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III The Mirror : magnetized IIB branes

• Mirror symmetry exchanges IIA and IIB compactifications

• In Type IIB we have D9,D7, D5 and D3 branes wrapping 6-,4-, 2- and

0-cycles in the CY and subject to magnetic fluxes.

• We will consider 2 general classes of IIB models:

– 1) MagnetizedDp IIB branes in toroidal/orbifold settings

– 2) IIB D3-branes at singularities

• The first class a is T-dual (equivalent) to the intersecting D6-brane models

already discussed.

• The second class may be considered also as a limiting class of magnetized

branes wrapping cycles which are collapsed at a CY singularity.

aBachas hep-th/9503030; Angelantonj et al. hep-th/0007090.



L.E. Ibáñez; D-BRANE MODEL BUILDING, PART II, July 2008, PITP School, IAS Princeton 2'

&

$

%

Magnetized toroidal IIB branes

• One considersNa D9-branes wrappedmi
a times on the i-th 2-torus in T 6

and with ni
a units of U(1)a magnetic flux:

mi
a

1

2π

∫

T 2
i

F i
a = ni

a (1)

• (ni
a,mi

a) are now the dual of the D6-brane wrapping numbers.

• The relative angle of D6a −D6b branes is mapped to:

θab = arctg(F i
b) − arctg(F i

a) (2)

with

F i
a =

ni
a

mi
aRxi

Ryi

(3)
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• In the presence of a magnetic flux F in a IIB brane wrapping T 2 open string

boundary conditions get modified:

∂σX − F∂τY = 0 (4)

∂σY + F∂τX = 0 (5)

• Note that F interpolates between N and D boundary conditions. At formally

infinite flux they are purely D.

• This allows us also to describe lower dimensional branes:

D9 → (n1
a,m

1
a)(n2

a,m
2
a)(n3

a,m
3
a) (6)

D71 → (1, 0)(n2
a,m

2
a)(n3

a,m
3
a) (7)

D51 → (n1
a,m

1
a)(1, 0)(1, 0) (8)

D3 → (1, 0)(1, 0)(1, 0) (9)
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• Any intersecting D6-brane model may be converted into a magnetized

D9-brane model with apropriate fluxes.

• A T-duality exchanges Neumann and Dirichlet boundary conditions alog the

duality direction:

IIA

IIB

T T T
y y yT−Dualities:

Extended Pointlike With Flux

• E.g. The Z2 × Z2 IIA orientifold example has now the MSSM residing at

D7i branes. RR-tadpoles cancelled by additional magnetizedD9 branes.
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T-duality in 3 x-tori directions exchanges D7-models models with fluxes and

intersecting D6 IIA models

T

T

T

1

2

x

x

3

T

T

T

x

x

3

2

1 2

1

D6 D6D6
0

IIA

Ω R R R 
y y y

1 2 3

D7 D7 D71 2 3

IIB 

(Fluxes    )

Ω
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In this case a T-duality along 3 horizontal directions exchanges a magnetized D7

IIB model and an intersecting D6 IIA model.

Magnetized

Intersecting 

D6−branes

T T 

T T T 

1

1 2

T 2 3

3

x
x D7−branes

IIB

IIA

Ω R R R 

Ω R R R 

2   2   2

y y y

T−Dualities in X

• Chirality arises from the missmatch of L- and R-handed fermions in compact

dimensions in the presence of a magnetic flux.
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Back to Type IIA: D8-branes with fluxes

• It turns out that in order to recover full mirror symmetry one has to consider in

the IIA side new possibilities.D8-branes wrapping 5-cycles with magnetic

fluxes.

CY

Π

F = magn. flux

Π

CY3 3

3
 3+2

D6

D8

• Naively one would sayD6-branes exhaust all the possibilities for constructing

space-filling BPS D-branes. Other Type IIA optionsD4,D8 would wrap

homologically trivial cycles in a CY.
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• This is not quite true for D8’s because they can carry non-trivial magnetic

flux F in their worldvolume. The flux F inducesD6 charge in the

worldvolume of the D8 rendering them stable BPS objects:

D6− charge :

∫

M4×Π5

F ∧ C7 (10)

• The D8’s wrap 5-cycles Π5 which are ’coisotropic’ submanifolds in the CY.

• The D8 carries D6 charge corresponding to the 3-cycle ΠF
3 Poincare dual

to F inside Π5.
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• A simple example is a D8-brane wrapping T 2 × T 2 and a 1-cycle on the

other T 2

T TT
2 2 2

F = 01( n  , m  )1

Π
5
:

• There is quantized magnetic flux inside T 2 × T 2:

F = nxxdx2 ∧ dx3 + nxydx2 ∧ dy3 + nyxdy2 ∧ dx3

+ nyydy2 ∧ dy3 + ñ2dx2 ∧ dy2 + ñ3dx3 ∧ dy3
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• There is a D-term condition analogous to that of D6’s. However in addition there is an

F-term condition:

(F + Jc)
2|Π5 = 0 (11)

• since ( the Ti are the Kahler moduli)

F
2 = (nxynyx − nxxnyy + ñ2ñ3) dx2 ∧ dy2 ∧ dx3 ∧ dy3

(Jc)
2|Π5 = −T2T3dx2 ∧ dy2 ∧ dx3 ∧ dy3

F ∧ Jc|Π5 = −i(ñ2T3 + ñ3T2)dx2 ∧ dy2 ∧ dx3 ∧ dy3

• one gets the F-term constraint

(T2 + iñ2)(T3 + iñ3) = nxynyx − nxxnyy (12)

• The F-term condition may be understood as coming from a superpotential

W1 = Φ1 (T2T3 − f1) ; f1 = nxynyx − nxxnyy (13)

where Φ1 is an open string modulus along the first torus (D8 location + Wilson line).
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Chirality

• Chirality arises from mixture of intersections and magnetized branes. Chiral

fermions arise at overlaps of both D6 andD8 ’s .

C x T 

I    =

I    =

C

(n m − m n )I    =

(F − F )
a b

a
(F − F )

b

a
(F − F )

b

(n m − m n )
a     b a     b

a     b a     b

2

2

  ab

ab

ab

T x  T
2 2

2 2

2

D8 − D8

D8 − D8

a

a

b

b

D8 −  D6
a b

1

1 1 1

1 1 1 1

1
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Model building applications

• These magnetizedD8-branes may be used to construct semirealistic

compactifications in Z2 × Z2 orientifold with MSSM-like spectrum and 3

generations a.

