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Plasma physics on computers

Plasma: ionized gas (typically T>104K), 4th
state of matter

Examples: stars, sun, ISM, solar wind, Earth magnetosphere,
fluorescent lights, lightning, thermonuclear fusion

Plasma physics: studies plasma behavior
through experiment, theory and ... simulation!

Simulation needed to study collective and
Kinetic effects, especially in the nonlinear
development.

Applications: reconnection, anomalous
resistivity, instabllities, transport, heating, etc.



Characteristic time and length scales
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When are collisions important?

We are interested in

L> Ap, t>> WwWp

Number of particles in Debye cube

Plasma is collisionless if

Plasma Type nem | T eV Wpe sec” ' Ap om | nAn® | sec!
Interstellar gas 1 1 | éx10* [Tx10® |4x10%|7Tx 107"
Gaseous nebula 10° 1 | 2 x10f 20 |8x10°|6x 1077
Solar Corona 1w | w* | 2x10* [2x10 '|8 x 10" 60
Diffuse hot plasma | 10" | 107 | 6 = 10" [7x 10 |2 x 10" 40
Solar atmosphere, 1044 1 | 6= [7=10% 40 |2 = 10"

gas discharge
Warm plasma 104 10 | 6x 10" |2x10 *|8 x 107 107
Hot plasma 1w | 1® | 6x1ntt |7x 10 %4 x 10| 4 = 108
Thermonuclear 1015 1p4 22 10" (2w 1078 « 10%] 5 = 10°
plasma
Theta pinch 1w | 1® | 6x 10t |7Tx 10 %4 k10| 3 = 108
Diense hot plasma 10 [ 1w0® | 6x 10 [Tx10% 4= 10| 2 x 10"
Laser Plasma 10%% | 10% | 6x 10" |Tx10"7| 40 |2x10'*

N
L>> Ap, Np>>1
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Collisionless
system has a very
large number of
particles in Debye
sphere



Collisionless plasma can be described by Vlasov-Maxwell system
of equations for distribution function f(x,v,t):
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Direct solution is 6D -- very expensive
Can solve along characteristics -- particles
Delta functions cause collisions -- smooth them

particle method!
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PIC Approach to Vlasov Eq

6D-VE not practical on a grid

(Re-)introduce N computational
particles for discretizing f, (r,p,?)

Macroscopic force (F)becomes
again granular (stochastic noise)

uation (VE)
Trajectory
Particle Shape
: : ® ®

(r,p,)

6F — JI/N, — (x.p,)
o @
= Particle equations of motion (EQM):
dr, _p, dp, _F
d  m’  dt 7

VE characteristics: f, = const.
Particle strength (charge) const.

= Reduce operation count by
computing forces on a grid




PIC Approach to Vlasov Equation

= Lorentz-Force: F, =¢E, +—(p x B )

= Solve Maxwell Equations on grid

» “Grid aliasing” (Birdsall et al.)

a, =a, (zero self-force)

| 1
Dual Grid Cell

/VFE

: q,

I
Charge Assignment
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® : ®  Grid-Point Charge' ®
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Force Interpolation



Finite-size particles
Coulomb force between point charges

] short range force is responsible
F= % for collision effects

long range force is responsible
for collective effects

FI1G. |. Coulomb force law between particles in two and three
dimensions.

Since one simulation particle represents many point particles (Q=Nq), the
short range force is over-estimated. So, finite-size particles are used.



The force law between finite-size particles

The finite-size particle 205
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FIG. 4. Square and Gaussian charge shapes—two shapes often . . . . . .
used for finite-sized particles. FIG. 2. Force law between finite-size particles in two dimen-

sions for various sized particles. A Gaussian-shaped charge-
density profile was used.
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Simulation Flow-Chart

Load Particle Distribution

v
Solve Particle EQM

Fp %(Xp’pp) ‘

Model Surface Emission Monte-Carlo Collisions
f @ i
Particle Interpolation Extrapolate to Grid
(Ei’Bi)er (Xp’pp )Q (pi’ji)

‘ Solve Maxwell’'s Equation
4_

(piﬂji)e(Ei’Bi)




How PIC works

A bit of history:

In late 1950s John Dawson began 1D
electrostatic “charge-sheet” experiments
at Priceton, later @ UCLA.

