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 CollisionAL systems 
◦ With real collisions! 

  Simulating sphere-sphere collisions 
◦ Methods and complications. 

  Simulating (non-spherical) rigid bodies 
◦ Methods and applications. 

 New directions 
◦  Cohesion, granular dynamics, etc. 

REVIEW: Richardson et al. 2009, P&SS 57, 183 



 Here we are concerned not only with 
close gravitational encounters, but also 
physical collisions: |ri – rj| = si + sj. 

  In astrophysics, usually restricted to 
planetary dynamics: 
◦  Planet formation (planetesimal accretion). 
◦  Planetary rings. 
◦ Granular dynamics. 



 Planetesimal accretion 
◦ Gravity + collisions involving rigid particles or 

groups of rigid particles with some dissipation 
law and possible fragmentation, etc. 

Leinhardt et al. 2000, Icarus 146, 133 



 Planetary rings 
◦ Gravity + collisions in tidal field of a planet, 

with dissipation and possible sticking and/or 
fragmentation. 

Ring patch with 
embedded moonlet 

Tiscareno et al. 2006, 
Nature 440, 648 



 Granular dynamics 
◦ Collisions in uniform gravity field, usually with 

bouncing only, but possibly with sticky “walls.” 
◦ Applications: regolith motion, sample return. 
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Cassini Equinox Mission Daphnis casting a shadow 



Cassini Equinox Mission Daphnis casting a shadow (movie) 



 ADVANTAGES: 
1.  No singularities. 
  Particles touch before |r|  0.  No softening! 

2.  Minimum (gravitational) timestep bounded. 
  h = η/(Gρ)1/2, ρ = maximum density, η ~ 0.03. 

 CHALLENGE: 
◦ Need to predict when collisions occur (or 

deal with them after the fact), therefore need 
efficient neighbor-finding algorithm. 



  Same as for point particles: 

 Can use any standard ordinary differential 
equation integrator (see Scott’s talk!). 

 Turns out 2nd-order leapfrog is 
particularly advantageous. 

r̈i = −
∑

j !=i

Gmj(ri − rj)
|ri − rj |3



 Kick-drift-kick (KDK) scheme: 

 Notice the drift is linear in the velocities
—exploit this to search for collisions. 



r = r2 – r1 
v = v2 – v1 

Collision condition at time t: 

Solve for t (take smallest positive root): 



 To check all particle pairs for possible 
collision carries the same penalty as 
direct force summation: O(N2). 

  Instead, take advantage of the hierarchical 
nature of a tree code to reduce the 
neighbor search to ~O(Ns log N), where 
Ns = number of neighbors to find. 
◦ Collision search then becomes an SPH-like 

“smoothing” operation. 



  First developed at U Washington, this is a 
parallel, hierarchical gravity solver for 
problems ranging from cosmology to 
planetary science. 

  “Parallel k-D Gravity code” = pkdgrav. 
 Gasoline is pkdgrav with SPH enabled. 
 Not released into the public domain (yet). 
  If you’re interested in using it, see me! 



k-D Tree Spatial Binary Tree with Squeeze 



 Construct particle-particle and particle-cell 
interaction lists from top down for particles 
one bucket at a time. 

 Define opening ball (based on critical opening 
angle θ) to test for cell-bucket intersection. 
◦  If bucket outside ball, apply multipole (c-list). 
◦ Otherwise open cell and test its children, etc., 

until leaves reached (which go on p-list). 

 Nearby buckets have similar lists: amortize. 



(bucket) 



 Multipole expansion order. 
◦ Use hexadecapole (best bang for buck). 

  Force softening (for cosmology). 
◦ Use spline-softened gravity kernel. 

 Periodic boundary conditions. 
◦  Ewald summation technique available. 

 Time steps. 
◦ Multistepping available (adaptive leapfrog). 



 Master layer (serial). 
◦ Controls overall flow of program. 

 Processor Set Tree (PST) layer (parallel). 
◦ Assigns tasks to processors. 