• They have a couple of advantages overD6-brane models:

– One can fix the Kahler moduli without the addition of closed string fluxes

(which would require using the supergravity aproximation).

– Their D6-induced charges correspond to non-factorized cycles. This

makes the model-building more flexible.

• The model building possibilities of this new tool are still to be explored. We

will content ourselves with an example here.

aA.Font, L.E.I.,F. Marchesano, hep-th/0607219.
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A MSSM-like D8-D6 example

• Consider the Z2 × Z2 Type IIA orientifold with D8’s andD6’s as follows:

D8

D6D6

O6

SU(3)xU(1)

SU(2)

SU(2)
R

L

F=0F=0

Ni Dpi D8 : (n,m)i × (nxx, nxy , nyx, nyy)(jk)

D6 : (n1,m1)(n2,m2)(n3,m3)

Na = 6 + 2D8a (1, 0)1 × (−1, 3,−3, 10)(23)

Nb = 2D6b (0, 1)(1, 0)(0,−1)

Nc = 2 D6c (0, 1)(0,−1)(1, 0)
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• Stacks a,b,c give rise to the SM sector.

• Additional branes to cancel all RR-tadpoles and fix the Ti (in collaboration

with brane a)).

Ni Dpi D8 : (n,m)i × (nxx, nxy , nyx, nyy)(jk)

D6 : (n1,m1)(n2,m2)(n3,m3)

NM = 4 D6M (−2, 1)1 × (−3, 1) × (−3, 1)

NX = 2 D8X (1, 0)2 × (−1, 0, 0, 2)(13)

NY = 2D8Y (1, 0)3 × (−1, 0, 0, 2)(12)

• The gauge group is

SU(3)× SU(2)L × SU(2)R × U(1)B−L × U(1)3B+L ×Ghidden

(14)

• The chiral spectrum with MSSM quantum numbers is:
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Intersection Matter fields Rep. Q3B+L

a− b QL + L 3(3 + 1, 2L) 1

a− c UR +DR ;ER + νR 3(3̄ + 1, 2R) -1

b− c H +H (2L, 2R) 0

b−M L’ 6(2M , 2L) 0

c−M R’ 6(2M , 2R) 0

• This corresponds to 3 quark/lepton generations plus a minimal Higgs set. In

addition there are some extra exotic leptons which can become massive at

the electroweak scale.

• The D-term conditions give

τ2 = τ3 ; τ1τ2τ3 = 9τ1 + 6τ2 + 6τ3 (15)
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• The F-term conditions fix the 3 untwisted Kahler moduli Ti:

D8a −→ T2T3 = F 2
a = 1 (16)

D8X −→ T1T3 = F 2
X = 2

D8Y −→ T1T2 = F 2
Y = 2

• one thus has

ReT1 = 2 ; ReT2 = ReT3 = 1 ; ImTi = 0 (17)

• The MSSM gauge kinetic functions are given by

fSU(3+1) = n1nyyS − n1nxxU1 = 10S + U1

fSU(2)L
= 1

2U2

fSU(2)R
= 1

2U3

• A variety of MSSM-like models may be built..
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RCFT Type IIB orientifold MSSM-like models

• A large class of Type IIB Rational Conformal Field Theory (RCFT) orientifold

models, of order 180000 with MSSM-like spectra were constructed in 2004

by Schellekens and colaborators a.

• These are non-geometrical compactifications in which the CY geometry is

replaced by RCFT Gepner models with total central charge c = 9 .

• This c = 9 system is obtained by tensoringN = 2 Minimal SCFT models

each one with central charge

c =
3k

k + 2
, k = 1, ...,∞ (18)

• There are 168 ways of solving
∑

i cki
= 9. In addition one can obtain new

compactifications by moding by the discrete symmetries, a Zk+2 symmetry

per minimal factor : 5403 models.
aDijkstra,Huiszoon,Schellekens hep-th/0411129.
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• Altogether there are 49304 possibilities for orientifold operations.

• The role of branes played by certain boundary states. For a given model the

number of boundary states is finite, typically 102 − 103 .

• Search for MSSM spectra coming from a,b,c,d SM boundary states (’Madrid

quiver’ structure) plus possible hidden sector boundaries. 179520 MSSM-like

models found with different spectra in 2004 sample.

• The general structure of SM gauge group (there is also in general a hidden

sector)

Type SM Gauge group B-L

0 U(3) × Sp(2) × U(1) × U(1) massless
1 U(3) × U(2) × U(1) × U(1) massless
2 U(3) × Sp(2) ×O(2) × U(1) massless
3 U(3) × U(2) ×O(2) × U(1) massless

4 U(3) × Sp(2) × Sp(2) × U(1) massless
5 U(3) × U(2) × Sp(2) × U(1) massless

6 U(3) × Sp(2) × U(1) × U(1) massive

7 U(3) × U(2) × U(1) × U(1) massive
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• The geometric interpretation of these models corresponds to Type IIB

orientifolds with magnetized D7-branes. The D7’s would wrap 4-cycles in the

CY.

• They have just the spectrum of the MSSM and vectorlike matter.

• No exotics. Some have gauge coupling unification (but extra vector-like

matter).

• Limitation: correspond to particular points in CY space. Do not know yet how

to extract the effective acion, feasible in principle.

• But the biggest set of MSSM-like solutions in the literature!
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IV-THE LOW ENERGY EFFECTIVE ACTION

• Kahler potential

• Gauge kinetic function

• Yukava couplings



L.E. Ibáñez; D-BRANE MODEL BUILDING, PART II, July 2008, PITP School, IAS Princeton 21'

&

$

%

Closed string moduli in CY orientifolds

• Type II orientifolds have massless Kahler Ti and complex structure Um

moduli. They are defined in terms of geometric quantities as follows a

– Type IIA:

T i = V ol(Σ
(i)
2 ) + i B

(i)
2 ; Um = e−φV ol(Σ

(m)
3 ) + i C

(m)
3 (19)

– Type IIB (D3/D7)

Um =

∫

Σ(3)

Ω ; T i = e−φV ol(Σ
(i)
4 ) + i C

(i)
4 (20)

• Here Σn denotes a cycle of dimension=n in the CY, Cn are RR n-forms

integrated over those cycles, Ω denotes the holomorphic 3.form in the CY

and φ is the dilaton.
aT.Grimm, J. Louis hep-th/0412277.
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Closed string moduli Kahler potential in CY orientifolds

• The Kahler potential for Type IIA orientifolds may be obtained by dimensional

reduction from D = 10 and is given by

KIIA = −log(V olCY ) − 2log

∫

CY

Re(CΩ) ∧ ∗Re(CΩ) (21)

where

C = e−φ4

[

1

8i

∫

Ω ∧ Ω∗

]

−1/2

; eφ4 = eφ/(V ol)1/2 (22)

• For the case of the Kahler potential for IIB (D3/D7) orientifolds one gets

KIIB = −2log(V olCY ) − log i

∫

CY

Ω ∧ Ω − log(S + S∗) (23)

where

S =
1

φ
+ i C0 (24)



L.E. Ibáñez; D-BRANE MODEL BUILDING, PART II, July 2008, PITP School, IAS Princeton 23'

&

$

%

is the complex dilaton field.

