
Derek C. Richardson
University of Maryland

With:
Patrick Michel (Obs. Côte d’Azur)
Randall Perrine (UMd)
Stephen Schwartz (UMd)
Kevin Walsh (Obs. Côte d’Azur)

 CollisionAL systems
◦ With real collisions!

  Simulating sphere-sphere collisions
◦ Methods and complications.

  Simulating (non-spherical) rigid bodies
◦ Methods and applications.

 New directions
◦  Cohesion, granular dynamics, etc.

REVIEW: Richardson et al. 2009, P&SS 57, 183

 Here we are concerned not only with
close gravitational encounters, but also
physical collisions: |ri – rj| = si + sj.

  In astrophysics, usually restricted to
planetary dynamics:
◦  Planet formation (planetesimal accretion).
◦  Planetary rings.
◦ Granular dynamics.

 Planetesimal accretion
◦ Gravity + collisions involving rigid particles or

groups of rigid particles with some dissipation
law and possible fragmentation, etc.

Leinhardt et al. 2000, Icarus 146, 133

 Planetary rings
◦ Gravity + collisions in tidal field of a planet,

with dissipation and possible sticking and/or
fragmentation.

Ring patch with
embedded moonlet

Tiscareno et al. 2006,
Nature 440, 648

 Granular dynamics
◦ Collisions in uniform gravity field, usually with

bouncing only, but possibly with sticky “walls.”
◦ Applications: regolith motion, sample return.

 Granular dynamics
◦ Collisions in uniform gravity field, usually with

bouncing only, but possibly with sticky “walls.”
◦ Applications: regolith motion, sample return.

Itokawa
540 × 250 m

Image courtesy JAXA/ISIS

Cassini Equinox Mission Daphnis casting a shadow

Cassini Equinox Mission Daphnis casting a shadow (movie)

 ADVANTAGES:
1.  No singularities.
  Particles touch before |r| 0. No softening!

2.  Minimum (gravitational) timestep bounded.
  h = η/(Gρ)1/2, ρ = maximum density, η ~ 0.03.

 CHALLENGE:
◦ Need to predict when collisions occur (or

deal with them after the fact), therefore need
efficient neighbor-finding algorithm.

  Same as for point particles:

 Can use any standard ordinary differential
equation integrator (see Scott’s talk!).

 Turns out 2nd-order leapfrog is
particularly advantageous.

r̈i = −
∑

j !=i

Gmj(ri − rj)
|ri − rj |3

 Kick-drift-kick (KDK) scheme:

 Notice the drift is linear in the velocities
—exploit this to search for collisions.

r = r2 – r1
v = v2 – v1

Collision condition at time t:

Solve for t (take smallest positive root):

 To check all particle pairs for possible
collision carries the same penalty as
direct force summation: O(N2).

  Instead, take advantage of the hierarchical
nature of a tree code to reduce the
neighbor search to ~O(Ns log N), where
Ns = number of neighbors to find.
◦ Collision search then becomes an SPH-like

“smoothing” operation.

  First developed at U Washington, this is a
parallel, hierarchical gravity solver for
problems ranging from cosmology to
planetary science.

  “Parallel k-D Gravity code” = pkdgrav.
 Gasoline is pkdgrav with SPH enabled.
 Not released into the public domain (yet).
  If you’re interested in using it, see me!

k-D Tree Spatial Binary Tree with Squeeze

 Construct particle-particle and particle-cell
interaction lists from top down for particles
one bucket at a time.

 Define opening ball (based on critical opening
angle θ) to test for cell-bucket intersection.
◦  If bucket outside ball, apply multipole (c-list).
◦ Otherwise open cell and test its children, etc.,

until leaves reached (which go on p-list).

 Nearby buckets have similar lists: amortize.

(bucket)

 Multipole expansion order.
◦ Use hexadecapole (best bang for buck).

  Force softening (for cosmology).
◦ Use spline-softened gravity kernel.

 Periodic boundary conditions.
◦  Ewald summation technique available.

