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 CollisionAL systems 
◦ With real collisions! 

  Simulating sphere-sphere collisions 
◦ Methods and complications. 

  Simulating (non-spherical) rigid bodies 
◦ Methods and applications. 

 New directions 
◦  Cohesion, granular dynamics, etc. 

REVIEW: Richardson et al. 2009, P&SS 57, 183 



 Here we are concerned not only with 
close gravitational encounters, but also 
physical collisions: |ri – rj| = si + sj. 

  In astrophysics, usually restricted to 
planetary dynamics: 
◦  Planet formation (planetesimal accretion). 
◦  Planetary rings. 
◦ Granular dynamics. 



 Planetesimal accretion 
◦ Gravity + collisions involving rigid particles or 

groups of rigid particles with some dissipation 
law and possible fragmentation, etc. 

Leinhardt et al. 2000, Icarus 146, 133 



 Planetary rings 
◦ Gravity + collisions in tidal field of a planet, 

with dissipation and possible sticking and/or 
fragmentation. 

Ring patch with 
embedded moonlet 

Tiscareno et al. 2006, 
Nature 440, 648 



 Granular dynamics 
◦ Collisions in uniform gravity field, usually with 

bouncing only, but possibly with sticky “walls.” 
◦ Applications: regolith motion, sample return. 
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Cassini Equinox Mission Daphnis casting a shadow 



Cassini Equinox Mission Daphnis casting a shadow (movie) 



 ADVANTAGES: 
1.  No singularities. 
  Particles touch before |r|  0.  No softening! 

2.  Minimum (gravitational) timestep bounded. 
  h = η/(Gρ)1/2, ρ = maximum density, η ~ 0.03. 

 CHALLENGE: 
◦ Need to predict when collisions occur (or 

deal with them after the fact), therefore need 
efficient neighbor-finding algorithm. 



  Same as for point particles: 

 Can use any standard ordinary differential 
equation integrator (see Scott’s talk!). 

 Turns out 2nd-order leapfrog is 
particularly advantageous. 

r̈i = −
∑

j !=i

Gmj(ri − rj)
|ri − rj |3



 Kick-drift-kick (KDK) scheme: 

 Notice the drift is linear in the velocities
—exploit this to search for collisions. 



r = r2 – r1 
v = v2 – v1 

Collision condition at time t: 

Solve for t (take smallest positive root): 



 To check all particle pairs for possible 
collision carries the same penalty as 
direct force summation: O(N2). 

  Instead, take advantage of the hierarchical 
nature of a tree code to reduce the 
neighbor search to ~O(Ns log N), where 
Ns = number of neighbors to find. 
◦ Collision search then becomes an SPH-like 

“smoothing” operation. 



  First developed at U Washington, this is a 
parallel, hierarchical gravity solver for 
problems ranging from cosmology to 
planetary science. 

  “Parallel k-D Gravity code” = pkdgrav. 
 Gasoline is pkdgrav with SPH enabled. 
 Not released into the public domain (yet). 
  If you’re interested in using it, see me! 



k-D Tree Spatial Binary Tree with Squeeze 



 Construct particle-particle and particle-cell 
interaction lists from top down for particles 
one bucket at a time. 

 Define opening ball (based on critical opening 
angle θ) to test for cell-bucket intersection. 
◦  If bucket outside ball, apply multipole (c-list). 
◦ Otherwise open cell and test its children, etc., 

until leaves reached (which go on p-list). 

 Nearby buckets have similar lists: amortize. 



(bucket) 



 Multipole expansion order. 
◦ Use hexadecapole (best bang for buck). 

  Force softening (for cosmology). 
◦ Use spline-softened gravity kernel. 

 Periodic boundary conditions. 
◦  Ewald summation technique available. 

 Time steps. 
◦ Multistepping available (adaptive leapfrog). 



 Master layer (serial). 
◦ Controls overall flow of program. 

 Processor Set Tree (PST) layer (parallel). 
◦ Assigns tasks to processors. 