• In both cases one can check that the dependence on Kahler moduli and complex structure field is

separated in the Kahler potential.

• In Type IIA the perturbative superpotential depends on the Kahler moduli but not on the complex

structure.

• In Type IIB the perturbative superpotential depends on the complex structure moduli but not on

the Kahler moduli.

• This separation may have phenomenological relevance (flavour problem).
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Closed string moduli in IIA toroidal orientifolds

• There are IIA orientifold closed string moduli scalars:

– The complex structure moduli. They are governed by the dilaton λ = eφ

and the shape of each tori. The ηI are the RR scalars with a role in U(1)

anomalies.

S =
M3

s

λ
R(1)

x R(2)
x R(3)

x + iη0 (25)

U (i) =
M3

s

λ
R(i)

x R(j)
y R(k)

y + iηi , i 6= j 6= k (26)

(27)

– The Kahler moduli . The real part controls the size of the tori.

T (i) = M2
s R

(i)
x R(i)

y + i (B2(i)) (28)
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Closed string moduli in IIB toroidal orientifolds

• For the ΩR2R2R2 IIB orientifold (D7, D3 branes ).

– The dilaton

S =
1

λ
+ iC0 (29)

– The Kahler moduli . The real part is the 4-volume transverse to the i-th

torus. The Ci are the RR scalars playing a role in U(1) anomalies.

T (i) =
M4

s

λ
R(j)

x R(j)
y R(k)

x R(k)
y + iCi , i 6= j 6= k (30)

– The complex structure moduli.

U (i) = τi (31)
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• Note that the real parts may be obtained from those of Type IIA through 3

T-dualities in the x-directions:

R(i)
x →

α′

R
(i)
x

(32)

• Kahler and complex structure moduli are exchanged

IIA,D6 U (i) , T (i) ←→ IIB,D7, D3 T (i) , U (i) (33)
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The toroidal moduli Kahler potential

• It has the typical log structure.

K = −log(S+S∗)−log (Πi (U (i)+U (i)∗))−log (Πi (T (i)+T (i)∗))

(34)

• It has the same structure for IIA and IIB although the moduli have different

meaning.

• These diagonal toroidal moduli are the untwisted moduli of the Z2 × Z2

orientifold. Other orbifolds may have additional off-diagonal moduli.



L.E. Ibáñez; D-BRANE MODEL BUILDING, PART II, July 2008, PITP School, IAS Princeton 28'

&

$

%

Kahler metrics of matter fields (IIB)

• To compute low-energy physical quantities (like physical Yukawa couplings,

SUSY-breaking soft terms) it is important to know the Kahler metrics of the

matter fields

KabΦaΦ∗
b (35)

• Kab are non-holomorphic functions of the closed string moduli. Their

dependence on the moduli is dictated by the geometric origin of the field.

• These metrics have been computed for simple cases either by dimensional

reduction or explicit string correlators a.

• Different origin of chiral matter fields in IIB-D3/D7 toroidal orientifolds. The

classification still applies to general CY orientifolds. (No magnetic fluxes).

aL.E.I., C. Muñoz, S. Rigolin hep-ph/9812397; Lust et al. hep-th/0406092.



L.E. Ibáñez; D-BRANE MODEL BUILDING, PART II, July 2008, PITP School, IAS Princeton 29'

&

$

%

D7

D7

D3

D3

D7

D7

D7

a)  e)d) c) b) 

– a) Fields from (7i7i)j , j 6= i. Come from dimensional reduction ofD = 8 vector

multiplets in the brane. They give rise to adjoints in toroidal example but may lead to more

interesting matter in more general cases. The metric is (ti = 2ReTi, uj = 2ReUj )

K(7i7i)j
=

1

tkuj
(36)

– b) Fields from (7i7i)i, i = 1, 2, 3. Come from dimensional reduction ofD = 8 scalar

multiplets which parametrize the position of 7i-brane in transverse dimensions. Adjoints in

toroidal case.
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K(7i7i)i
=

1

sui
(37)

– c) Fields from two intersecting D7-branes.

K(7i7j) =
1

t
1/2
k

s1/2(uiuj)1/2
i 6= j 6= k (38)

– d) Fields from open strings betweenD3 andD7-branes.

K(37i) =
1

t
1/2
j t

1/2
k

(ujuk)1/2
i 6= j 6= k (39)

– e) Fields from open strings inD3-branes.

K(33)i
=

1

ti
(40)

• The results for intersecting D6-branes may be obtained from T-duality.
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Effect of magnetic fluxes on Kahler metrics

• The above metrics corresponded to the case with no magnetic fluxes on the

D7-branes. But chirality typically requires magnetic fluxes. Consider the

presence of magnetic fluxes through i-th torus Fi

Fi = ni

(

sti
tjtk

)1/2

(41)

• Then for fields of types a), b) one gets a

K(7i7i)j
=

1

tkuj
|
1 + iF k

1 + iF j
| ; K(7i7i)i

=
1

sui
(1 + |F jF k|) , (42)

where i 6= j 6= k label the 3 2-tori

• Kahler metric for matter fields coming from intersecting magnetizedD7’s one
aLust et al. hep-th/0404134.
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has (Lust et al.)

Kab =
1

(st1t2t3)1/4
(Π3

i=1u
−θab

i )

√

Γ(θi
ab)

Γ(1− θi
ab)

(43)

where s = ReS, ui = Re(U (i)), ti = Re(T (i)).

• For dilute fluxes (large t) this behaves with t = t1 = t2 = t3 like

Kab ≃
1

s1/2t1/2
(44)

• In the Type IIA case the same result applies exchanging Kahler and c.s.

moduli and interpreting the magnetic fluxes in terms of angles of intersecting

D6 branes.