 Time steps.
◦ Multistepping available (adaptive leapfrog).

 Master layer (serial).
◦ Controls overall flow of program.

 Processor Set Tree (PST) layer (parallel).
◦ Assigns tasks to processors.

 Parallel k-D (PKD) layer (serial).
◦ MIMD execution of tasks on each processor.

 Machine-dependent Layer (MDL, separate
set of functions).
◦  Interface to parallel primitives.

 How many neighbors to search?
◦ Close-packed equal-size spheres have a

maximum of 12 touching neighbors.
◦  For less-packed situations, only concern is a

more distant fast-moving particle.
◦ Typically use Ns ~ 16–32, with h small enough

to ensure no surprises.
◦ Can also search for all neighbors within a

fixed ball radius (e.g. R ~ vh), but can end up
with many more neighbors to check.

s1

s2

M = m1 + m2, µ = m1m2/M, u = v + σ, n = r/r, un =
(un)n, ut = u – un, s1 = s1n, s2 = -s2n, σi = ωi × si,
σ = σ2 – σ1,β= 2/7 for spheres, and Ii = (2/5) mi R2.

Post-collision velocities and spins:

where:
⌃

⌃ ⌃ ⌃ ⌃

Dan Durda

 Each processor checks its particles for
next collision during current drift interval
(could involve off-processor particle).

 Master determines which collision goes
next and allows it to be carried out.

 Check whether any future collision
circumstances changed.

 Repeat until all collisions occurring within
this drift step resolved.

 The “restitution” model of billiard-ball
collisions is only an approximation of
what really happens.

 Collisions are treated as instantaneous
(no flexing) and single-point contact.

 This leads to problems:
◦  Inelastic collapse.
◦ Missed collisions due to round-off error.

 A rigid ball bouncing on a rigid flat surface
must come to rest, but in the restitution
model this requires an infinite number of
increasingly smaller bounces to occur in a
finite time (Zeno’s paradox!).

Could also occur
between 2 self-
gravitating
spheres in free
space.

 How to fix it?
◦  Impose minimum impact speed vmin below

which εn 1 (no dissipation).
◦ Choose vmin so that this “vibration energy” is

small compared to energy regimes of interest.
  Petit & Hénon 1987a “sliding phase.”

◦ OR, force particles/surfaces to come to rest
with one another—but this causes other
complications, especially with self-gravity.
  Requires introducing surface normal forces.

 Can occur in other circumstances, even
without gravity, e.g.

  It can be shown that as N ∞, εn,crit 1!
 Problem occurs in 2- & 3-D as well.
 How to fix it?
◦  If distance travelled since last collision small

(factor fcrit) compared to the particle radius,
set εn = 1 for next collision (typically fcrit
~10-6–10-3).
◦ Other strategy (not implemented): store

some fraction of impact energy as internal
vibration to be released stochastically.

 Despite precautions, if there are many
collisions between many particles in a
timestep, round-off error can cause a
collision to be missed.

  In this case, some particles may be
overlapping at start of next step.
◦ Minimize by good choices of h, vmin, and fcrit.
◦  But sometimes that’s not enough…

 Overlap handling strategies:
◦ Abort with error (default).
◦ Trace particles back in time until touching.
◦  Push particles directly away until touching.
◦ Merge particles (if merging enabled).
◦ Apply repulsive force.

  For single particles, trace-back is best.
For rigid bodies, repulsive force is best.

  Spheres are a special (easy, ideal) case.
 Perfect spheres are rarely encountered in

nature, and may give misleading results
when used to model granular flow,
aggregation in planetary rings, etc.

  Simplest generalization: allow spheres to
stick together in more complex shapes
(“bonded aggregates”). Advantages:
◦ Can still use tree code for gravity & collisions.
◦ Collisions are still sphere point-contact.

 Use pseudo-particles to represent
aggregate center of mass, including inertia
tensor, rotation state, and orientation.