 Parallel k-D (PKD) layer (serial). 
◦ MIMD execution of tasks on each processor. 

 Machine-dependent Layer (MDL, separate 
set of functions). 
◦  Interface to parallel primitives. 







 How many neighbors to search? 
◦ Close-packed equal-size spheres have a 

maximum of 12 touching neighbors. 
◦  For less-packed situations, only concern is a 

more distant fast-moving particle. 
◦ Typically use Ns ~ 16–32, with h small enough 

to ensure no surprises. 
◦ Can also search for all neighbors within a 

fixed ball radius (e.g. R ~ vh), but can end up 
with many more neighbors to check. 



s1 

s2 

M = m1 + m2, µ = m1m2/M, u = v + σ, n = r/r, un = 
(un)n, ut = u – un, s1 = s1n, s2 = -s2n, σi = ωi × si, 
σ = σ2 – σ1,β= 2/7 for spheres, and Ii = (2/5) mi R2. 

Post-collision velocities and spins: 

where: 
⌃ 

⌃ ⌃ ⌃ ⌃ 



Dan Durda 









 Each processor checks its particles for 
next collision during current drift interval 
(could involve off-processor particle). 

 Master determines which collision goes 
next and allows it to be carried out. 

 Check whether any future collision 
circumstances changed. 

 Repeat until all collisions occurring within 
this drift step resolved. 



 The “restitution” model of billiard-ball 
collisions is only an approximation of 
what really happens. 

 Collisions are treated as instantaneous 
(no flexing) and single-point contact. 

 This leads to problems: 
◦  Inelastic collapse. 
◦ Missed collisions due to round-off error. 



 A rigid ball bouncing on a rigid flat surface 
must come to rest, but in the restitution 
model this requires an infinite number of 
increasingly smaller bounces to occur in a 
finite time (Zeno’s paradox!). 

Could also occur 
between 2 self-
gravitating 
spheres in free 
space. 



 How to fix it? 
◦  Impose minimum impact speed vmin below 

which εn  1 (no dissipation). 
◦ Choose vmin so that this “vibration energy” is 

small compared to energy regimes of interest. 
  Petit & Hénon 1987a “sliding phase.” 

◦ OR, force particles/surfaces to come to rest 
with one another—but this causes other 
complications, especially with self-gravity. 
  Requires introducing surface normal forces. 



 Can occur in other circumstances, even 
without gravity, e.g. 



  It can be shown that as N  ∞, εn,crit  1! 
 Problem occurs in 2- & 3-D as well. 
 How to fix it? 
◦  If distance travelled since last collision small 

(factor fcrit) compared to the particle radius, 
set  εn = 1 for next collision (typically fcrit 
~10-6–10-3). 
◦ Other strategy (not implemented): store 

some fraction of impact energy as internal 
vibration to be released stochastically. 



 Despite precautions, if there are many 
collisions between many particles in a 
timestep, round-off error can cause a 
collision to be missed. 

  In this case, some particles may be 
overlapping at start of next step. 
◦ Minimize by good choices of h, vmin, and fcrit. 
◦  But sometimes that’s not enough… 



 Overlap handling strategies: 
◦ Abort with error (default). 
◦ Trace particles back in time until touching. 
◦  Push particles directly away until touching. 
◦ Merge particles (if merging enabled). 
◦ Apply repulsive force. 

  For single particles, trace-back is best.  
For rigid bodies, repulsive force is best. 



  Spheres are a special (easy, ideal) case. 
 Perfect spheres are rarely encountered in 

nature, and may give misleading results 
when used to model granular flow, 
aggregation in planetary rings, etc. 

  Simplest generalization: allow spheres to 
stick together in more complex shapes 
(“bonded aggregates”).  Advantages: 
◦ Can still use tree code for gravity & collisions. 
◦ Collisions are still sphere point-contact. 



 Use pseudo-particles to represent 
aggregate center of mass, including inertia 
tensor, rotation state, and orientation. 

 Constituent particles constrained to 
move with and around center of mass—
KDK only applied to pseudo-particle. 