• The Kahler metric is important to compute SUSY breaking soft terms.
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The gauge kinetic function

• The gauge coupling constant in IIA orientifolds may be obtained from the

Dirac-Born-Infeld (DBI) action of the D6-branes

SDBI =

∫

ΠD6

1

λ

√

det(G + F ) + SCS (45)

• Expanding to quadratic order in the gauge field strength F :

1

g2
a

=
V ol(Π3)

λ
=

M3
s

λ

√

Π3
i=1((n

i
aR

(i)
x )2 + (mi

aR
(i)
y )2) (46)

• If the D6-brane preserves same SUSY as orientifold plane, the expression

simplifies a lot. Indeed, using the trigonometric expresion

Π3
i=1 (1 + tan2θi)

1/2 = 1 −
∑

i 6=j

tanθitanθj (47)
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one finds

1

M3
s g

2
a

= n1
an

2
an

3
3R

1
xR

2
xR

3
x −

∑

i 6=j 6=k

ni
am

j
am

k
aR

i
xR

j
yR

k
y (48)

= n1
an

2
an

3
3Re(S) −

∑

i 6=j 6=k

ni
am

j
am

k
aRe(U

i) (49)

• and hence by holomorphicity of kinetic function

fa = n1
an

2
an

3
3S −

∑

i 6=j 6=k

ni
am

j
am

k
aU

i (50)

• In the Type IIB case one also expands the DBI action. The mi
am

j
a pieces

come from the insertion of F 2 backgrounds in the expansion. One then finds

the same expression exchangingU i ↔ T i.

• Note that in general coupling constants would not unify in a MSSM model.

The Fields S, U i contain RR scalars participating in GS mechanism.
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• In the MSSM-like model we described before one finds:

fSU(3+1) = U1 + 9S ; fSU(2)L
=

1

2
U2 ; fSU(2)R

=
1

2
U3 (51)

• SUSY condition implies ReU2 = ReU3 = ReU so that SU(2)L and

SU(2)L are unified due to SUSY.

• One can tune S, U(1) to get unification.

• There are more complicated models in which gauge coupling unification is

more easily achieved.
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Yukawa couplings in IIA toroidal orientifolds

• One of the quantities of most phenomenological interest are the Yukawa

couplings among fermions and Higgs multiplets in SM-like compactifications.

• They may be computed in Type IIA from string correlators wich involve

world-sheet instanton contributions.

T T T
2 2 2

H

H

H
Q

Q

Q
Q

Q

Q

RRR

L

L

L

D6:

• Consider first one subtorus and three D-branes labeled a,b,c wrapping T 2

with intersecting numbers Iab, Ibc, Ica.
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• Yukawa couplings come from worldsheet instanton contributions a

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

c

ka

b

j

i

• If i, j, k = 0, 1, ... label the chiral fields at intersections One expects a

semiclassical contribution

Yijk ∝
∑

exp

(

−
Aijk

2πα′

)

(52)

aAldazabal et al.(2000);D.Cremades,L.I.,F. Marchesano (2003,2004)
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c

a
b

i=0

i=1

j=0

j=1

j=2

b= (1,2)

a= (1,0)

c=(1,-3)

(n,m)

I   = 2

I   =-5

I   = 3

ab

bc

ca
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• One finds in the simple T 2 case

Aijk(l) ∝
∑

l

A

2
|IabIbcIca|

(

i

Iab
+

j

Ibc
+

k

Ica
+ ǫ̃ + l

)2

(53)

• ǫ̃ parametrizes relative positions of branes (open string moduli).

Yijk ∝ ϑ





δ

φ



 (t) =
∑

l∈Z

q
1
2 (δ+l)2 e2πi(δ+l)φ, q = e−2πt. (54)

δ =
i

Iab
+

j

Ibc
+

k

Ica
+ ǫ̃ (55)

φ = 0, (56)

t =
A

α′
|IabIbcIca|.

where θ is the standard Jacobi theta function with characteristics..
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• This is easily generalized to include complex Kahler moduli Ja, a = 1, 2, 3,

Wilson lines θa
i on the D6-branes and the full T 2 × T 2 × T 2 .

Yijk = hqu · hcl = hqu

n
∏

r=1

ϑ





δ(r)

φ(r)



 (0, κ(r)) (57)

hqu is flavor-independent a. Here the ϑ-function parameters are given by

δ(r) =
i(r)

I
(r)
ab

+
j(r)

I
(r)
ca

+
k(r)

I
(r)
bc

+
I
(r)
ab ǫ

(r)
c + I

(r)
ca ǫ

(r)
b + I

(r)
bc ǫ

(r)
a

I
(r)
ab I

(r)
bc I

(r)
ca

,(58)

φ(r) = I
(r)
ab θ

(r)
c + I(r)

ca θ
(r)
b + I

(r)
bc θ

(r)
a , (59)

κ(r) = |I
(r)
ab I

(r)
bc I

(r)
ca | J

(r) (60)

aCvetic,Papadimitriou;Abel,Owen (2003);Lust, Mayr,Richter,Stieberger (2004)
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Application to the MSSM-like model

ε (3)

i = 0 i = − 1 i = 1

1/3 2/3

j = − 1 j = 1

2/31/3

ε

j = 0

(3)~

D6−brane c

(2)ε

D6−brane a

D6−brane b D6−brane c*

O6−plane

1/3

00

0

1/6

j* = − 1 j* = 1

rbc

j* = 0

WY uk = Y U
ij Q

i
LHuU

j
R + Y D

ij∗Q
i
LHdD

j∗
R (61)
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• with Yukawa matrices

Yij
U ∼ ϑ





i
3 + ǫ(2)

θ(2)





(

3J(2)

α′

)

× ϑ





j
3 + ǫ(3) + ǫ̃(3)

θ(3) + θ̃(3)





(

3J(3)

α′

)

,

Yij∗
D ∼ ϑ





i
3 + ǫ(2)

θ(2)





(

3J(2)

α′

)

× ϑ





j∗
3 + ǫ(3) − ǫ̃(3)

θ(3) − θ̃(3)





(

3J(3)

α′

)

.