1965 Hockney, Buneman -- introduced

grids and direct Poisson solve Key names:

J. Dawson, O. Buneman
B. Langdon, C. Birdsall.

INSTITUTE OF PHysics

1970-s theory of electrostatic PIC
developed (Langdon)

First electromagnetic codes

PLASMAPHYSICS
VIA COMPUTER

1980s-90s 3D EM PIC takes off . SIMULATION

'C K BIRDSALL

“P|C bibles” come out in 1988 and 1990 : Gk e
Always in step with Moore’s law




Plasma physics on computers
How PIC works

Electrostatic codes
Time stepping

Charge assignment and shape factors
Discretization effects



Timescales of the system >> light crossing time; magnetic fields

static.

Vig=—p()
E(x)=-V¢
F,=q,E(x,)

The number of floating
point operations for the

complete scheme scales as:

aN,+ N, InN_ +yN,

if we use FFT to solve the
Poisson’s equation.
Where Ng is the mesh

number.

Solve for E
on mesh

Load initial particle
positions and velocities
Deposit particle charge
on mesh
l — a Scatter operation

Solve particle

equation of motion At
~ Interpolate E to particle
| position and compute F

- — a gather operation




Four Major Criteria to Choose an Algorithm
for Integration of Equations of Motion

*Convergence — Which means that the numerical solution
converges to the exact solution of the differential equation in the
limits as A and Ax tend to zero.

*Accuracy — Which means the truncation error associated with
approximating derivatives with differences.

Stability — If total errors (including truncation error and
round-off error) grows in time, then the scheme is unstable.

*Efficiency — This is a critical consideration since whatever
scheme we choose will be used for each particle at each time
step.



Other Criteria to Choose an Algorithm for
Integration of Equations of Motion

*Dissipation — The dissipation of some physical quantities
caused by the truncation error associated with approximating
derivatives with differences.

Conservation — The deviation of the conservation law
caused by the truncation error associated with approximating
derivatives with differences.



Integration of Equations of Motion

The conventional wisdom is that the simple second order leapfrog
achieves the best balance between accuracy, stability and efficiency.
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Integration of Equations of Motion

For an electrostatic case, if ® A7 = 2, the leap frog scheme is stable.
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Figure 3. Angular frequency w, and numerical growth rate ey for the leapfrog scheme. Phase
error is the difference between the numerical and exact frequency ep.



Charge Assignment and Force Interpolation

Once we introduce the grid we can no longer view the particles as
point particles, this leads naturally to the idea of a finite sized particle.
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(Nearest Grid Point) NGP in 1D. (Cloud-in-Cell) CIC in 1D.



Charge Assignment and Force Evaluation by
Cloud-in-Cell in 1D

To ensure momentum conservation, the same interpolation scheme 1s used to
compute the force on a particle as was used to perform the assignment of the

particles charge to the mesh.
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Filtering Action of Shape Functions
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Integration of Field Equations

Here we solve the 1D form of Poisson's equation, then computes the
electric field. L 1s the length of the system of interest.

@z_p(x) p(k) R
Ox* Fourier Transform ¢(k )= ::g
* o ox E(k) =—ikg(k
l —_— K kz[sml(;ix Ax)) (k) 1¢( )
Difference I TA)C =20
i sm(kAx}
¢g+1 _ 2¢g + ¢g—1 _ _p = k,Ax é‘(k ) _ ﬁ(k;)
Ax? & Vg
!
¢ +1 - Yo Fourier Transform - . 7
E, = : 2Axg > E(k)=—-ixg(k;)

In this case, differencing acts to dampen high &, modes.