 Torques and collisions alter aggregate 
motion (translation + rotation). 





where Ii, ωi are principal moments and body spin 
components, respectively, and N is the external torque 
expressed in the body frame. 



 Previous equations represent a set of 
coupled ODEs that evolve the spin axis in 
the body frame.  Need 3 more vector 
equations to evolve body orientation: 

where pi are the 
principal axes of 
the body. 

⌃ 



 The moments of inertia (eigenvalues) and 
principal axes (eigenvectors) are found by 
diagonalizing the inertia tensor—only 
need to do this when particles added to/
removed from aggregate. 

  Solve this set of 12 coupled ODEs any 
way you like (up to next collision, or end 
of drift).  I use a fifth-order adaptive 
Runge-Kutta (for strongly interactive 
systems, dissipation not a concern). 



  Inertia tensor: 

 with                    and  
 Torques: 

 where the sum is over all particles in 
aggregate a and  

Ii =
2
5
miR

2
i 1

Iagg =
∑

i

[
Ii + mi(ρ2

i 1− ρiρi)
]

ρi = ri − ra



 Collision resolution complicated because 
impacts generally off-axis (non-central). 

  Solutions do not permit surface friction. 
◦ However, off-axis collisions cause impulsive 

torques, allowing transfer of translational 
motion to rotation, and vice versa. 

 Collision prediction also more 
complicated, due to body rotation. 



See Richardson et al. 2009 
for definitions of terms! 









 Posted on the PiTP wiki. 
 Basic idea: smash stuff up! 



 Loose assemblages of coherent pieces 
held together mostly by gravity. 

 May have some cohesion between pieces 
(tensile strength). 

 NOTE: under compression, a gravitational 
aggregate has shear strength. 

 A rubble pile is a special case of a jumbled 
body with no cohesion. 



 Lightcurve and radar data show some 
very small solar system bodies must have 
tensile strength/cohesion. 





 Upper limits from comets SL9 & Tempel 1 
~100 Pa.  Essentially no data for asteroids. 

 How to model this? 
 What is the effect? 



 Add simple Hooke’s law restoring force 
between nearby particles. 

 Deform elastically up to maximum strain 
(spring rigidity set by Young’s modulus). 

 Particles act as tracers of a continuum 
solid. 

These are NOT bonded aggregates! 



Color legend: 
green  3 or more springs 
yellow  2 springs only 
orange  1 spring only 
red   no springs left 

Y = 250 Pa, L = 125 Pa 
Spin period P = 0.86 h 

Oblate shape α = 0.40 













 We are applying these models to 
rotational disruption simulations (binary 
asteroid formation) and also comparing 
with laboratory experiments. 

 Next step: allow for individual spring 
strengths in order to model pre-existing 
weaknesses/fractures, e.g. Weibull 
distribution of flaws. 



 Asteroid sample return missions are faced 
with anticipating the behavior of granular 
material in very weak gravity. 

 Want to develop simulations of these 
regimes, but be able to compare with 
physical experiments. 

 Approach: provide wall “primitives” that 
can be combined to replicate 
experimental apparatus. 







Naomi Murdoch 



 Physical collisions in N-body codes 
enabled by neighbor finding and solving 
collision equations. 

 Rigid body mechanics additionally require 
solving Euler equations and more 
complex collision prediction and 
resolution. 

 Many applications, ranging from planet 
formation to granular dynamics. 





Richardson et al. "Modeling Cohesion in 
Gravitational Aggregates" (DPS '08 #55.02) 

Mass loss: 0% < 10% > 10%      X = initial condition 
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Richardson et al. "Modeling Cohesion in 
Gravitational Aggregates" (DPS '08 #55.02) 

Color legend: 
 green  no mass loss 
 yellow  < 10% mass loss 
 orange  < 50% mass loss 
 red  < 90% mass loss 
 fuchsia  ≥ 90% mass loss 

Symbol legend: 
 ×  remnant only 
 ☐  mass in orbit 
 ★  accreting mass 

(symbol size proportional to 
mass orbiting/accreting) 