(62)

Then, the Yukawa matrices can be expressed as (A,B, B̃ diagonal matrices

bilinear in θ-functions)

Y U ∼ A ·









1 1 1

1 1 1

1 1 1









·B, Y D ∼ A ·









1 1 1

1 1 1

1 1 1









· B̃. (63)

• In this model only the third generation becomes massive. One can obtain:
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ht

hb
∼

√

Tr (B · B̄)

Tr (B̃ · ¯̃B)
≃ e2ImJ(3)

• Thus one can understand the smallness of hb in geometric terms.

• This structure could be a good starting point. The masslessness of other

generations is due to factorization of family dependence. E.g, slight departure

from factorization would lead to smaller but non-vanishing masses for rest of

families.

• Notice the presence of complex phases (origin of SM CP-violation) are

phases from Kahler moduli and Wilson lines.
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Yukawa couplings: the IIB mirror

• The computation of Yukawa couplings in the Type IIB mirror is quite different a. Consider the case

of magnetizedD9-branes. One has to do a KK-reduction and compute the massles spectrum

from the zero modes of Dirac and K-G equations in extra dimensions.

• The initial gauge group may be e.g. U(n) ( or e.g. SO(32), it will not be crucial for our

purposses), in D=10.

L = − 1
4
Tr

{

FMNFMN

}

+ i
2
Tr

{

Ψ̄ΓMDMΨ
}

• We then compactify the theory down toD = 4. TheD = 10 fields can then be expanded:

Ψ(w) =
∑

n

χn(x) ⊗ ψn(y)

Ai(w) =
∑

n

ϕn i(x) ⊗ φn i(y)

aD. Cremades,L.E.I., F. Marchesano hep-th/0404229.
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• Here xµ, µ = 0, .., 3 and ym,m = 4, .., 9 . The internal wave functions

verify:

i D̃/6 ψab
n = mnψ

ab
n , mn = 0

∆6 φ
ab
n = M2

nφ
ab
n , smallestM2

n

• The initial gauge group U(n) is broken to U(pa)× U(pb)× ... by adding

constant fluxes Fa, Fb etc...

F =











Fa

Fb

. . .











, ⇒ A =











Aa

Ab

. . .











,
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• The D = 10 gaugino field has nowD = 4 zero modes including gauginos

and chiral fermions in bifundamentals:

Ψ =





A B

C D



 =













D = 4 U(pa)

gaugino

D = 4 bif.(pa, p̄b)

chiral fermion

CPT conj.
D = 4 U(pb)

gaugino













Dirac eq.







D/ Ψ = 0,

D = ∂ − iA

• In generalD/Ψ = 0 has several independent chiral fermion solutions→

family replication.
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• From the D = 10 kinetic +gauge vertex term:

Tr
{

Ψ̄ΓMDMΨ
}

−→ A ·Ψ ·Ψ coupling

KK reduction: ↓

YIJK =
g

2

∫

X6

ψα†
I Γi ψβ

Jφ
γ
K i fαβγ (64)

CY

Q H Q
L R

     Yukawa =



L.E. Ibáñez; D-BRANE MODEL BUILDING, PART II, July 2008, PITP School, IAS Princeton 48'

&

$

%

• The Yukawa coupling constant are thus obtained as overlap integrals of the

three wave functions in the extra six dimensions.

• One can explicitely compute the wave-functions ψβ
J and φγ

K i for the case of

T 2n compactifications with magnetic fluxes. They turn out to be proportional

to Jacobi theta functions depending on compact corrdinates.

• The results should be equivalent to the results found for intersectingD6

branes after the appropriate replacements.
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Matching with intersecting D6-branes

T T2 2

Intersecting Branes Magnetized torus

y

x

y

x

T−duality   over y coordinate

• With T-dualities along three y-directions we go from intersecting D6-branes to

Type I string theory (IIB orientifold under Ω with D9-branes).
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• Yukawa couplings in intersecting D6-brane models may be rewritten

Y int
ijk = hqu

n
∏

r=1

eH
(r)

int
/2ϑ

[

δ
(r)
ijk

0

]

(

ν(r), J(r)(I
(r)
ab I

(r)
bc I

(r)
ca )

)

(65)

HereHint is a known function of the open string moduli ν(r) (brane locations ǫi and W.L.) ,

J(r) are the Kahler moduli of the 3-tori.

• Yukawa couplings in magnetized T-dual obtained upon explicit integration:

Yijk =
g10

2

3
∏

r=1

(

2Im τ (r)

(A(r)

)1/4 ∣

∣

∣

∣

µ
(r)
ab
µ

(r)
ca

µ
(r)
bc

∣

∣

∣

∣

1/4

eH
(r)
magn/2× (66)

× ϑ

[

δ
(r)
ijk

0

]

(

ζ(r), τ (r)|I
(r)
ab
I
(r)
bc
I
(r)
ca |

)

(67)

where µab = θab/α
′, ζ(r) are open string moduli (actually W.L.), A(r) are the areas of the 3

tori, and τ (r) are the complex structure of the tori.
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• One can check that both expressions agree in the large volume (small angle) limits as long as:

hqu = g10α
′−3/4

3
∏

r=1

∣

∣

∣

∣

µ
(r)
ab
µ

(r)
ca

µ
(r)
bc

∣

∣

∣

∣

1/4

= eφ10/2

∣

∣

∣

∣

θ
(r)
ab
θ
(r)
ca

θ
(r)
bc

∣

∣

∣

∣

1/4

• This agrees with the string computation of hqu
a for small angle :

hqu = eφ10/2

3
∏

r=1

[

Γ(1 − θ
(r)
ab )Γ(1 − θ

(r)
ca )Γ(θ

(r)
ab + θ

(r)
ca )

Γ(θ
(r)
ab

)Γ(θ
(r)
ca )Γ(1 − θab

(r) − θ
(r)
ca )

]1/4

(68)

−→ eφ10/2

3
∏

r=1

[

θ
(r)
ab
θ
(r)
ca

θ
(r)
bc

]1/4

(69)

aCvetic,Papadimitriou;Abel,Owen (2003);Lust, Mayr,Richter,Stieberger (2004)
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• In N = 1 supergravity the normalized Yukawa couplings are obtained from

the Kahler metrics Kmn of the bifundamentals and from the

SUPERPOTENTIAL Wijk:

Yijk = (KabKbcKca)
−1/2

eK/2Wijk

• Matching is obtained if:

Wijk =
3

∏

r=1

ϑ





δ
(r)
ijk

0





(

ζ(r), τ (r)|I
(r)
ab I

(r)
bc I

(r)
ca |

)

(KabKbcKca)−1/2 eK/2 =
g10
2

3
∏

r=1

(

2Im τ (r)

A(r)

)1/4
∣

∣

∣

∣

∣

µ
(r)
ab µ

(r)
ca

µ
(r)
bc

∣

∣

∣

∣

∣

1/4

eH(r)
mag/2

• This agrees with the computation of toroidal Kahler potential and metrics

previously discussed.
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• Note that Type IIA computation of Yukawa couplings requires a stringy

computation summing worldsheet instanton contributions.