Aliasing

The spurious fluctuations which appear as a result of the loss of
displacement invariance, manifest themselves in k-space as non-
physical mode couplings, known as “aliasing’.

By introducing a mesh we reduced |
our representation of p (x) from a
continuous representation p, (x) to a 'pe' (k=i '|5£. (kek,

n=-1 alias) :

sampled representation p, (x,) .

pk) =] dip, (x)e™

b b®) 1 (r=+l alias)

5= p.(k+nk,)

n=—00 : : . -
-k .. /2 0 k. 12 k
The wavenumber range —kg". 2=k = kgﬂ- 2w grid
, called the ""principal zone" or “first Brillouin zone." .-
Principal Zone

The extra contributions (from |n[>0) to inside the principal zone are called aliases.



Aliasing

The spurious fluctuations of high frequency causes the
noise and error in the main lobe, which might make the
numerical system to be unstable.

The high-k components of S(k) is determined by the
smoothness of S(x); The high-k component of # (k) is
determined by the smoothness of n(x), i.e. the number of
particles.

The major noise exists in the particle-in-cell method
mainly comes from the aliasing effect. Two methods for
reducing the aliasing effect:

1. Increase the particle number.

2. Increase the order of the shape function.



Noise Reduction in PIC

The granularity of a particle representation inevitably
introduces short-scale fluctuations into the force field, and the
mean amplitude of these fluctuations is proportional to./;,
where 7 1s the particle number density.

The ratio of the mean amplitudes of the fluctuations to the
slowly varying component varies as % , the effect of these
fluctuations 1s greatly enhanced because our numerical model
typically uses far fewer particles than are present in reality.

We do not need to reduce the fluctuation amplitudes to their
correct values, but merely to levels at which they no longer
dominate the forces on the particles, or influence the particles
significantly during the course of our simulation.

If Debye length is unresolved on the grid (<1cell), aliasing will
heat up the plasma until Debye length is resolved -- num. heating



Effects of particle shape factor on plasma dispersion

5w

s | T > i'J“f-+'ii'-i')"i‘f";:,l}” =0

R ———

Q|
~'.'.'|'\s,

¥
E: —
t

5w

, _F(.wj]=qf S(P—#;)E{P)d"p

>:-g

F
B
13

5w

V-E=dng [ f(#',v)s(x—r")d"~'d"’

in kdr

5,00

0 25
0 2= 4r kAr
0 2n

S (k Plasma frequency is modified by

h smoothing a)z(k) _ wi | S(k) 2

LSRR s R D

]
i &

s
e el 1 e S

H
La H
1 » T
H
:
H
H
H
:
: -
H

>4
1
o

wp |S(k)[? e Kk'dfo/d o
k2 -o (0 —k'v+4iv)

Such Fourier space modifications also reduce collisions

e(k,w)=1+



Electrostatic codes

Extensions to 2D:

Usually, area weighting scheme is
used for charge deposition and
force interpolation

But -- can use other shape factors
as well! Particles don’t have to be
squares!!!

but the alternative is 6D Viasov..
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PIC issues.

*Particle discretization error
* Smoothing error (finite size particles)
* Statistical noise (granular force)

*Grid aliasing (grid assignment)
*Deterioration of quadrature in time integration
*Short-range forces (collisions) neglected




Summary for Restrictions of simulation
parameters

Value of time step

1. Courant condition (rectangular coordinate)

1 1 c=1
dtf-::l/\j ;T -
dxl dxz mpg—l

2. w_ di<025
! The maximum frequency of system

3. v__dt<min(dx,dx,)

particle move one time step < 1 cell (grid size)




Summary for Restrictions of simulation

parameters
Resolution
1.Cell (grid) size
d < m~6~12 = 2%
m k

2.Particles per cell per species : 4-9
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OE /ot =¢(V x B) —4nJ , V- E=4mp, V-B=0

d
OB/t =—c(V x B),  —ymv=q(E+~xB)