 Parallel k-D (PKD) layer (serial). 
◦ MIMD execution of tasks on each processor. 

 Machine-dependent Layer (MDL, separate 
set of functions). 
◦  Interface to parallel primitives. 







 How many neighbors to search? 
◦ Close-packed equal-size spheres have a 

maximum of 12 touching neighbors. 
◦  For less-packed situations, only concern is a 

more distant fast-moving particle. 
◦ Typically use Ns ~ 16–32, with h small enough 

to ensure no surprises. 
◦ Can also search for all neighbors within a 

fixed ball radius (e.g. R ~ vh), but can end up 
with many more neighbors to check. 



s1 

s2 

M = m1 + m2, µ = m1m2/M, u = v + σ, n = r/r, un = 
(un)n, ut = u – un, s1 = s1n, s2 = -s2n, σi = ωi × si, 
σ = σ2 – σ1,β= 2/7 for spheres, and Ii = (2/5) mi R2. 

Post-collision velocities and spins: 

where: 
⌃ 

⌃ ⌃ ⌃ ⌃ 



Dan Durda 









 Each processor checks its particles for 
next collision during current drift interval 
(could involve off-processor particle). 

 Master determines which collision goes 
next and allows it to be carried out. 

 Check whether any future collision 
circumstances changed. 

 Repeat until all collisions occurring within 
this drift step resolved. 



 The “restitution” model of billiard-ball 
collisions is only an approximation of 
what really happens. 

 Collisions are treated as instantaneous 
(no flexing) and single-point contact. 

 This leads to problems: 
◦  Inelastic collapse. 
◦ Missed collisions due to round-off error. 



 A rigid ball bouncing on a rigid flat surface 
must come to rest, but in the restitution 
model this requires an infinite number of 
increasingly smaller bounces to occur in a 
finite time (Zeno’s paradox!). 

Could also occur 
between 2 self-
gravitating 
spheres in free 
space. 



 How to fix it? 
◦  Impose minimum impact speed vmin below 

which εn  1 (no dissipation). 
◦ Choose vmin so that this “vibration energy” is 

small compared to energy regimes of interest. 
  Petit & Hénon 1987a “sliding phase.” 

◦ OR, force particles/surfaces to come to rest 
with one another—but this causes other 
complications, especially with self-gravity. 
  Requires introducing surface normal forces. 



 Can occur in other circumstances, even 
without gravity, e.g. 



  It can be shown that as N  ∞, εn,crit  1! 
 Problem occurs in 2- & 3-D as well. 
 How to fix it? 
◦  If distance travelled since last collision small 

(factor fcrit) compared to the particle radius, 
set  εn = 1 for next collision (typically fcrit 
~10-6–10-3). 
◦ Other strategy (not implemented): store 

some fraction of impact energy as internal 
vibration to be released stochastically. 



 Despite precautions, if there are many 
collisions between many particles in a 
timestep, round-off error can cause a 
collision to be missed. 

  In this case, some particles may be 
overlapping at start of next step. 
◦ Minimize by good choices of h, vmin, and fcrit. 
◦  But sometimes that’s not enough… 



 Overlap handling strategies: 
◦ Abort with error (default). 
◦ Trace particles back in time until touching. 
◦  Push particles directly away until touching. 
◦ Merge particles (if merging enabled). 
◦ Apply repulsive force. 

  For single particles, trace-back is best.  
For rigid bodies, repulsive force is best. 



  Spheres are a special (easy, ideal) case. 
 Perfect spheres are rarely encountered in 

nature, and may give misleading results 
when used to model granular flow, 
aggregation in planetary rings, etc. 

  Simplest generalization: allow spheres to 
stick together in more complex shapes 
(“bonded aggregates”).  Advantages: 
◦ Can still use tree code for gravity & collisions. 
◦ Collisions are still sphere point-contact. 



 Use pseudo-particles to represent 
aggregate center of mass, including inertia 
tensor, rotation state, and orientation. 

 Constituent particles constrained to 
move with and around center of mass—
KDK only applied to pseudo-particle. 