• Type IIB computation just requires a purely field-theoretical Kaluza-Klein

reduction. No string computation involved.

• It is a nice check of Mirror Symmetry that both computations nicely match.
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V- BRANES AT SINGULARITIES

D3

Compact Bulk

Singularity

.
.

..

• G. Aldazabal, L. E. Ibáñez, F. Quevedo and A. M. Uranga, “D-branes at singularities: A bottom-up

approach to the string embedding of the standard model,” JHEP 0008, 002 (2000)

[arXiv:hep-th/0005067].

• D. Malyshev, H. Verlinde, ’D-branes at Singularities and String Phenomenology’,

hep-th/0711.2451.

• H. Verlinde and M. Wijnholt, “Building the standard model on a D3-brane,” JHEP 0701 (2007) 106

[arXiv:hep-th/0508089]

• D. Berenstein, V. Jejjala and R. G. Leigh, “The standard model on a D-brane,” Phys. Rev. Lett. 88

(2002) 071602 [arXiv:hep-ph/0105042].
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Bottom-up embedding of the SM in string theory

• Top-down approach to the embedding of the SM. Start with e.g a large gauge

group (e.g. E8 ×E8) in D = 10 and break down the symmetry untill we

find the SM.

• Bottom-up approach:

– Look for local configurations of Dp-branes resembling as much as possible

the SM.

– This local configuration will in general be part of a global compact model.

(Most likely myriads of CY may contain such local configuration).

– Most relevant phenomenological properties depend only in the local

configuration

• Most local branes filling Minkowski space: Stacks of D3-branes at

singularities in the CY (required for chirality).
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D3-branes at a ZN singularity

• Complex coordinate X rotated by a discrete α = ei2π/N

α

C/Z
N

C

X’ = X 

α = exp(i2 π/N)

= fixed point under α

• There is a fixed singular point at origin. A ZN orbifold singularity



L.E. Ibáñez; D-BRANE MODEL BUILDING, PART II, July 2008, PITP School, IAS Princeton 57'

&

$

%

• Consider the local complex coordinates x1, x2, x3 in the CY. Consider the

ZN twist generated by θ:

θ (x1, x2, x3)→ (αl1x1, α
l2x2, α

l3x3) (70)

with θN = 1, la ∈ Z. One has N = 1 SUSY for l1 + l2 + l3 = 0 mod N .

• Consider M D3-branes located on top of singularity. The open string

spectrum must be invariant under θ and a simultaneous action on the CP

factor degrees of freedom:

γθ,3 = diag (In0 , e
2πi/N In1 , . . . , e

2πi(N−1)/N InN−1) (71)

where Ini
is the ni × ni unit matrix, and

∑

i ni = M .
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• The projection for massless states:

Gauge bosons:

λψµ
−1/2|0 > −→ λ = γθ,3λγ

−1
θ,3 (72)

• Then the gauge symmetry is broken to (at most) N factors:

U(M) −→ U(n0)× U(n1)× ...× U(nN−1) (73)

Chiral multiplets:

λψr
−1/2|0 > −→ λ = ei2πlr/Nγθ,3λγ

−1
θ,3 , r = 1, 2, 3 (74)

Then there are chiral matter in bifundamentals:

∑

lr

N−1
∑

i=0

(ni, n̄i+lr) (75)
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0 1 N−1

ZN
D3

U(M) U(n  ) x U(n  ) x . . . x U(n  )
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Searching for a 3 generation SM

• We can start with D3 branes at a ZN singularity with twist

v = 1/N(l1, l2, l3)

U(3)× U(2)× U(n2)× ....× U(nN−1) (76)

and then quarks would come from

∑

r

(n0, n̄0+lr) (77)

• Note that there are at most 3 left-handed quarks, and 3 generations are

obtained for l1 = l2 = l3 = 1 which corresponds to the Z3 orbifold in the

SUSY case.

• Thus only for Z3 3 generations appear(also for non-Abelian discrte groups

containing Z3).
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The SM from D3-branes at a Z3 singularity

• At Z3 we have gauge group U(n0)× U(n1)× U(n2) . Only 3 gauge

factor possible . We want n0 = 3, n1 = 2, n2 = 1 so we have CP matrix:

γθ,3 = diag (I3, e
2πi/3I2, e

4πi/3I1) (78)

• This leads to gauge group and particle content:

3[(3,2,1)+(1,2,1)+(3*,1,1)]

U(3) U(2) U(1)

g w b

QL

uR

Hu

D3
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The SM Z3 QUIVER

• Gauge group, chiral content and Yukawa couplings of D3-branes at

singularities may be expressed in terms of graphs called Quivers.

U(3) U(2)

U(1)

Q

U H

L

R u

• ZN quivers have N nodes representing gauge groups and bifundamental

chiral fields are represented by the links. Closed triangles correspond to

Yukawa couplings.

• More complicated singularities also admit a quiver rep. (ask Herman).

• But in this example the chiral spectrum is anomalous!.
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Local RR twisted tadpole cancellation

• Overall RR charge from the 4-form should vanish:

Tr γθ,3 = 0 (79)

For our case with γθ,3 = diag (I3, αI2, α
2I1) one has:

Tr γθ,3 = 3 + 2α + α2 6= 0 (80)

• Need to new source of RR charge: D7-branes. They should wrap the CY and

pass through the D3-branes. RR tadpole conditions modified. For general

ZN singularities:

[
3

∏

r=1

2 sin(πklr/N) ] Tr γθk,3 +
3

∑

r=1

2 sin(πklr/N) Tr γθk,7r
= 0 (81)
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• There is one condition for each of the N − 1 twisted sectors. This is because

there are N − 1 RR twisted charges.

• One can show that these conditions guarantee cancellation of non-Abelian

anomalies .