Load Particle Distribution

v

Solve Particle EQM

—>
Fp — (Xp’pp ) ‘
Model Surface Emission Monte-Carlo Collisions
f @ ;
Particle Interpolation Extrapolate to Grid
(Ei’Bi)%Fp (Xp’pp )e (pi’ji)

L

Solve Maxwell’'s Equation
(pwji)e (Ei:Bi)
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Fields defined on the Yee mesh. Currents, not
shown, are co-located with the corresponding
electric field components. Exploded view shows an
integration surface.
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Fields are decentered both in time and in space

Finite-difference Time-Domain Maxwell solver on Yee (1966)
mesh: robust and very simple. Second order in space and time.

Decentering conserves div B to machine precision



Integration of Field Equations

The new set of field variables pmmm——— ==,
encapsulate the mesh metrics. fx' i T A
E=[Eedl D=[Deds :‘i“"i‘—'h-"‘ "“'“ff i
H=[Hedl B=[Beds / |
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| L Fields defined on the Yee mesh. Currents, not
shown, are co-located with the corresponding
electric field components. Exploded view shows an
integration surface.
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Vacuum dispersion curve for leapfrog difference
scheme for wave equation.

Numerical dispersion is anisotropic (best along grid diagonal)

Phase error for short wavelengths

Causes numerical Cherenkov radiation (when relativistic particles
move faster than numerical speed of light)



Integration of Equations of Motion

Newton—Lorentz equations of motion

fd 1 g
Eg}rmv—F—q(E+va) y_\/l—(v/c)z_J1+(c)

d
T X=U u=yv

dt

!+ t—AL2 W +A2 o 1=AL2
. = i E'+ x B .
At m 291




Integration of Equations of Motion

Boris Scheme*

- gFE At

Uy prn = U 2

. qE At

U, prjg = U ;_
l

(Explicit Scheme)

with

AtE'
u— — A2 q ’
2m

U =u +u" xt',

S
ut =u +u x )
-'.l' + r! . .t!
mf’.
gl tA2 — g+ o q
2m
At
t|= qt Bt
2y'm

0 = 2arctan(t') = 2arctan(gBAt /2ym)

* Boris J P 1970 Relativistic plasma simulation—optimization of a hybrid code
Proc. 4th Conf. on Numerical Simulation of Plasmas (Washington, DC) pp 3—67.

Can overstep magnetic rotation without stability issues.



Charge and current deposition JE [0t =¢(V x B) —4nJ |

_ _ OB /0t = —¢c(V X E),
What to do about the Poisson equation?

Should we solve an elliptic equation in addition to hyperbolic
Ampere’s and Faraday’s laws?

Turns out we can avoid solving Poisson equation if charge is
conserved.

Take divergence of Ampere’s law:

aVé,;E=€V~6VxﬁB}—4nV-J
P __v.g
ot

If charge is conserved, Poisson equation is just an initial condition.
Like divB=0, if Poisson is true at t=0, it will remain satisfied.



Charge and current deposition

Charge-conservative current deposition method

If just use volume-weighting, charge is not conserved.

Villasenor & Buneman (92):

Count what is the “volume current”
through appropriate faces.

Also, need to know if the particle

crosses four or 7 boundaries (2d).




Weighting Charge to the Grids

A single particle is weighted to
surrounding nodes

JJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJ
[l

Qj,;: =q(l1-w)(1-w,)

Qs =gqw(l-w)

Qj,k-q-l =q(1—w)w,

X2

=
++++++++++++++++++++++++++++++++++++++++++++++++++++

The charge density is calculated using

o,
Pix= %ﬂxlx Ax,)




Weighting Current to the Grids

g - Charge Conserving Current Weighting
— [ —
I j+l,,.it _Z ﬂwl(l WZ)
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i, particle A
X,: the position of the nearest - W 4w
J W=
lower mesh node