 Torques and collisions alter aggregate 
motion (translation + rotation). 





where Ii, ωi are principal moments and body spin 
components, respectively, and N is the external torque 
expressed in the body frame. 



 Previous equations represent a set of 
coupled ODEs that evolve the spin axis in 
the body frame.  Need 3 more vector 
equations to evolve body orientation: 

where pi are the 
principal axes of 
the body. 

⌃ 



 The moments of inertia (eigenvalues) and 
principal axes (eigenvectors) are found by 
diagonalizing the inertia tensor—only 
need to do this when particles added to/
removed from aggregate. 

  Solve this set of 12 coupled ODEs any 
way you like (up to next collision, or end 
of drift).  I use a fifth-order adaptive 
Runge-Kutta (for strongly interactive 
systems, dissipation not a concern). 



  Inertia tensor: 

 with                    and  
 Torques: 

 where the sum is over all particles in 
aggregate a and  

Ii =
2
5
miR

2
i 1

Iagg =
∑

i

[
Ii + mi(ρ2

i 1− ρiρi)
]

ρi = ri − ra



 Collision resolution complicated because 
impacts generally off-axis (non-central). 

  Solutions do not permit surface friction. 
◦ However, off-axis collisions cause impulsive 

torques, allowing transfer of translational 
motion to rotation, and vice versa. 

 Collision prediction also more 
complicated, due to body rotation. 



See Richardson et al. 2009 
for definitions of terms! 









 Posted on the PiTP wiki. 
 Basic idea: smash stuff up! 



 Loose assemblages of coherent pieces 
held together mostly by gravity. 

 May have some cohesion between pieces 
(tensile strength). 

 NOTE: under compression, a gravitational 
aggregate has shear strength. 

 A rubble pile is a special case of a jumbled 
body with no cohesion. 



 Lightcurve and radar data show some 
very small solar system bodies must have 
tensile strength/cohesion. 





 Upper limits from comets SL9 & Tempel 1 
~100 Pa.  Essentially no data for asteroids. 

 How to model this? 
 What is the effect? 



 Add simple Hooke’s law restoring force 
between nearby particles. 

 Deform elastically up to maximum strain 
(spring rigidity set by Young’s modulus). 

 Particles act as tracers of a continuum 
solid. 

These are NOT bonded aggregates! 



Color legend: 
green  3 or more springs 
yellow  2 springs only 
orange  1 spring only 
red   no springs left 

Y = 250 Pa, L = 125 Pa 
Spin period P = 0.86 h 

Oblate shape α = 0.40 













 We are applying these models to 
rotational disruption simulations (binary 
asteroid formation) and also comparing 
with laboratory experiments. 

 Next step: allow for individual spring 
strengths in order to model pre-existing 
weaknesses/fractures, e.g. Weibull 
distribution of flaws. 



 Asteroid sample return missions are faced 
with anticipating the behavior of granular 
material in very weak gravity. 

 Want to develop simulations of these 
regimes, but be able to compare with 
physical experiments. 

 Approach: provide wall “primitives” that 
can be combined to replicate 
experimental apparatus. 







Naomi Murdoch 



 Physical collisions in N-body codes 
enabled by neighbor finding and solving 
collision equations. 

 Rigid body mechanics additionally require 
solving Euler equations and more 
complex collision prediction and 
resolution. 

 Many applications, ranging from planet 
formation to granular dynamics. 





Richardson et al. "Modeling Cohesion in 
Gravitational Aggregates" (DPS '08 #55.02) 

Mass loss: 0% < 10% > 10%      X = initial condition 
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Richardson et al. "Modeling Cohesion in 
Gravitational Aggregates" (DPS '08 #55.02) 

Color legend: 
 green  no mass loss 
 yellow  < 10% mass loss 
 orange  < 50% mass loss 
 red  < 90% mass loss 
 fuchsia  ≥ 90% mass loss 

Symbol legend: 
 ×  remnant only 
 ☐  mass in orbit 
 ★  accreting mass 

(symbol size proportional to 
mass orbiting/accreting) 