• Here the D7r are transverse to the local xr complex coordinate. Since they

are (before compactification) infinitely extended, D7-branes give rise only to

global symetries. (Large wrapped volume corresponds to g7 = 0).
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D7

D7

D7

X

X2

X3

X1

SM

2

1

3

• D7r sector. With CP twist matrix (for e.g. r = 3)

γθ,73 = diag ( Iu0 , e
2πi/N Iu1 , . . . , e

2πi(N−1)/NIuN−1) (82)

one has (global) D7 symmetry: U(u0)× ...× U(uN−1) and matter fields:

• D3−D73 chiral multiplets. (Fermions λ|s3,−1/2 >)
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λ373 = eiπl3/Nγθ,3λγ
−1
θ,73
→

N−1
∑

i=0

(ni, ūi+l3) (83)

• D73 −D3 chiral multiplets.

λ733 = eiπl3/Nγθ,73λγ
−1
θ,3 →

N−1
∑

i=0

(ui, n̄i+l3) (84)

• These new multiplets precisely cancel the non-Abelian gauge anomalies from

the D3-brane sector.

2

3

CY

SM

D7
D7

D7

1

• In the case of Z3 one has
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3Tr γθ,3 +
3

∑

r=1

Tr γθ,7r
= 0 (85)

• Then adding 3 sets of D7r branes each transverse to the xr plane and with

CP twist matrices ( u0 = 0, u1 = 1, u2 = 2)

γr
θ,7 = diag (ei2π/3, e4πi/3I2) (86)

one gets (here α = exp(i2π/3))

∑

r

Trγθ,7 + 3Trγθ,3 = 3(α+2α2) + 3(3+2α+α2) = 0 (87)

and tadpoles cancel. There is a (U(1)× U(2))3 global symmetry.
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LQ
R

WL

g

2D3

3D3

SM

B

ER

1D3

U

L, Hd

DR

D71

D73

D72

D7i

Hu
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U(1) anomalies

• In a ZN singularity there are up to N U(1) factors:

ZN : U(M) → U(n0)× U(n1)× ...× U(nN−1) (88)

• Most U(1)’s have triangle anomalies which are cancelled by a generalized

GS mechanism, analogous to the one we discussed already.

• There is an important difference though: the scalars involved in the

cancellation are the N − 1 twisted RR fields in the singularity.

U(1) U(1)

G

G

G

G

j

j

j

j

i i

M
k

+

Twisted RR scalars
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• The general expression for the mixed U(1)−G2 anomaly may be written

G

G

U(1)

M
k

Ajl =
−i

2N

N−1
∑

k=0

(nje
i2π kj

N )×(Π3
r=12sin(kπlr/N))×(ei2π −kl

N ) (89)

• One can consider a a general combination of U(1)’s

Q =
N−1
∑

j=0

cj
Qnj

nj
(90)

(we take cj = 0 if nj = 0).
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• Then one can check that weighted diagonal generator with all cj equal

Qdiag =
N−1
∑

j=0

Qnj

nj
(91)

is always anomaly free and massless. However it must be nj 6= 0 for all j.

• This is generic. For some particular types of twists other anomaly-free U(1)’s

may appear.
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Hypercharge

• In our case we have three U(1)’s from U(3)× U(2)× U(1) and we have

there is only one anomaly free U(1): hypercharge

Y = Qdiag = − (
Q3

3
+

Q2

2
+ Q1) (92)

• It automatically gives the correct asignements of hypercharge for SM particles

• Massless chiral spectrum:
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Matter fields Q3 Q2 Q1 Qur
1

Qur
2

Y

33 sector

3(3, 2) 1 -1 0 0 0 1/6

3(3̄, 1) -1 0 1 0 0 -2/3

3(1, 2) 0 1 -1 0 0 1/2

37r sector

(3, 1) 1 0 0 -1 0 -1/3

(3̄, 1; 2′) -1 0 0 0 1 1/3

(1, 2; 2′) 0 1 0 0 -1 -1/2

(1, 1; 1′) 0 0 -1 1 0 1

7r7r sector

3(1; 2)′ 0 0 0 1 -1 0

Table 1: Spectrum of SU(3) × SU(2) × U(1) model. We present the quantum numbers under

the U(1)9 groups. The first three U(1)’s come from the D3-brane sector. The next two come from

the D7r -brane sectors, written as a single column (Aldazabal et al. hep-th/0005067).
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sin
2
θW from D3-branes at ZN singularities

• For a general embedding of SM in U(3)× U(2)× U(1)N−2 the

hypercharge is given by

− Y = Qdiag = (
Q3

3
+

Q2

2
+

N−1
∑

i=2

Qi) (93)

• k1 = relative normalization of Y compared to non-Abelian generators:

k1 = 2
N−1
∑

j=1

1

nj
= 2(

1

3
+

1

2
+N − 2) =

5

3
+ 2(N − 2) (94)

and then for ZN singularities one has

sin2θW =
1

1 + k1
=

3

6N − 4
(95)
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• Thus for the Z3 singularityone has at the string scale sin2θW = 3/14.

• In the SM construction one has at low energies (after one turns on vevs for

(1, 2′) 7r − 7r ) the MSSM content with 3 sets of Higgs multiplets. Doing

the running one finds no gauge coupling unification for sin2θW = 3/14.

• Blowing up the singularity, i.e. < Mk > 6= 0 may correct for this since the

gauge kinetic functions for D3’s are given by:

fa = S +
∑

k

dkMk (96)

where Mk are the twisted moduli at the singularity and dk computable

coefficients. (The shift of the Mk operates in GS mechanism)

• In fact gauge coupling unification nicely occurrs in a left-right symmetric

version of the model.
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A left-right symmetric Z3 model

• We can construct a model with gauge group U(3)× U(2)L × U(2)R by

taking sevenD3 branes with CP twist matrix:

γθ,3 = diag (I3, e
2πi/3I2, e

4πi/3I2) (97)

• The set of D7r-branes required is quite simple. It is just 3 sets of 2 D7r

branes with twist matrix

γθ,7r = diag (e2πi/3, e4πi/3), (98)

tadpoles cancel

∑

r

Trγθ,7 + 3Trγθ,3 = 3(α+α2) + 3(3+2α+2α2) = 0 (99)

• This leads to gauge group and particle content:
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L

WL

g

2D3

3D3

D71

D73

D72

D7i

2D3

WR

QL

H

QR

R
D7i

LR
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Matter fields Q3 QL QR QUi
1

QUi
2

B − L

33 sector

3(3, 2, 1) 1 -1 0 0 0 1/3

3(3̄, 1, 2) -1 0 1 0 0 -1/3

3(1, 2, 2) 0 1 -1 0 0 0

37r sector

(3, 1, 1) 1 0 0 -1 0 -2/3

(3̄, 1, 1) -1 0 0 0 1 2/3

(1, 2, 1) 0 1 0 0 -1 -1

(1, 1, 2) 0 0 -1 1 0 1

7r7r sector

3(1)′ 0 0 0 1 -1 0

Table 2: Spectrum of SU(3) × SU(2)L × SU(2)R model. We present the quantum numbers

under the U(1)9 groups. The first three U(1)’s arise from the D3-brane sector. The next two come

from the D7r-brane sectors (Aldazabal et al. hep-th/0001083; hep-th/0005067).
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• The extra triplets from (7r − 3) + (3− 7r) sectors are generically massive.