Charge and current deposition

Subroutine l. ' Subroutine ' : Subroutine
' x-split : . . y-split . ' z-split
] y 1 1 |
: :
/ : ' l | : :
' ' ' ' , .
e | ' x-crossing? . E ' E z-crossing? E
- L}
i : : : | | :
I v ' ' ' | ' '
/'/// AP : yes E : yes | : yes !
- 1 . N n 1l N N
/ . ' N ! ' M
] 1 L]
. create ! ‘ create : ' create '
. pair Tst & . pair et ' pair et |
. . . '
: particl H particle ' particleg
: N ; | :
' M 1 [}
2nd particle : ' 2nd particle ! 2nd particle !
e SRS Y-
1

Subroutine to
deposit currents
on cell faces

Current deposition can take as much time as the mover
(sometimes more). More optimized deposits exist (Umeda 2003).

Charge conservation makes the whole Maxwell solver local and
hyperbolic (like nature intended!). Static fields can be established
dynamically.



Electromagnetic codes

Special sauce
Particle shape should be smoothed to reduce noise. We use
current filtering after deposition to reduce high frequency aliases.

Higher order FDTD schemes (4th spatial order) work better at
reducing unphysical Cherenkov instability.

Boundary conditions

Periodic is simple -- just copy ghost zones and loop particles.
Should not forget particle charge on the other side of the grid!

Conducting BCs: set E field parallel to boundary to 0. Boundary
has to lie along the grid.

Outgoing BCs: match an outgoing wave to E, B fields at boundary
(Lindman 1975).



Electromagnetic codes

Boundary conditions

Perfectly matched layer (Berenger 1994) -- works like absorbing
material with different conductivity for E and B fields)

Moving window: simulation can fly at c to follow a fast beam.
Outgoing plasma requires no conditions.

Injection: particles can be injected from boundary, or created in
pairs throughout the domain. We implemented moving injectors
and expanding domains for shock problems.

Parallelization

We use domain decomposition with ghost zones that are
communicated via MPI. In 3D we decompose in slabs in y-z
plane, so all x-s are on each processor (useful for shocks).



http://ptsg.eecs.berkeley.edu/

Download the software now. P

o XES1

» XPDP1
- XPDC1 : /T
o XPDS1 |

o XPDP2
- XO0OPIC

o XIBC !, { |
o XGRAFIX siriece charge

o ————]|
Our most recent, popular and well kept up codes are on bounded plasma, plasma device codes XPDP1,
XPDC1, XPDS1, and XPDP2. The P, C, and S mean planar, cylindrical, or spherical bounding
electrodes; the 1 means 1d 3v and the 2 means 2d 3v. These are electrostatic, may have an applied
magnetic field, use many particles (like hundreds to millions), particle-in-cell (PIC), and allow for
collisions between the charged particles (electrons and ions, + or -) and the background neutrals
(PCC-MCC). The electrodes are connected by an external series R, L, C, source circuit, solved by
Kirchhoff's laws simultaneously with the internal plasma solution (Poisson's equation), The source may
be V(t) or I(t), may include a ramp-up (in time). XPDP2 is planar in x, periodic in y or fully bounded in
(x.,y), driven by one or two sources.(For detailed information, click here)



Not so public codes

XOOPIC (2D RPIC, free unix version, Mac and
Windows are paid through Tech-X); OOPIC-PRO

VORPAL (1,2,3D RPIC, hybrid, sold by Tech-X)

TRISTAN (public serial version), 3D RPIC (also have
2D), plans for release “real soon now™™

OSIRIS (UCLA) 3D RPIC, mainly used for plasma
accelerator research

LSP -- commercial PIC and hybrid code, used at PPPL
VLPL -- laser-plasma code

Reconnection research code (UMD, UDelaware)
Every national lab has PIC codes.

All are tuned for different problems, and sometimes
use different formulations (e.g. vector potential vs
fields, etc). Direct comparison is rarely done.
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