sector) are now c=12 k, where again k 
should be an integer.  The partition 
function can be uniquely determined for 
every k, by imitating the reasoning we 
used in the bosonic case.  It turns out that 
candidates for the superconformal field 
theories of interest exist in the 
superconformal case for k=1 and 2.



The candidate for k=1 was constructed by 
Frenkel, Lepowsky, and Meurman (1985) 
who also conjectured its uniqueness, and 
understood more fully by Duncan (2005), 
while the candidate at k=2 was 
constructed by Dixon, Ginsparg, and 
Harvey (1988).   



The k=1 and k=2 theories have in common a 
discrete symmetry group that is smaller 
than the monster but is again one of the 
sporadic finite groups – the “Conway 
group,” in this case.    
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