Thus the low energy content is a minimal LR model with 3 EW Higgs sets.

(This is another example of the necessity of 3 Higgs sets to cancel U(2)

anomalies!).

• There are 2 anomalous U(1)’s which disappear from the low energy

spectrum and one massless anomaly free U(1)B−L:

QB−L = − 2(
Q3

3
+

QL

2
+

QR

2
) (100)

• Recall: Y = −T 3
R + 1

2QB−L and kB−L = 32/3. One then finds that for

MWR
≃ 1 TeV couplings nicely unify at 1012 GeV.



L.E. Ibáñez; D-BRANE MODEL BUILDING, PART II, July 2008, PITP School, IAS Princeton 80'

&

$

%

U(1)
B−L

SU(2)
L

SU(2)R

SU(3)

10
12 GeVM

string
=

• The breaking SU(2)R × U(1)B−L → U(1)Y may be achieved if three

extra D7-branes added leading to chiral fields transforming like
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(3, 1, 1) + (1, 2, 1) + (1, 1, 2) + h.c, ) which do not modify the running at

one loop.

• There are two regions for the running MR < Q < Mstring with Left-Right

gauge group and MZ < Q < MR with SM content.

sin2 θW (MZ) =
3

14

(

1 +
11αe(MZ)

6π

[(

BL −
3

11
B′

1

)

log

(

Ms

MR

)

+

(

b2 −
3

11
b1

)

log

(

MR

MZ

) ])

(101)

1
αe(MZ)

− 14
3α3(MZ)

=
1

2π

[(

b1 + b2 −
14

3
b3

)

log

(

MR

MZ

)

+

(

B′

1 + BL −
14

3
B3

)

log

(

Ms

MR

) ]

(102)

where one has

B′

1 = BR +
1

4
BB−L ; B3 = −3, BL = BR = +3 , BB−L = 16 (103)
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• With MR = 1 TeV one finds

sin2W (MZ) = 0.231 ; Mstrings = 9× 1011 GeV (104)

• A right-handedWR gauge boson with MR = 1 TeV would be accesible at

LHC. It could be the signal of string unification at an intermediate scale

Mstring = 1012 GeV.

• If Mstring = 1012 GeV and SUSY breaking scale is also of that order then

one expects SUSY breaking soft terms of order

msoft =
M2

string

MPlanck
≃ 10TeV (105)

which is of the required order of magnitude.
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• Concerning Yukawa couplings, They are either of order 1 or zero. There are

quark Yukawa couplings ǫijkQ
i
LQ

j
RH

k from (33)3 couplings.

• Lepton Yukawa couplings LiRjHk are perturbatively forbidden by

(anomalous U(1)) gauge symmetries but may be induced by string instanton

effects.

• Masses for right handed neutrinos may arise from non-renormalizable

couplings involving the fields doing the SU(2)R × U(1)B−L → U(1)Y

breaking. (In any event those masses should be < 1 TeV).

• This minimal L-R configuration can be embedded in a compact scheme like

F-theory. By the way....



L.E. Ibáñez; D-BRANE MODEL BUILDING, PART II, July 2008, PITP School, IAS Princeton 84'

&

$

%

Some comments about F-theory

• F-theory may be considered as a non-perturbative version of Type IIB

orientifolds.

• Type IIB string theory in D = 10 has a non-perturbative SL(2,Z) S-duality

symmetry under which τ = 1
gs

+ iC0 transforms. The idea is to identify

locally this τ with the complex structure of a 2-torus living in extra 11-th and

12-th dimensions.

• Thus F-theory gives a geometric description of the S-duality symmetry in

compactifications of Type IIB theory.

• One considers compactifications of this 12-dimensional theory on a CY

complex 4-fold X4 down to D = 4.

• The CY 4-fold must be elliptically fibered over a complex 3-dimensional CY

B3, meaning that locally one can write
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X4 ≃ T 2 ×B3 ≃ K3× S (106)

with the complex structure modulus of the T 2 identified with τ .

• These are clearly non-perturbative vacua since e.g. the SL(2,Z) symmetry

includes transformations under which gs → 1/gs.

P1

B

T
2

2

3

3
X = T x B

4

S

7−brane wrap S

Other 7−brane intersec S

• The theory contains F-theory (p, q) 7-branes which wrap the complex 2-fold

S. Inside the 3-fold B3 these 7-branes correspond to complex codimension 1
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singularities. Depending on the canonical ADE classification of the

singularities the gauge groups are SU(n+ 1), SO(2n) and E6, E7, E8.

• Thus the gauge group in F-theoretical 7-branes goes beyond what one can

get in perturbative Type IIB orientifold D7-branes in which only SU(n+ 1)

and SO(2n) gauge groups may be obtained.

• Furthermore in F-theory the matter content in models with SO(2n) gauge

symmetry may include spinorial representations which are not present in

perturbative IIB orientifold compactifications.

• The D = 4 chiral matter fields in F-theory have the same qualitative origin as

in perturbative IIB orientifolds.

• In general addition of magnetic fluxes on 7-branes is required to get chirality.

• There are 3 general classes of chiral matter fields from 7-branes, analogous

to the ones in IIB orientifolds,A, φ , I . Fields I live at intersections of two

7-branes in a complex curve Σ inside S.
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• Recently Beasley, Heckmann and Vafa have constructed LOCAL F-theory

models with a GUT gauge group and S = dPn surfaces. Gauge group

broken to SM through U(1) magnetic fluxes on S.

• They are local brane models which are consistent with gauge coupling

unification.

• Many qualitative features of magnetized IIB D3/D7 orientifolds apply to the

F-theory effective action. (E.g. the structure of SUSY breaking soft terms to

be discussed later).