 Constituent particles constrained to
move with and around center of mass—
KDK only applied to pseudo-particle.

 Torques and collisions alter aggregate
motion (translation + rotation).

where Ii, ωi are principal moments and body spin
components, respectively, and N is the external torque
expressed in the body frame.

 Previous equations represent a set of
coupled ODEs that evolve the spin axis in
the body frame. Need 3 more vector
equations to evolve body orientation:

where pi are the
principal axes of
the body.

⌃

 The moments of inertia (eigenvalues) and
principal axes (eigenvectors) are found by
diagonalizing the inertia tensor—only
need to do this when particles added to/
removed from aggregate.

  Solve this set of 12 coupled ODEs any
way you like (up to next collision, or end
of drift). I use a fifth-order adaptive
Runge-Kutta (for strongly interactive
systems, dissipation not a concern).

  Inertia tensor:

 with and
 Torques:

 where the sum is over all particles in
aggregate a and

Ii =
2
5
miR

2
i 1

Iagg =
∑

i

[
Ii + mi(ρ2

i 1− ρiρi)
]

ρi = ri − ra

 Collision resolution complicated because
impacts generally off-axis (non-central).

  Solutions do not permit surface friction.
◦ However, off-axis collisions cause impulsive

torques, allowing transfer of translational
motion to rotation, and vice versa.

 Collision prediction also more
complicated, due to body rotation.

See Richardson et al. 2009
for definitions of terms!

 Posted on the PiTP wiki.
 Basic idea: smash stuff up!

 Loose assemblages of coherent pieces
held together mostly by gravity.

 May have some cohesion between pieces
(tensile strength).

 NOTE: under compression, a gravitational
aggregate has shear strength.

 A rubble pile is a special case of a jumbled
body with no cohesion.

 Lightcurve and radar data show some
very small solar system bodies must have
tensile strength/cohesion.

 Upper limits from comets SL9 & Tempel 1
~100 Pa. Essentially no data for asteroids.

 How to model this?
 What is the effect?

 Add simple Hooke’s law restoring force
between nearby particles.

 Deform elastically up to maximum strain
(spring rigidity set by Young’s modulus).

 Particles act as tracers of a continuum
solid.

These are NOT bonded aggregates!

Color legend:
green 3 or more springs
yellow 2 springs only
orange 1 spring only
red no springs left

Y = 250 Pa, L = 125 Pa
Spin period P = 0.86 h

Oblate shape α = 0.40

 We are applying these models to
rotational disruption simulations (binary
asteroid formation) and also comparing
with laboratory experiments.

 Next step: allow for individual spring
strengths in order to model pre-existing
weaknesses/fractures, e.g. Weibull
distribution of flaws.

 Asteroid sample return missions are faced
with anticipating the behavior of granular
material in very weak gravity.

 Want to develop simulations of these
regimes, but be able to compare with
physical experiments.

 Approach: provide wall “primitives” that
can be combined to replicate
experimental apparatus.

Naomi Murdoch

 Physical collisions in N-body codes
enabled by neighbor finding and solving
collision equations.

 Rigid body mechanics additionally require
solving Euler equations and more
complex collision prediction and
resolution.

 Many applications, ranging from planet
formation to granular dynamics.

Richardson et al. "Modeling Cohesion in
Gravitational Aggregates" (DPS '08 #55.02)

Mass loss: 0% < 10% > 10% X = initial condition

Richardson et al. "Modeling Cohesion in
Gravitational Aggregates" (DPS '08 #55.02)

Mass loss: 0% < 10% > 10% X = initial condition

Richardson et al. "Modeling Cohesion in
Gravitational Aggregates" (DPS '08 #55.02)

Color legend:
 green no mass loss
 yellow < 10% mass loss
 orange < 50% mass loss
 red < 90% mass loss
 fuchsia ≥ 90% mass loss

Symbol legend:
 × remnant only
 ☐ mass in orbit
 ★ accreting mass

(symbol size proportional to
mass orbiting/accreting)

